
Numerical Analysis / Scientific Computing
CS450

Andreas Kloeckner

Fall 2024

1

Outline
Introduction to Scientific Computing

Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About the Class
Errors, Conditioning, Accuracy, Stability
Floating Point

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

2

What’s the point of this class?
’Scientific Computing’ describes a family of approaches to obtain
approximate solutions to problems once they’ve been stated
mathematically.
Name some applications:

▶ Engineering simulation
▶ E.g. Drag from flow over airplane wings, behavior of photonic

devices, radar scattering, . . .
▶ → Differential equations (ordinary and partial)

▶ Machine learning
▶ Statistical models, with unknown parameters
▶ → Optimization

▶ Image and Audio processing
▶ Enlargement/Filtering
▶ → Interpolation

▶ Lots more.
3

What do we study, and how?

Problems with real numbers (i.e. continuous problems)

▶ As opposed to discrete problems.
▶ Including: How can we put a real number into a computer?

(and with what restrictions?)

What’s the general approach?

▶ Pick a representation (e.g.: a polynomial)
▶ Existence/uniqueness?

4

What makes for good numerics?

How good of an answer can we expect to our problem?

▶ Can’t even represent numbers exactly.
▶ Answers will always be approximate.
▶ So, it’s natural to ask how far off the mark we really are.

How fast can we expect the computation to complete?

▶ A.k.a. what algorithms do we use?
▶ What is the cost of those algorithms?
▶ Are they efficient?

(I.e. do they make good use of available machine time?)

5

Implementation concerns

How do numerical methods get implemented?

▶ Like anything in computing: A layer cake of abstractions
(“careful lies”)

▶ What tools/languages are available?
▶ Are the methods easy to implement?
▶ If not, how do we make use of existing tools?
▶ How robust is our implementation? (e.g. for error cases)

6

Class web page

https://bit.ly/cs450-f24

▶ Assignments
▶ HW1 (soon!)
▶ Pre-lecture quizzes
▶ In-lecture interactive content (bring computer or phone if possible)

▶ Textbook
▶ Exams
▶ Class outline (with links to notes/demos/activities/quizzes)
▶ Discussion forum
▶ Policies
▶ Video

7

https://bit.ly/cs450-f24

Programming Language: Python/numpy

▶ Reasonably readable
▶ Reasonably beginner-friendly
▶ Mainstream (top 5 in ‘TIOBE Index’)
▶ Free, open-source
▶ Great tools and libraries (not just) for scientific computing
▶ Python 2/3? 3!
▶ numpy: Provides an array datatype

Will use this and matplotlib all the time.
▶ See class web page for learning materials

Demo: Sum the squares of the integers from 0 to 100. First without
numpy, then with numpy.

8

Supplementary Material

▶ Numpy (from the SciPy Lectures)
▶ 100 Numpy Exercises
▶ Dive into Python3

9

https://scipy-lectures.github.io/intro/numpy/index.html
https://github.com/rougier/numpy-100
https://diveintopython3.net/

Sources for these Notes

▶ M.T. Heath, Scientific Computing: An Introductory Survey, Revised
Second Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA. 2018.

▶ CS 450 Notes by Edgar Solomonik
▶ Various bits of prior material by Luke Olson

10

https://relate.cs.illinois.edu/course/cs450-f18/

Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2020 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. 11

https://github.com/inducer/numerics-notes

What problems can we study in the first place?

To be able to compute a solution (through a process that introduces
errors), the problem. . .

▶ Needs to have a solution
▶ That solution should be unique
▶ And depend continuously on the inputs

If it satisfies these criteria, the problem is called well-posed. Otherwise,
ill-posed.

12

Dependency on Inputs

We excluded discontinuous problems–because we don’t stand much chance
for those.
. . . what if the problem’s input dependency is just close to discontinuous?

▶ We call those problems sensitive to their input data.
Such problems are obviously trickier to deal with than
non-sensitive ones.

▶ Ideally, the computational method will not amplify the
sensitivity

13

Approximation

When does approximation happen?

▶ Before computation
▶ modeling
▶ measurements of input data
▶ computation of input data

▶ During computation
▶ truncation / discretization
▶ rounding

Demo: Truncation vs Rounding [cleared]

14

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Truncation vs Rounding.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Truncation vs Rounding.ipynb

Example: Surface Area of the Earth

Compute the surface area of the earth.
What parts of your computation are approximate?

All of them.
A = 4πr2

▶ Earth isn’t really a sphere
▶ What does radius mean if the earth isn’t a sphere?
▶ How do you compute with π? (By rounding/truncating.)

15

Measuring Error

How do we measure error?
Idea: Consider all error as being added onto the result.

Absolute error = approx value − true value

Relative error =
Absolute error

True value
Problem: True value not known
▶ Estimate
▶ ‘How big at worst?’ → Establish Upper Bounds

16

Recap: Norms

What’s a norm?

▶ f (x) : Rn → R+
0 , returns a ‘magnitude’ of the input vector

▶ In symbols: Often written ∥x∥.

Define norm.

A function ∥x∥ : Rn → R+
0 is called a norm if and only if

1. ∥x∥ > 0⇔ x ̸= 0.
2. ∥γx∥ = |γ| ∥x∥ for all scalars γ.
3. Obeys triangle inequality ∥x + y∥ ≤ ∥x∥+ ∥y∥

17

Norms: Examples

Examples of norms?

The so-called p-norms:∥∥∥∥∥∥∥
x1

...
xn

∥∥∥∥∥∥∥
p

= p

√
|x1|p + · · ·+ |xn|p (p ⩾ 1)

p = 1, 2,∞ particularly important

Demo: Vector Norms [cleared]

18

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Vector Norms.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Vector Norms.ipynb

Norms: Which one?

Does the choice of norm really matter much?

In finitely many dimensions, all norms are equivalent.
I.e. for fixed n and two norms ∥·∥ , ∥·∥∗, there exist α, β > 0 so that
for all vectors x ∈ Rn

α ∥x∥ ≤ ∥x∥∗ ≤ β ∥x∥ .

So: No, doesn’t matter that much. Will start mattering more for
so-called matrix norms–see later.

In these notes: If we write ∥·∥ without any specifics, then the statement is
true for any norm. If a specific norm is needed, the notation will indicate
that.

19

Norms and Errors

If we’re computing a vector result, the error is a vector.
That’s not a very useful answer to ‘how big is the error’.
What can we do?

Apply a norm!

How? Attempt 1:

Magnitude of error ̸= ∥true value∥ − ∥approximate value∥

WRONG! (How does it fail?)
Attempt 2:

Magnitude of error = ∥true value− approximate value∥

20

Forward/Backward Error
Suppose want to compute y = f (x), but approximate ŷ = f̂ (x).

