Part 1. Objectives

- Be able to apply Lagrange multipliers for constrained optimization
- Understand the working principle of floating point
- Know what is meant by a 'denormal' and the 'implied 1'.
- Understand the reason why catastrophic cancellation occurs.

Part 2. Floating point “machine epsilon”

For a (binary) floating point system of the form \((s_1.s_2s_3)_2 \cdot 2^p\) that has an exponent range from \(-128\) to 127 and that uses three bits to store the significand \(s\), what is the difference between 1 and the smallest representable number greater than one?

(A) \(2^{-3}\)
(B) \(2^{-4}\)
(C) \(2^{-1}\)
(D) \(2^{-2}\)

Part 3. Floating point: exact representation

For a (binary) floating point system of the form \((s_1.s_2s_3)_2 \cdot 2^p\) that has an exponent range from \(-128\) to 127 and that uses three bits to store the significand \(s\), which of the following sets of numbers can be represented accurately, i.e. without rounding?

(A) The integers 1 through 10
(B) The integers 1 through 5
(C) \(2^{200}\)
(D) \(1/3\)

Part 4. Finite Differences vs. Floating Point

In this problem, you’re given a function \(f\) and its derivative \(df\) as a function. For a large number of different values of the grid spacing \(h\), you will use second-order centered finite differences to
compute an approximation of the derivative:

\[f'(x) \approx \frac{f(x + h) - f(x - h)}{2h} \]

For each of the point counts given in \texttt{n_values}, compute the finite difference approximation to \(f' \) everywhere except at the two endpoints. Compute the relative error in the \(\infty \)-norm and plot the result, using the starter code given.

What do you observe?

INPUT:

- \(f \), a (reasonably wiggly) function.
- \(df \), the derivative of \(f \).
- \(n \texttt{values} \), a list of point counts to try. For each entry \(n \) in this list, compute the second order finite differences on the grind between \([0, 1] \) with \(n \) equispaced points.

OUTPUT:

- \(a, b \), the final ends of your bracket.

```python
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as pt

h_values = []
rel_err_values = []
for n in n_values:
    x = np.linspace(0, 1, n).astype(np.float32)
    h = x[1] - x[0]
    h_values.append(h)
    # Evaluate 2nd centered order finite differences of f at x.
    # Compute error against df at x in the infinity norm.
    rel_error = la.norm(error, np.inf) / la.norm(df(x), np.inf)
    rel_err_values.append(rel_error)

rel_err_values = np.array(rel_err_values)
pt.xlabel(r"$h$"")
pt.ylabel(r"Rel. Error")
pt.loglog(h_values, rel_err_values)
```