CS 357: Numerical Methods

Interpolation Error Piecewise Polynomial Interpolation

Eric Shaffer

Review: Quadratic Interpolation (using the monomial basis)

Demo: Interpolation with Vandermonde Matrices

□ Things to notice:

- The points that we choose to interpolate at are called nodes
- In this example the interpolation is quadratic
 - But the coefficients are found by solving a linear system

Derivative of the interpolant exhibits more error than interpolant

Demo: Interpolation Error I

- Assume the function f being interpolated in smooth ...it has many derivatives...
- The length **h** of the interpolation interval is "sufficiently small"
- Then we have:

Error depends on the interval h (the "step-size")

Interpolation Error

Error (L) = Ch³

Suppose we have

A quadratic interpolant —

An error E

An interval length h

• What happens if I use h/2 instead of h? Error $(h/2) + C (h/2)^3 = \frac{1}{8} + \frac{3}{8}$

Demo: Interpolation Error II

So polynomial interpolation with a polynomial of degree n is (n+1)th order convergent.

Why does a shorter interval seem to decrease error?

Interpolation Parameters

Choosing Nodes for Interpolation

- Demo: Choice of interpolation nodes
- Best if nodes cluster towards the ends of the interval

Piecewise Polynomial Interpolation

Cubic Splines

A spline is a piecewise polynomial of degree k that is continuously differentiable k-1 times

For cubic spline:

1st and 2nd derivatives must match at interior points

$$P(f) = \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{4}$$

Suppose there are n knots (including endpoints)

How many parameters?

$$y(n-1) = 4n-4$$

How many equations from interpolation constraint? $\chi(n-D)$

How many equations from 1^{st} derivative match?

$$(-L e.g. C_{1}(+1) = C_{2}(+1) or C_{1}(+1) or C_{2}(+1) or C_{2}(+1) or C_{1}(+1) or C_{2}(+1) or C_{2}(+$$

How many from second derivative match?

Cubic Splines: Parameters and Constraints

2 free parameters...you could

- **D** Specify first derivative at t_1 and t_n endpoints
- Set second derivative to 0 at at t₁ and t_n endpoints
 This is a *natural spline*
- Set first and second derivatives equal at t_1 and t_n

Periodic

Natural eubic Spline on 3 data points

$$p_1(4) = \lambda_1 + \lambda_2 + + \lambda_3 + 2 + \lambda_4 + 3$$

 $p_2(4) = p_1 + p_2 + p_3 + 2 + p_4 + 3$
 $p_1(4, 2) = 32$
 $p_1(4, 2) = 32$
 $p_2(4, 3) = 32$
 $p_2(4, 3) = 33$
 $p_2(4, 3) = 33$
 $p_2(4, 3) = 33$

$$+, +_2 +_3$$

1