What are the forward error and the backward error?

Forward error: ∆y = ŷ − y

Backward error: Imagine all error came from feeding the wrong input
into a fully accurate calculation. Backward error is the difference
between true and ‘wrong’ input. I.e.
▶ Find the x̂ closest to x so that f (x̂) = ŷ .
▶ ∆x = x̂ − x .

x

x̂ ŷ = f (x̂)

f (x)

bw. err. fw err.

f

f

f̂

21

Forward/Backward Error: Example

Suppose you wanted y =
√

2 and got ŷ = 1.4.
What’s the (magnitude of) the forward error?

|∆y |= |1.4− 1.41421 . . .| ≈ 0.0142 . . .

Relative forward error:

|∆y |
|y |

=
0.0142 . . .
1.41421 . . .

≈ 0.01.

About 1 percent, or two accurate significant digits.

22

Forward/Backward Error: Example
Suppose you wanted y =

√
2 and got ŷ = 1.4.

What’s the (magnitude of) the backward error?

Need x̂ so that f (x̂) = 1.4.
√

1.96 = 1.4, ⇒ x̂ = 1.96.

Backward error:
|∆x | = |1.96− 2| = 0.04.

Relative backward error:

|∆x |
|x |
≈ 0.02.

About 2 percent.

23

Forward/Backward Error: Observations

What do you observe about the relative magnitude of the relative errors?

▶ In this case: Got smaller, i.e. variation damped out.
▶ Typically: Not that lucky: Input error amplified.
▶ If backward error is smaller than the input error:

result “as good as possible”.
This amplification factor seems worth studying in more detail.

24

Sensitivity and Conditioning
Consider a more general setting: An input x and its perturbation x̂ .

Want: the smallest number κrel such that

|f (x)− f (x̂)|
|f (x)|

≤ κrel ·
|x − x̂ |
|x |

(rel. perturbation in output) ≤ κrel · (rel. perturbation in input)

Call this the (relative) condition number. Find it via:

κrel = max
x ,x̂

|f (x)− f (x̂)| / |f (x)|
|x − x̂ | / |x |

.

▶ Technically: should use ‘supremum’.
▶ Must specify set of x , x̂ that are “of interest”.

25

Absolute Condition Number

Can you also define an absolute condition number?

Certainly:

κabs = max
x ,x̂

|f (x)− f (x̂)|
|x − x̂ |

But: less commonly used than relative, because we typically care
about relative error.

When not specified: Assume condition number means relative.

26

Interpreting a Condition Number

What does it mean for condition numbers to be small/large?

If the condition number is. . .
▶ . . . small: the problem well-conditioned or insensitive
▶ . . . large: the problem ill-conditioned or sensitive

Can also talk about condition number for a single input x .

27

Example: Condition Number of Evaluating a Function

y = f (x). Assume f differentiable.

κ = max
x

|∆y | / |y |
|∆x | / |x |

Forward error:

∆y = f (x +∆x)− f (x) ≈ f ′(x)∆x

Condition number:

κ ⩾
|∆y | / |y |
|∆x | / |x |

≈ |f
′(x)| |∆x | / |f (x)|
|∆x | / |x |

→ |xf
′(x)|
|f (x)|

.

Demo: Conditioning of Evaluating tan [cleared]

28

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Conditioning of Evaluating tan.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Conditioning of Evaluating tan.ipynb

Stability and Accuracy
Previously: Considered problems or questions.
Next: Considered methods, i.e. computational approaches to find solutions.
When is a method accurate?

Closeness of method output to true answer for unperturbed input.

When is a method stable?

▶ “A method is stable if the result it produces is the exact answer
for a nearby input.”

▶ The above is commonly called backward stability.

As opposed to: the method’s sensitivity to input variation is
not much worse than the conditioning.

29

Relevance of Backward Error
What do we gain from a bound on backward error like

∥x − x̂∥
∥x∥

≤ ϵ?

It allows a condition number bound of the type

∥f (x)− f (x̂)∥
∥f (x)∥

≤ κrel ·
∥x − x̂∥
∥x∥

to do double duty:
▶ First, it characterizes sensitivity of the ‘true’ problem.
▶ Second, it characterizes the (forward) stability of the

approximation.
Both use cases were ‘in the air’ when we introduced conditioning.

Demo: Backward Stability by Example [cleared]
30

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Backward Stability by Example.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Backward Stability by Example.ipynb

Getting into Trouble with Accuracy and Stability

How can I produce inaccurate results?

▶ Apply an inaccurate method
▶ Apply an unstable method to a well-conditioned problem
▶ Apply any type of method to an ill-conditioned problem

31

In-Class Activity: Forward/Backward Error

In-class activity: Forward/Backward Error

32

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-fwd-bwd-error/start

Wanted: Real Numbers. . . in a computer
Computers can represent integers, using bits:

23 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = (10111)2

How would we represent fractions?

Idea: Keep going down past zero exponent:

23.625 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

+1 · 2−1 + 0 · 2−2 + 1 · 2−3

So: Could store
▶ a fixed number of bits with exponents ⩾ 0
▶ a fixed number of bits with exponents < 0

This is called fixed-point arithmetic.

33

Fixed-Point Numbers
Suppose we use units of 64 bits, with 32 bits for exponents ⩾ 0 and 32 bits
for exponents < 0. What numbers can we represent?

231 · · · 20 2−1 · · · 2−32

Smallest: 2−32 ≈ 10−10

Largest: 231 + · · ·+ 2−32 ≈ 109

How many ‘digits’ of relative accuracy (think relative rounding error) are
available for the smallest vs. the largest number?

For large numbers: about 19
For small numbers: few or none

Idea: Instead of fixing the location of the 0 exponent, let it float.

34

Floating Point Numbers

Convert 13 = (1101)2 into floating point representation.

13 = 23 + 22 + 20 = (1.101)2 · 23

What pieces do you need to store an FP number?

Significand: (1.101)2
▶ Generally: 0 ≤ significand < 2
▶ Can actually require: 1 ≤ significand < 2 (normalization)

Exponent: 3

35

Floating Point: Implementation, Normalization
Previously: Consider mathematical view of FP. (via example: (1101)2)
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?

Idea: Notice that the leading digit (in binary) of the significand is
always one. Call the rest the fraction.
Only store ‘101’. Final storage format:
Fraction: 101 – a fixed number of bits
Exponent: 3 – a (signed!) integer allowing a certain range
Exponent is most often stored as a positive ‘offset’ from a certain
negative number. E.g.

3 = −1023︸ ︷︷ ︸
implicit offset

+ 1026︸︷︷︸
stored

Actually stored: 1026, a positive integer.
36

Implementing Arithmetic
How is floating point addition implemented?
Consider adding a = (1.101)2 · 21 and b = (1.001)2 · 2−1 in a system with
three stored bits (four total) in the significand.

