CS 357: Numerical Methods

Interpolation Error
 Piecewise Polynomial Interpolation

Eric Shaffer

Review: Quadratic Interpolation (using the monomial basis)

$$
\begin{gathered}
\begin{array}{c}
1 \\
7 \\
y
\end{array} \begin{array}{c}
2 \\
f(t)= \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
4 \\
4
\end{array}\right]} \\
x=\left[\begin{array}{c}
7 \\
-2.5 \\
0.5
\end{array}\right]
\end{array} .
\end{gathered}
$$

Demo: Interpolation with Vandermonde Matrices

- Things to notice:

The points that we choose to interpolate at are called nodes

- In this example the interpolation is quadratic
- But the coefficients are found by solving a linear system
- Derivative of the interpolant exhibits more error than interpolant

Demo: Interpolation Error I

- Assume the function f being interpolated in smooth
- ..it has many derivatives...
- The length \boldsymbol{h} of the interpolation interval is "sufficiently small"
- Then we have: interpolant of degreen

$$
\text { original } \underbrace{|f(x)-\tilde{f}(x)|}_{\text {constant }} \leq \underbrace{v}_{c^{C h^{n+1}}}
$$

Error depends on the interval h (the "step-size")

Interpolation Error

Demo: Interpolation Error II

If a method has an error bound of
$E\left(E \leq C h^{p}\right.$
It is called pth order convergents

So polynomial interpolation with a polynomial of degree n is $(\mathrm{n}+1)$ th order convergent.

Why does a shorter interval seem to decrease error?

Interpolation Parameters

What can we choose when interpolating?
Which basis we use (e.g. monomial)

Maybe positions of nodes

Choosing Nodes for Interpolation

- Demo: Choice of interpolation nodes
- Best if nodes cluster towards the ends of the interval

ㅁ Oq[-1,1], the Chebyshev nodes perform best $\underbrace{\left.x_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right) \text { for } \mathrm{k}=1, \ldots, \mathrm{n}\right)}$

Piecewise Polynomial Interpolation

$$
\left.\begin{array}{llllll}
\text { Example } & l_{1}: x_{1}+x_{2} t=y \\
t_{1} & l_{1} & t_{2} & l_{2} & t_{3} & \\
l_{2} & \ldots & x_{3}+x_{4} t y \\
1 & r_{1} & 0 & 0 \\
1 & r_{2} & 0 & 0 \\
0 & 0 & 1 & t_{2} \\
0 & 0 & 1 & t_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

Example

Cubic Splines

\square A spline is a piecewise polynomial of degree k that is continuously differentiable k-1 times

For cubic spline:

- $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives must match at interior points

$$
p(t)=\alpha_{1}+\alpha_{2} t+\alpha_{3} t^{2}+\alpha_{4} \beta^{3}
$$

Cubic Splines: Parameters and Constraints

$$
n=4
$$

- Suppose there are n knots (including endpoints)
- How many parameters?

$$
4(n-1)=4 n-4
$$

- How many equations from interpolation constraint?

Cubic Splines: Parameters and Constraints

- 2 free parameters...you could
\square Specify first derivative at t_{1} and t_{n} endpoints
- Set second derivative to 0 at at t_{1} and t_{n} endpoints - This is a natural spline
\square Set first and second derivatives equal at t_{1} and t_{n} - Periodic

Example
Natural cubic 5 lire on 3^{3} data points

$$
\begin{aligned}
& \text { Natural eabic splirio on } \\
& p_{1}(t)=\alpha_{1}+\alpha_{2}+\alpha_{3} t^{2}+\alpha_{4} t^{3} \text { data porn } \\
& p_{2}(t)=\beta_{1}+\beta_{2} t+\beta_{3} t^{2}+\beta_{4} t^{3} \\
& \begin{array}{l}
p_{1}(t)=y_{1} \\
p_{1}\left(t_{2}\right)=y_{2} \\
p_{2}\left(t_{2}\right)=y_{2} \\
p_{2}\left(t_{3}\right)=y_{3}
\end{array} \quad l \text { equations }
\end{aligned}
$$

$$
t_{1} \quad t_{2} \quad t_{3}
$$

Example
Derivalives at t_{2}
(5) $\alpha_{2}+2 \alpha_{3} t_{2}+3 \alpha_{4} t_{2}^{2}=$

$$
\underbrace{\begin{array}{l}
\beta_{2}+2 \beta_{3} t_{2}+3 \beta_{4} t_{2}^{2} \\
\text { of } p 2
\end{array}}
$$

(6) $2 \alpha_{3}+6 \alpha_{4}+_{2}=2 \beta_{3}+6 B_{4}+2$

Natural Spline:
(t) $2 \alpha_{3}+6 \alpha_{4}+1=0$
(8) $2 \beta_{3}+6 \beta_{4} t_{3}=0$

Example
"natural" spline constraint

