Part 1. Arrays and shapes

Let A be a numpy array of shape (3,7). What is the shape of a[:2, 1:].transpose()?

(A) (6,2)
(B) (2,6)
(C) (5,3)
(D) (6,3)

(E) (6,)

Part 2. Row sums

You are given a 2D numpy array in the variable **a**. Produce a version of **a** that has each row multiplied by a number so that the sum over the row is one. Store it in the variable **a_normalized**. Use the function numpy.sum to compute the row sums. Its documentation is reproduced (in part) below.

numpy.sum(a, axis=None)

Sum of array elements over a given axis.

Parameters:

- a: array. Elements to sum.
- axis: None or int. Axis or axes along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

import numpy as np

Part 3. Numpy indexing

Write a piece of code that produces a 10×10 multiplication table in the variable mult_table:

Do not use any for loops.

import numpy as np