Rough algorithm:
1. Bring both numbers onto a common exponent
2. Do grade-school addition from the front, until you run out of

digits in your system.
3. Round result.

a = 1. 101 · 21

b = 0. 01001 · 21

a+ b ≈ 1. 111 · 21

37

Unrepresentable numbers?
Can you think of a somewhat central number that we cannot represent as

x = (1._________)2 · 2
−p?

Zero. Which is somewhat embarrassing.

Core problem: The implicit 1. It’s a great idea, were it not for this
issue.

Have to break the pattern. Idea:
▶ Declare one exponent ‘special’, and turn off the leading one for

that one.
(say, −1023, a.k.a. stored exponent 0)

▶ For all larger exponents, the leading one remains in effect.
Bonus Q: With this convention, what is the binary representation of
a zero?

Demo: Picking apart a floating point number [cleared] 38

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Picking apart a floating point number.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Picking apart a floating point number.ipynb

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored
bits (5 total) in the significand and a stored exponent range of [−7, 8]?

First attempt:
▶ Significand as small as possible → all zeros after the implicit

leading one
▶ Exponent as small as possible: −7

So:
(1.0000)2 · 2−7.

Unfortunately: wrong.

39

Subnormal Numbers, Attempt 2
What is the smallest representable number in an FP system with 4 stored
bits in the significand and a (stored) exponent range of [−7, 8]?

▶ Can go way smaller using the special exponent (turns off the
leading one)

▶ Assume that the special exponent is −7; interpreted as −6.
▶ So: (0.0001)2 · 2−6 (with four digits after the point stored).

Numbers with the special exponent are called subnormal (or denor-
mal) FP numbers. Technically, zero is also a subnormal.

Why learn about subnormals?

▶ Subnormal FP is often slow: not implemented in hardware.
▶ Many compilers support options to ‘flush subnormals to zero’.

40

Underflow

▶ FP systems without subnormals will underflow (return 0) as soon as
the exponent range is exhausted.

▶ This smallest representable normal number is called the underflow
level, or UFL.

▶ Beyond the underflow level, subnormals provide for gradual underflow
by ‘keeping going’ as long as there are bits in the significand, but it is
important to note that subnormals don’t have as many accurate digits
as normal numbers.
Read a story on the epic battle about gradual underflow

▶ Analogously (but much more simply–no ‘supernormals’): the overflow
level, OFL.

41

https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

Rounding Modes
Demo: Density of Floating Point Numbers [cleared]
How is rounding performed? (Imagine trying to represent π.)(

1.1101010︸ ︷︷ ︸
representable

11
)
2

▶ “Chop” a.k.a. round-to-zero: (1.1101010)2
▶ Round-to-nearest: (1.1101011)2 (most accurate)

What is done in case of a tie? 0.5 = (0.1)2 (“Nearest”?)

Up or down? It turns out that picking the same direction every time
introduces bias. Trick: round-to-even.

0.5→ 0, 1.5→ 2

42

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Density of Floating Point Numbers.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Density of Floating Point Numbers.ipynb

Smallest Numbers Above. . .

▶ What is smallest FP number > 1? Assume 4 stored bits (5 total) in
the significand.

(1.0001)2 · 20 = x · (1 + 0.0001)2

What’s the smallest FP number > 1024 in that same system?

(1.0001)2 · 210 = x · (1 + 0.0001)2

Can we give that number a name?

43

Unit Roundoff

Unit roundoff or machine precision or machine epsilon or εmach is. . .

the smallest (real) number such that float(1 + ε) > 1.
▶ Technically that makes εmach depend on the rounding rule.
▶ Tie-breaking (e.g. round-to-nearest) doesn’t matter: any

number ε > εmach will push 1 + ϵ > 1.
▶ For example: Assuming round-to-nearest, in a system with five

bits in the significand, εmach = (0.00001)2.
▶ Another, related, quantity is ULP, or unit in the last place.

For round-to-nearest: (εmach = 0.5ULP)

44

FP: Relative Rounding Error
What does this say about the relative error incurred in floating point
calculations?

▶ Since we can’t represent any results between x and
x · (1 + ULP), half that distance serves as an upper bound on
(absolute) rounding error.

▶ In terms of relative error: Let x̃ = x(1 + εmach).∣∣∣∣ x̃ − x

x

∣∣∣∣ = ∣∣∣∣x(1 + εmach)− x

x

∣∣∣∣ = εmach.

At least theoretically, εmach is the maximum relative error in
any FP operations. (Practical implementations do fall short of
this.)

45

FP: Machine Epsilon

What’s machine epsilon for double-precision floating point with
round-to-nearest? (52 stored bits in the significand, 53 total)

2−53 ≈ 10−16

Bonus Q: What does 1 + 2−53 do on your computer? Why?

We can expect FP math to consistently introduce little relative errors
of about 10−16.

Working in double precision gives you about 16 (decimal) accurate
digits.

Demo: Floating point and the Harmonic Series [cleared]
Demo: Floating Point vs Program Logic [cleared]

46

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Floating point and the Harmonic Series.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Floating point and the Harmonic Series.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Floating Point vs Program Logic.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Floating Point vs Program Logic.ipynb

Problems with FP Addition
What happens if you subtract two numbers of very similar magnitude?
As an example, consider a = (1.1011)2 · 21 and b = (1.1010)2 · 21.

a = 1. 1011 · 21

b = 1. 1010 · 21

a− b ≈ 0. 0001???? · 21

or, once we normalize,
1.???? · 2−3.

There is no data to indicate what the missing digits should be.
→ Machine fills them with zero.

This phenomenon is called Catastrophic Cancellation.

Demo: Catastrophic Cancellation [cleared] 47

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Catastrophic Cancellation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Catastrophic Cancellation.ipynb

In-Class Activity: Floating Point

In-class activity: Floating Point

48

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-floating-point/start

Supplementary Material

▶ Josh Haberman, Floating Point Demystified, Part 1
▶ David Goldberg, What every computer programmer should know

about floating point
▶ Evan Wallace, Float Toy
▶ Julia Evans, Examples of Floating Point Problems, 2022

49

http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://evanw.github.io/float-toy/
https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

Outline
Introduction to Scientific Computing

Systems of Linear Equations
Theory: Conditioning
Methods to Solve Systems
LU: Application and Implementation

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

50

Solving a Linear System
Given:
▶ m × n matrix A

▶ m-vector b
What are we looking for here, and when are we allowed to ask the
question?

Want: n-vector x so that Ax = b.
▶ Linear combination of columns of A to yield b.
▶ Restrict to square case (m = n) for now.
▶ Even with that: solution may not exist, or may not be unique.

