
Numerical Methods (CS 357)

Worksheet

Part 1. Objectives

� Understand contributions to error in interpolation

� Be able to asymptotically predict interpolation error

� Understand ways in which polynomial interpolation can fail or yield large errors

� Understand how piecewise polynomial interpolation and appropriate choice of nodes mitigate
sources of error

Part 2. Interpolation: Error prediction

Suppose we interpolate a function f(x) using monomials at three equally-spaced points on an
interval of length h. The obtained interpolation error is found to be 0.5. What interpolation error
do you predict for the same function on a subinterval of the original one that has length h/10?

Part 3. Finding a 2-piece quadratic interpolant

In this problem, you are given three data points at equispaced x-coordinates x0, x1, x2 in the variable
x with associated y values y0, y1, y2 in the variable y.

From this, you should find a piecewise quadratic interpolant by setting up a Vandermonde matrix
V and finding the coefficients a, b, c and d, e, f , so that your interpolant is

f̃(x) =

{
ax2 + bx + c x < x1

dx2 + ex + f x ≥ x1

Your interpolant should obey the following conditions:

� f ′(x0) = 0

� f̃(xi) = yi
� f̃ ′ does not jump between pieces

INPUT:

� x, a 3-vector of x coordinates

� y, a 3-vector of function values f(x)

OUTPUT:

� coeffs, the vector [a, b, c, d, e, f] of coefficients

import numpy as np

import numpy.linalg as la

import matplotlib.pyplot as pt

V = np.zeros((6,6))

rhs = np.zeros(6)

Fill first row of linear system: a*x[0]**2 + b*x[0] + c = y[0]

V[0,:3] = [x[0]**2, x[0], 1]

rhs[0] = y[0]

a*x[1]**2 + b*x[1] + c = y[1]

d*x[1]**2 + e*x[1] + f = y[1]

d*x[2]**2 + e*x[2] + f = y[2]

2*a*x[0] + b = 0

2*a*x[1] + b - 2*d*x[1] - e = 0

print(V)

coeffs =

(plot the solution--no need to modify this part)

a, b, c, d, e, f = coeffs

yp = np.empty_like(xp)

left = xp < x[1]; lxp = xp[left]; yp[left] = a*lxp**2 + b*lxp + c

right = xp >= x[1]; rxp = xp[right]; yp[right] = d*rxp**2 + e*rxp + f

pt.plot(xp, yp)

pt.plot(x, y, "o")

	Objectives
	Interpolation: Error prediction
	Finding a 2-piece quadratic interpolant

