
Numerical Methods (CS 357)

Worksheet

Part 1. Objectives

� Be able to apply Lagrange multipliers for constrained optimization

� Understand the working principle of floating point

� Know what is meant by a ‘denormal’ and the ‘implied 1’.

� Understand the reason why catastrophic cancellation occurs.

Part 2. Floating point “machine epsilon”

For a (binary) floating point system of the form (s1.s2s3)2 · 2p that has an exponent range from
−128 to 127 and that uses three bits to store the significand s, what is the difference between 1 and
the smallest representable number greater than one?

(A) 2−3

(B) 2−4

(C) 2−1

(D) 2−2

Part 3. Floating point: exact representation

For a (binary) floating point system of the form (s1.s2s3)2 ·2p that has an exponent range from −128
to 127 and that uses three bits to store the significand s, which of the following sets of numbers can
be represented accuratedly, i.e. without rounding?

(A) The integers 1 through 10

(B) The integers 1 through 5

(C) 2200

(D) 1/3

Part 4. Finite Differences vs. Floating Point

In this problem, you’re given a function f and its derivative df as a function. For a large number
of different values of the grid spacing h, you will use second-order centered finite differences to

compute an approximation of the derivative:

f ′(x) ≈ f(x + h)− f(x− h)

2h

For each of the point counts given in n values, compute the finite difference approximation to f ′

everywhere except at the two endpoints. Compute the relative error in the ∞-norm and plot the
result, using the starter code given.

What do you observe?

INPUT:

� f, a (reasonably wiggly) function.

� df, the derivative of f.

� n values, a list of point counts to try. For each entry n in this list, compute the second order
finite differences on the grind between [0, 1] with n equispaced points.

OUTPUT:

� a, b, the final ends of your bracket.

import numpy as np

import numpy.linalg as la

import matplotlib.pyplot as pt

h_values = []

rel_err_values = []

for n in n_values:

x = np.linspace(0, 1, n).astype(np.float32)

h = x[1] - x[0]

h_values.append(h)

Evaluate 2nd centered order finite differences of f at x.

Compute error against df at x in the infinity norm.

rel_error = la.norm(error, np.inf) / la.norm(df(x), np.inf)

rel_err_values.append(rel_error)

------------ plotting code below, no need to change

rel_err_values = np.array(rel_err_values)

pt.xlabel(r"h")

pt.ylabel(r"Rel. Error")

pt.loglog(h_values, rel_err_values)

	Objectives
	Floating point ``machine epsilon''
	Floating point: exact representation
	Finite Differences vs. Floating Point