Unique solution exists iff A is nonsingular.

Next: Want to talk about conditioning of this operation. Need to measure
distances of matrices.

51

Matrix Norms
We need norms to interact with matrix multiplication in a defined way.

Define ∥A∥ relative to its ‘associated’ vector norm ∥·∥ to obey

∥Ax∥ ≤ ∥A∥ ∥x∥

⇔ ∥Ax∥
∥x∥

≤ ∥A∥ ⇔
∥∥∥A x
∥x∥︸︷︷︸
∥·∥=1

∥∥∥ ≤ ∥A∥ .
This motivates the definition of the induced matrix norm as

∥A∥ := max
∥x∥=1

∥Ax∥ .

For each vector norm, we get a different matrix norm, e.g. for the
vector 2-norm ∥x∥2 we get a matrix 2-norm ∥A∥2.

52

Identifying Matrix Norms
What is ∥A∥1? ∥A∥∞?

∥A∥1 = max
col j

∑
row i

|Ai ,j | , ∥A∥∞ = max
row i

∑
col j

|Ai ,j | .

2-norm? Actually fairly difficult to evaluate. See in a bit.

How do matrix and vector norms relate for n × 1 matrices?

They agree. Why? For n × 1, the vector x in Ax is just a scalar:

max
∥x∥=1

∥Ax∥ = max
x∈{−1,1}

∥Ax∥ = ∥A[:, 1]∥

This can help to remember 1- and ∞-norm.

Demo: Matrix norms [cleared]
53

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Matrix norms.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Matrix norms.ipynb

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:
▶ ∥A∥ > 0⇔ A ̸= 0.
▶ ∥γA∥ = |γ| ∥A∥ for all scalars γ.
▶ Obeys triangle inequality ∥A+ B∥ ≤ ∥A∥+ ∥B∥

But also some more properties that stem from our definition:

▶ ∥Ax∥ ≤ ∥A∥ ∥x∥
▶ ∥AB∥ ≤ ∥A∥ ∥B∥ (easy consequence)

Both of these are called submultiplicativity of the matrix norm.

In these notes: If we write ∥·∥ (for matrix norms) without any specifics,
then the statement is true for any induced norm. If a specific norm is
needed, the notation will indicate that.

54

Conditioning
What is the condition number of solving a linear system Ax = b?

Input: b with error ∆b,
Output: x with error ∆x .

Observe A(x +∆x) = (b +∆b), so A∆x = ∆b.

rel err. in output
rel err. in input

=
∥∆x∥ / ∥x∥
∥∆b∥ / ∥b∥

=
∥∆x∥ ∥b∥
∥∆b∥ ∥x∥

=

∥∥A−1∆b
∥∥ ∥Ax∥

∥∆b∥ ∥x∥

≤
∥∥A−1∥∥ ∥A∥ ∥∆b∥ ∥x∥

∥∆b∥ ∥x∥
=

∥∥A−1∥∥ ∥A∥ .
A dependency on b would be allowed, but does not emerge.

55

Conditioning of Linear Systems: Observations

Showed κ(Solve Ax = b) ≤
∥∥A−1

∥∥ ∥A∥.
I.e. found an upper bound on the condition number. By finding vectors x
and ∆b that attain equality in submultiplicativity, equality in the condition
bound can be achieved for all matrices, i.e. it is sharp.

So we’ve found the condition number of linear system solving, also called
the condition number of the matrix A:

cond(A) = κ(A) = ∥A∥
∥∥A−1∥∥ .

56

Conditioning of Linear Systems: More properties
▶ cond is relative to a given norm. So, to be precise, use

cond2 or cond∞ .

▶ If A−1 does not exist: cond(A) =∞ by convention.
What is κ(A−1)?

κ(A)

What is the condition number of matrix-vector multiplication?

κ(A) because it is equivalent to solving with A−1.

Demo: Condition number visualized [cleared]
Demo: Conditioning of 2x2 Matrices [cleared]

57

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Condition number visualized.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Condition number visualized.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Conditioning of 2x2 Matrices.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Conditioning of 2x2 Matrices.ipynb

Residual Vector

What is the residual vector of solving the linear system

b = Ax?

It’s the thing that’s ‘left over’. Suppose our approximate solution is
x̂ . Then the residual vector is

r = b − Ax̂ .

58

Residual and Error: Relationship

How do the (norms of the) residual vector r and the error ∆x = x − x̂
relate to one another?

∥∆x∥ = ∥x − x̂∥ =
∥∥A−1(b − Ax̂)

∥∥ =
∥∥A−1r

∥∥
Divide both sides by ∥x∥:

∥∆x∥
∥x∥

=

∥∥A−1r
∥∥

∥x∥
≤
∥∥A−1

∥∥ ∥r∥
∥x∥

= cond(A)
∥r∥
∥A∥ ∥x∥

≤ cond(A)
∥r∥
∥b∥

▶ rel err. ≤ cond ·rel. resid
▶ Given small (rel.) residual, (rel.) error is only (guaranteed to

be) small if the condition number is also small.

59

Changing the Matrix
So far, only discussed changing the RHS, i.e. Ax = b → Ax̂ = b̂.
The matrix consists of FP numbers, too—it, too, is approximate. I.e.

Ax = b → Âx̂ = b.

What can we say about the error due to an approximate matrix?

Consider

∆x = x̂ − x = A−1(Ax̂ − b) = A−1(Ax̂ − Âx̂) = −A−1∆Ax̂ .

Thus
∥∆x∥ ≤

∥∥A−1∥∥ ∥∆A∥ ∥x̂∥ .

And we get
∥∆x∥
∥x̂∥

≤ cond(A)
∥∆A∥
∥A∥

.

60

Changing Condition Numbers
Once we have a matrix A in a linear system Ax = b, are we stuck with its
condition number? Or could we improve it?

Preconditioning
▶ Left’ preconditioning: MAx = Mb
▶ Right preconditioning: AM x̂ = b

Different x̂ : Recover x = M x̂ .

A typical case: use diagonal matrix as the preconditioner. What is the
effect in each case?

▶ Row-wise scaling: DAx = Db
▶ Column-wise scaling: AD x̂ = b

Different x̂ : Recover x = D x̂ .

61

In-Class Activity: Matrix Norms and Conditioning

In-class activity: Matrix Norms and Conditioning

62

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-conditioning/start

Recap: Orthogonal Matrices

What’s an orthogonal (=orthonormal) matrix?

One that satisfies QTQ = I and QQT = I .

How do orthogonal matrices interact with the 2-norm?

∥Qv∥22 = (Qv)T (Qv) = vTQTQv = vTv = ∥v∥22 .

