
Numerical Methods (CS 357)

Worksheet

Part 1. Objectives

� Long-term goal: Understand the nature of eigenvectors and eigenvalues

� Understand how to apply Power Iteration and it’s variants

� See an application of eigenvector extraction

Part 2. Inverse Iteration with a Shift

Suppose A is an 4× 4 matrix with the eigenvalues −8,−6, 5, and 1. Suppose you apply the following

iterative algorithm: xk+1 = (A−σI)−1xk
‖(A−σI)−1xk‖

and choose σ = 4. Assuming that the algorithm converges

on an eigenvector, which eigenvalue of A is associated with that eigenvector?

Part 3. Principal Component Analysis (PCA)

Informally, if you have a bunch of scattered data, PCA will let you determine a vector for the
direction of greatest spread and the direction of least spread. These directions can be found by
finding the eigenvectors and eigenvalues of the covariance matrix for the data. In this problem, you
are given a scattered 2D point set with the x coordinates stored in x and the y coordinates in y.

In 2D, the sample covariance matrix for a data set of n points (xi, yi) can be formed in the following

manner: 1
n−1

[
(xi − µx)2 (xi − µx)(yi − µy)

(yi − µy)(xi − µx) (yi − µy)
2

]
where µx is the average of the x coordinates

and similarly µy for y.

The sample covariance matrix is symmetric, so it will have n orthogonal eigenvectors. The dominant
eigenvector (the one associated with the eigenvalue with the greatest absolute value) will be the
principal direction of the data set and the eigenvector asscoiated with the eigenvalue of least
magnitude will be the direction of least spread. These eigenvectors form the principal directions of
the data.

One can compute an object-aligned bounding box by projecting the data points onto the normalized
versions of the two principal eigenvectors. Specifically, use the centroid as the origin of the box
with the principal eigenvectors forming the local coordinate system. Project the vectors from the
centroid to the scattered points onto the normalized eigenvectors and keep track of the maximum
and minimum extents. Use those extents to find the corners of the bounding box. Put the corners
of the bounding box into a numpy array named corners. The order of the corners is important
(purely for grading reasons). If e1 is the dominant eigenvector and e2 the other eigenvector, order
the points so that the first point is: the minimum in directions e1 and e2, the second is the minimum

e1 and maximum e2, the thir is maximum e1 and maximum e2, and the last is maximum e1 and
minimum e2.

Hints:

� The eigenvectors can be extracted using the Python function numpy.linalg.eig.

INPUTS: x and y

OUTPUT: corners

import numpy as np

import numpy.linalg as la

import matplotlib.pyplot as pt

import matplotlib.lines as lines

Compute the centroid of the points

xm = x.mean()

ym = y.mean()

Create the covariance matrix

cv_mat = np.zeros((2,2))

for i in range(n):

cv_mat[0][0]+=((x[i]-xm)**2)

cv_mat[1][1]+=((y[i]-ym)**2)

cv_mat[0][1]+=((y[i]-ym)*(x[i]-xm))

cv_mat[1][0]+=((x[i]-xm)*(y[i]-ym))

cv_mat/=(n-1)

Complete the code by finding the eigenvectors

...and computing the bounding box

Put your code here

End of your code

fig = pt.figure()

ax = fig.add_subplot(111,aspect="equal")

draw_box(corners,ax)

pt.plot(x, y, "o",color="red")

pt.show()

	Objectives
	Inverse Iteration with a Shift
	Principal Component Analysis (PCA)