63

Singular Value Decomposition (SVD)
What is the Singular Value Decomposition of an m × n matrix?

A = UΣV T ,

with
▶ U is m ×m and orthogonal

Columns called the left singular vectors.
▶ Σ = diag(σi) is m × n and non-negative

Typically σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.
Called the singular values.

▶ V is n × n and orthogonal
Columns called the right singular vectors.

Existence, Computation: Not yet, later.

64

Computing the 2-Norm

Using the SVD of A, identify the 2-norm.

A = UΣV T with U, V orthogonal.
▶ 2-norm satisfies ∥QB∥2 = ∥B∥2 = ∥BQ∥2 for any matrix B

and orthogonal Q.
▶ So ∥A∥2 = ∥Σ∥2 = σmax

Express the matrix condition number cond2(A) in terms of the SVD:

▶ A−1 has singular values 1/σi .
▶ cond2(A) = ∥A∥2

∥∥A−1
∥∥

2 = σmax/σmin

65

Not an Induced Norm: Frobenius
The 2-norm is very costly to compute. Can we make something simpler?

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

is called the Frobenius norm.

What about its properties?

Satisfies the mat. norm properties.
▶ definiteness
▶ scaling
▶ triangle inequality
▶ submultiplicativity (proof via Cauchy-Schwarz)

66

Frobenius Norm: Properties

Is the Frobenius norm induced by any vector norm?

Can’t be! What’s ∥I∥F ? What’s ∥I∥ for an induced norm?

How does it relate to the SVD?

∥A∥F =

√√√√ n∑
i=1

σ2
i

(Proof?)

67

Solving Systems: Simple cases
Solve Dx = b if D is diagonal. (Computational cost?)

xi = bi/Dii with cost O(n)

Solve Qx = b if Q is orthogonal. (Computational cost?)

x = QTb with cost O(n2).

Given SVD A = UΣV T , solve Ax = b. (Computational cost?)

▶ Compute z = UTb
▶ Solve Σy = z
▶ Compute x = V x

Cost: O(n2) to solve, and O(n3) to compute SVD.
68

Solving Systems: Triangular matrices
Solve

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

x
y
z
w

 =

b1
b2
b3
b4

 .
▶ Rewrite as individual equations.
▶ This process is called back-substitution.
▶ The analogous process for lower triangular matrices is called

forward substitution.

Demo: Coding back-substitution [cleared]
What about non-triangular matrices?

Can do Gaussian Elimination, just like in linear algebra class.

69

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Coding back-substitution.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Coding back-substitution.ipynb

Gaussian Elimination
Demo: Vanilla Gaussian Elimination [cleared]
What do we get by doing Gaussian Elimination?

Row Echelon Form.

How is that different from being upper triangular?

▶ REF reveals the rank of the matrix.
▶ REF can take “multiple column-steps” to the right per row.

What if we do not just eliminate downward but also upward?

That’s called Gauss-Jordan elimination. Turns out to be computa-
tionally inefficient. We won’t look at it.

70

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Vanilla Gaussian Elimination.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Vanilla Gaussian Elimination.ipynb

LU Factorization

What is the LU factorization?

A factorization A = LU with:
▶ L lower triangular, unit diagonal
▶ U upper triangular

Existence? Good question → will answer later.

71

Solving Ax = b

Does LU help solve Ax = b?

Ax = b
L Ux︸︷︷︸

y

= b

Ly = b ← solvable by fwd. subst.
Ux = y ← solvable by bwd. subst.

Now know x that solves Ax = b.

72

Determining an LU factorization

[
a11 aT

12
a21 A22

]
=

[
L11
L21 L22

] [
U11 U12

U22

]
.

Or, written differently: [
u11 uT

12
U22

]
[

1
ℓ21 L22

] [
a11 aT

12
a21 A22

]

▶ Clear: u11 = a11, uT
12 = aT

12.
▶ a21 = u11ℓ21, or ℓ21 = a21/u11.
▶ A22 = ℓ21uT

12 + L22U22, or L22U22 = A22 − ℓ21uT
12.

Demo: LU Factorization [cleared] 73

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/LU Factorization.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/LU Factorization.ipynb

Computational Cost
What is the computational cost of multiplying two n × n matrices?

O(n3)

▶ u11 = a11, uT
12 = aT

12.
▶ ℓ21 = a21/u11.
▶ L22U22 = A22 − ℓ21uT

12.

What is the computational cost of carrying out LU factorization on an
n × n matrix?

O(n2) for each step, n − 1 of those steps: O(n3).

Demo: Complexity of Mat-Mat multiplication and LU [cleared]

74

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Complexity of Mat-Mat multiplication and LU.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Complexity of Mat-Mat multiplication and LU.ipynb

LU: Failure Cases?
Is LU/Gaussian Elimination bulletproof?

Not bulletproof:

A =

[
0 1
2 1

]
.

Q: Is this a problem with the process or with the entire idea of LU?[
u11 u12

u22

]
[

1
ℓ21 1

] [
0 1
2 1

]
→ u11 = 0

u11 · ℓ21︸ ︷︷ ︸
0

+1 · 0 = 2

It turns out to be that A doesn’t have an LU factorization.
LU has exactly one failure mode: the division when u11 = 0.

75

Saving the LU Factorization
What can be done to get something like an LU factorization?

Idea from linear algebra class: In Gaussian elimination, simply swap
rows, equivalent linear system.

▶ Good idea: Swap rows if there’s a zero in the way
▶ Even better idea: Find the largest entry (by absolute value),

swap it to the top row.
The entry we divide by is called the pivot.
▶ Swapping rows to get a bigger pivot is called partial pivoting.
▶ Swapping rows and columns to get an even bigger pivot is

called complete pivoting. (downside: additional O(n2) cost per
step to find the pivot!)

Demo: LU Factorization with Partial Pivoting [cleared]
76

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/LU Factorization with Partial Pivoting.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/LU Factorization with Partial Pivoting.ipynb

Cholesky: LU for Symmetric Positive Definite
LU can be used for SPD matrices. But can we do better?

Cholesky factorization: A = LLT , i.e. like LU, but using LT for U.[
ℓ11
ℓ21 L22

] [
ℓ11 ℓT21

LT22

]
=

[
a11 aT

21
a21 A22

]
.

ℓ211 = a11, then ℓ11ℓ21 = a21, i.e. ℓ21 = a21/ℓ11. Finally,

ℓ21ℓ
T
21 + L22L

T
22 = A22, or

L22L
T
22 = A22 − ℓ21ℓ

T
21.

▶ Fails if a11 is negative at any point. (⇒ A not SPSemiD)
▶ If a11 zero: A is positive semidefinite.
▶ Cheaper than LU: no pivoting, only one factor to compute!

77

More cost concerns
What’s the cost of solving Ax = b?

LU: O(n3)
FW/BW Subst: 2× O(n2) = O(n2)

What’s the cost of solving Ax = b1,b2, . . . ,bn?

LU: O(n3)
FW/BW Subst: 2n × O(n2) = O(n3)

What’s the cost of finding A−1?

Same as solving
AX = I ,

so still O(n3).
78

Cost: Worrying about the Constant, BLAS
O(n3) really means

α · n3 + β · n2 + γ · n + δ.

All the non-leading and constants terms swept under the rug. But: at least
the leading constant ultimately matters.

Shrinking the constant: surprisingly hard (even for ’just’ matmul)

Idea: Rely on library implementation: BLAS (Fortran)
Level 1 z = αx + y vector-vector operations

O(n)
?axpy

Level 2 z = Ax + y matrix-vector operations
O(n2)
?gemv

Level 3 C = AB + βC matrix-matrix operations
O(n3)
?gemm, ?trsm

Demo: BLAS Level 2 vs Level 3 [cleared] 79

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/BLAS Level 2 vs Level 3.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/BLAS Level 2 vs Level 3.ipynb

LAPACK

LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.
▶ banded
▶ sparse
▶ symmetric
▶ triangular

Sample routine names:
▶ dgesvd, zgesdd
▶ dgetrf, dgetrs

80

LU on Blocks: The Schur Complement

Given a linear system [
A B b1
C D b2

]
,

can we do ‘block Gaussian elimination’ to get a block triangular matrix?

Multiply the top row by −CA−1, add to second row, gives:[
A B b1
0 D − CA−1B b2 − CA−1b1

]
,

▶ D − CA−1B is called the Schur complement.
▶ Block pivoting is also possible if needed.

81

LU: Special cases
What happens if we feed a non-invertible matrix to LU?

PA = LU

(invertible, not invertible) (Why?)

What happens if we feed LU an m × n non-square matrix?

Think carefully about sizes of factors and columns/rows that do/don’t
matter. Two cases:
▶ m > n (tall&skinny): L : m × n, U : n × n

▶ m < n (short&fat): L : m ×m, U : m × n

This is called reduced LU factorization.

82

Round-off Error in LU without Pivoting

Consider factorization of
[
ϵ 1
1 1

]
where ϵ < ϵmach:

▶ Without pivoting: L =

[
1 0

1/ϵ 1

]
, U =

[
ϵ 1
0 1− 1/ϵ

]
▶ Rounding: fl(U)) =

[
ϵ 1
0 −1/ϵ

]
▶ This leads to L fl(U)) =

[
ϵ 1
1 0

]
, a backward error of

[
0 0
0 1

]

83

Round-off Error in LU with Pivoting

Permuting the rows of A in partial pivoting gives PA =

[
1 1
ϵ 1

]

▶ We now compute L =

[
1 0
ϵ 1

]
, U =

[
1 1
0 1− ϵ

]
, so

fl(U) =

[
1 1
0 1

]
▶ This leads to L fl(U) =

[
1 1
ϵ 1 + ϵ

]
, a backward error of[

0 0
0 ϵ

]
.

84

Changing matrices
Seen: LU cheap to re-solve if RHS changes. (Able to keep the expensive
bit, the LU factorization) What if the matrix changes?

Special cases allow something to be done (a so-called rank-one up-
date):

Â = A+ uvT

The Sherman-Morrison formula gives us

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Proof: Multiply the above by Â get the identity.
FYI: There is a rank-k analog called the Sherman-Morrison-Woodbury
formula.

Demo: Sherman-Morrison [cleared] 85

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Sherman-Morrison.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Sherman-Morrison.ipynb

In-Class Activity: LU

In-class activity: LU and Cost

86

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-lu/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares
Introduction
Sensitivity and Conditioning
Solving Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

87

What about non-square systems?

Specifically, what about linear systems with ‘tall and skinny’ matrices? (A:
m × n with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?

Not really: more equations than unknowns.

88

Example: Data Fitting Too much data!

Lots of equations, but not many unknowns

f (x) = ax2 + bx + c

Only three parameters to set!
What are the ‘right’ a, b, c?

Want ‘best’ solution

Intro Existence/Uniqueness Sensitivity and Conditioning Transformations Orthogonalization SVD

Have data: (xi , yi) and model:

y(x) = α+ βx + γx2

Find data that (best) fit model!

89

Data Fitting Continued

α+ βx1 + γx2
1 = y1
...

α+ βxn + γx2
n = yn

Not going to happen for n > 3. Instead:∣∣α+ βx1 + γx2
1 − y1

∣∣2
+ · · ·+∣∣α+ βxn + γx2

n − yn
∣∣2 → min!

→ Least Squares
This is called linear least squares specifically because the coefficients
x enter linearly into the residual.

90

Rewriting Data Fitting

Rewrite in matrix form.

∥Ax − b∥22 → min!

with

A =

1 x1 x2
1

...
...

...
1 xn x2

n

 , x =

αβ
γ

 , b =

y1
...
yn

▶ Matrices like A are called Vandermonde matrices.
▶ Easy to generalize to higher polynomial degrees.

91

Least Squares: The Problem In Matrix Form

∥Ax − b∥22 → min!

is cumbersome to write.
Invent new notation, defined to be equivalent:

Ax ∼= b

NOTE:
▶ Data Fitting is one example where LSQ problems arise.
▶ Many other application lead to Ax ∼= b, with different matrices.

92

Data Fitting: Nonlinearity
Give an example of a nonlinear data fitting problem.

∣∣exp(α) + βx1 + γx2
1 − y1

∣∣2
+ · · ·+∣∣exp(α) + βxn + γx2

n − yn
∣∣2 → min!

But that would be easy to remedy: Do linear least squares with exp(α) as
the unknown. More difficult:

∣∣α+ exp(βx1 + γx2
1)− y1

∣∣2
+ · · ·+∣∣α+ exp(βxn + γx2

n)− yn
∣∣2 → min!

Demo: Interactive Polynomial Fit [cleared]
93

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Interactive Polynomial Fit.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Interactive Polynomial Fit.ipynb

Properties of Least-Squares
Consider LSQ problem Ax ∼= b and its associated objective function
φ(x) = ∥b − Ax∥22. Assume A has full rank. Does this always have a
solution?

Yes. φ ⩾ 0, φ→∞ as ∥x∥ → ∞, φ continuous⇒ has a minimum.

Is it always unique?

Yes. (again assuming full rank)

What happens if A does not have full rank?

There’s a nullspace, i.e. a n with An = 0. If x is a solution,
∥b − A(x + n)∥= ∥b − Ax∥2.

94

Least-Squares: Finding a Solution by Minimization

Examine the objective function, find its minimum.

φ(x) = (b − Ax)T (b − Ax)
bTb − 2xTATb + xTATAx

∇φ(x) = −2ATb + 2ATAx

∇φ(x) = 0 yields ATAx = ATb. Called the normal equations.

95

Least squares: Demos

Demo: Polynomial fitting with the normal equations [cleared]

What’s the shape of ATA?

Always square.

Demo: Issues with the normal equations [cleared]

96

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Polynomial fitting with the normal equations.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Polynomial fitting with the normal equations.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Issues with the normal equations.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Issues with the normal equations.ipynb

Least Squares, Viewed Geometrically

Why is r ⊥ span(A) a good thing to require?

Because then the distance between y = Ax and b is minimal.
Q: Why?
Because of Pythagoras’s theorem. Suppose you had another r2 claim-
ing to minimize ∥r2∥2. Then ∥r2∥22 = ∥r∥22 +∥z∥

2
2 with z ∈ span(A)

and ∥z∥2 > 0, i.e. ∥r2∥2 can’t be minimal.

97

Least Squares, Viewed Geometrically (II)

Phrase the Pythagoras observation as an equation.

span(A) ⊥ b − Ax
ATb − ATAx = 0

Congratulations: Just rediscovered the normal equations.

Write that with an orthogonal projection matrix P .

Ax = Pb.
98

About Orthogonal Projectors
What is a projector?

A matrix satisfying P2 = P .

What is an orthogonal projector?

A symmetric projector.

How do I make one projecting onto span{q1,q2, . . . ,qℓ} for orthonormal
q i?

First define Q =
[
q1 q2 · · · qℓ

]
. Then

QQT

will project and is obviously symmetric. 99

Least Squares and Orthogonal Projection

Check that P = A(ATA)−1AT is an orthogonal projector onto colspan(A).

P2 = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P.

Symmetry: also yes.

Onto colspan(A): Last matrix is A → result of Px must be in
colspan(A).

Conclusion: P is the projector from the previous slide!

What assumptions do we need to define the P from the last question?

ATA has full rank (i.e. is invertible).

100

Pseudoinverse
What is the pseudoinverse of A?

Nonsquare m × n matrix A (with m > n) has no inverse in usual
sense.
If rank(A) = n, pseudoinverse is A+ = (ATA)−1AT . (colspan-
projector with final A missing)

Define the condition number of a tall-and-skinny matrix.

cond2(A) = ∥A∥2
∥∥A+

∥∥
2

If not full rank, cond(A) =∞ by convention.

What does all this have to do with solving least squares problems?

x = A+b solves Ax ∼= b.
101

In-Class Activity: Least Squares

In-class activity: Least Squares

102

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-least-squares/start

Sensitivity and Conditioning of Least Squares

Relate ∥Ax∥ and b with θ via trig functions.

cos(θ) =
∥Ax∥2
∥b∥2

,

103

Sensitivity and Conditioning of Least Squares (II)
Derive a conditioning bound for the least squares problem.

Recall x = A+b. Also ∆x = A+∆b. Take norms, divide by ∥x∥2:

∥∆x∥2
∥x∥2

≤
∥∥A+

∥∥
2
∥∆b∥2
∥x∥2

=
κ(A)

∥A∥2 ∥A+∥2

∥∥A+
∥∥

2
∥b∥2
∥b∥2

∥∆b∥2
∥x∥2

= κ(A)
∥b∥2

∥A∥2 ∥x∥2
∥∆b∥2
∥b∥2

≤ κ(A)
∥b∥2
∥Ax∥2︸ ︷︷ ︸
1/ cos θ

∥∆b∥2
∥b∥2

.

What values of θ are bad?

b ⊥ colspan(A), i.e. θ ≈ π/2.
104

Sensitivity and Conditioning of Least Squares (III)

Any comments regarding dependencies?

Unlike for Ax = b, the sensitivity of least squares solution depends
on both A and b.

What about changes in the matrix?

∥∆x∥2
∥x∥2

≤ [cond(A)2 tan(θ) + cond(A)] ·
∥∆A∥2
∥A∥2

.

Two behaviors:
▶ If tan(θ) ≈ 0, condition number is cond(A).
▶ Otherwise, cond(A)2 tan(θ).

105

Transforming Least Squares to Upper Triangular

Suppose we have A = QR , with Q square and orthogonal, and R upper
triangular. This is called a QR factorization.
How do we transform the least squares problem Ax ∼= b to one with an
upper triangular matrix?

∥Ax − b∥2
=
∥∥∥QT (QRx − b)

∥∥∥
2

=
∥∥∥Rx − QTb

∥∥∥
2

106

Simpler Problems: Triangular
What do we win from transforming a least-squares system to upper
triangular form?

[
Rtop

]
x ∼=

[
(QTb)top

(QTb)bottom

]

How would we minimize the residual norm?

For the residual vector r , we find

∥r∥22 =
∥∥∥(QTb)top − Rtopx

∥∥∥2

2
+
∥∥∥(QTb)bottom

∥∥∥2

2
.

Rtop is invertible, so we can find x to zero out the first term, leaving

∥r∥22 =
∥∥∥(QTb)bottom

∥∥∥2

2
.

107

Computing QR

▶ Gram-Schmidt
▶ Householder Reflectors
▶ Givens Rotations

Demo: Gram-Schmidt–The Movie [cleared] (shows modified G-S)
Demo: Gram-Schmidt and Modified Gram-Schmidt [cleared]
Demo: Keeping track of coefficients in Gram-Schmidt [cleared]
Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision
arithmetic because of roundoff.

NOTE: Textbook makes further modification to ‘modified’ Gram-Schmidt:
▶ Orthogonalize subsequent rather than preceding vectors.
▶ Numerically: no difference, but sometimes algorithmically helpful.

108

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Gram-Schmidt--The Movie.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Gram-Schmidt--The Movie.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Gram-Schmidt and Modified Gram-Schmidt.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Gram-Schmidt and Modified Gram-Schmidt.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Keeping track of coefficients in Gram-Schmidt.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Keeping track of coefficients in Gram-Schmidt.ipynb

Economical/Reduced QR

Is QR with square Q for A ∈ Rm×n with m > n efficient?

No. Can obtain economical or reduced QR with Q ∈ Rm×n and
R ∈ Rn×n. Least squares solution process works unmodified with
the economical form, though the equivalence proof relies on the ’full’
form.

109

In-Class Activity: QR

In-class activity: QR

110

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-qr/start

Computing QR: A Better Approach
Propose an alternate construction principle for a QR factorization.

▶ Suppose an orth. Q1 so that Q1A has some nonzeros.
▶ Suppose an orth. Q2 so that Q2Q1A has even more nonzeros.
▶ . . .
▶ Suppose an orth. Qn so that Qn · · ·Q2Q1A = R is upper

triangular.
Then
▶ A = QT

1 · · ·QT
n R is a QR factorization.

▶ Because κ2(Qi) = 1, no undue loss of accuracy can take place.
Next: Look for a way to construct the orthogonal Qi . Geometrically,
orthogonal matricesperform reflections and rotations.

111

Constructing Reflections

Given a plane represented by its (unit) normal vector n, construct a
reflection about that plane.

n, with ∥n∥2=1
x(

nTx
)

n
x − 2

(
nTx

)
n

112

Householder Transformations
Find an orthogonal matrix Q to zero out the lower part of a vector a.

Intuition for Householder

Worksheet 10 Problem 1a

Intro Existence/Uniqueness Sensitivity and Conditioning Transformations Orthogonalization SVD

Orthogonality in figure: (a − ∥a∥2 e1)·(a + ∥a∥2 e1) = ∥a∥22−∥a∥
2
2.

Let’s call v = a − ∥a∥2 e1. How do we reflect about the plane
orthogonal to v? Project-and-keep-going:

H := I − 2
vvT

vTv
.

This is called a Householder reflector. 113

Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):

Ha = ±∥a∥2 e1.

Remarks:
▶ Q: What if we want to zero out only the i + 1th through nth entry?

A: Use e i above.
▶ It turns out v ′ = a + ∥a∥2 e1 works out, too–just pick whichever one

causes less cancellation.
▶ H is symmetric
▶ H is orthogonal

Demo: 3x3 Householder demo [cleared]
Demo: Householder in 3D [cleared]

114

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/3x3 Householder demo.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/3x3 Householder demo.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Householder in 3D.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Householder in 3D.ipynb

Givens Rotations

If reflections work, can we make rotations work, too?

[
c s
−s c

] [
a1
a2

]
=

[√
a2
1 + a2

2

0

]
.

where c = a1/ ∥a∥2 and s = a2/ ∥a∥2, with a = [a1, a2]
T .

Downside? Produces only one zero at a time.

Demo: 3x3 Givens demo [cleared]

115

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/3x3 Givens demo.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/3x3 Givens demo.ipynb

Givens Rotations: Elimination Order

Given a matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
in what order can we apply Givens rotations to eliminate the nonzeros
below the diagonal?

G32G21G31A = R,

where Gij is the Givens rotation that zeros out the entry at row i ,
column j of the matrix preceding it. (NB: not of A, as the entries
change as soon as other Givens rotations are applied.)

116

Rank-Deficient Matrices and QR
What happens with QR for rank-deficient matrices?

A = QR , where R has some zero diagonal entries, in undetermined
order.

Practically, it makes sense to ask for all these ‘small’ columns to be
gathered near the ‘right’ of R → Column pivoting.

Q: What does the resulting factorization look like?

AP = QR

AP = Q

∗ ∗ ∗
(small) (small)

(smaller)

Also used as the basis for rank-revealing QR.

117

Rank-Deficient Matrices and Least-Squares
What happens with Least Squares for rank-deficient matrices?

Ax ∼= b

▶ QR still finds a solution with minimal residual
But: need to deal with zeros on diagonal in R

▶ But: No longer unique. x + n for n ∈ N(A) has the same
residual.

▶ In other words: Have more freedom
Or: Can demand another condition, for example:
▶ Minimize ∥b − Ax∥22, and
▶ minimize ∥x∥22, simultaneously.

Unfortunately, QR does not help much with that → Need
better tool, the SVD A = UΣV T . Let’s learn more about it.

118

SVD: Reduced and Full

For a matrix of shape m × n with m > n, what are the shapes of the
factors in the SVD?

Again, there is the full version of the factorization:
▶ U: m ×m

▶ Σ: m × n

▶ V : n × n

and the economical/reduced version:
▶ U: m × n

▶ Σ: n × n

▶ V : n × n

119

SVD: What’s this thing good for? (I)

▶ Recall: ∥A∥2 = σ1

▶ Recall: cond2(A) = σ1/σn

▶ Nullspace N(A) = span({v i : σi = 0}).
▶ rank(A) = #{i : σi ̸= 0}

Computing rank in the presence of round-off error is laughably
non-robust. More robust:

▶ Numerical rank:

rankε = #{i : σi > ε}

120

SVD: What’s this thing good for? (II)
▶ Low-rank Approximation

Theorem (Eckart-Young-Mirsky)
If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i , then

min
rank(B)=k

∥A− B∥2 = ∥A− Ak∥2 = σk+1,

min
rank(B)=k

∥A− B∥F = ∥A− Ak∥F =

√√√√ n∑
j=k+1

σ2
j .

Demo: Image compression [cleared] 121

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Image compression.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Image compression.ipynb

SVD: What’s this thing good for? (III)
▶ The minimum norm solution to Ax ∼= b:

UΣV Tx ∼= b
⇔ ΣV Tx︸ ︷︷ ︸

y

∼= UTb

⇔ Σy ∼= UTb

Then define
Σ+ = diag(σ+1 , . . . , σ

+
n),

where Σ+ is n ×m if A is m × n, and

σ+i =

{
1/σi σi ̸= 0,
0 σi = 0.

122

SVD: Minimum-Norm, Pseudoinverse
What is the minimum 2-norm solution to Ax ∼= b and why?

Observe ∥x∥2 = ∥y∥2, and recall that ∥y∥2 was already minimal.
(why?)

x = VΣ+UTb

solves the minimum-norm least-squares problem.

Generalize the pseudoinverse to the case of a rank-deficient matrix.

Define A+ = VΣ+UT and call it the pseudoinverse of A.

Coincides with prior definition in case of full rank.

123

Comparing the Methods

Methods to solve least squares with A an m × n matrix:

▶ Form: ATA: n2m/2 (symmetric—only need to fill half)
Solve with ATA: n3/6 (Cholesky)

▶ Solve with Householder: mn2 − n3/3
▶ If m ≈ n, about the same
▶ If m≫ n: Householder QR requires about twice as much work

as normal equations
▶ SVD: mn2 + n3 (with a large constant)

Demo: Relative cost of matrix factorizations [cleared]

124

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/Relative cost of matrix factorizations.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Relative cost of matrix factorizations.ipynb

In-Class Activity: Householder, Givens, SVD

In-class activity: Householder, Givens, SVD

125

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-hh-givens-svd/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems
Properties and Transformations
Sensitivity
Computing Eigenvalues
Krylov Space Methods

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

126

Eigenvalue Problems: Setup/Math Recap

A is an n × n matrix.
▶ x ̸= 0 is called an eigenvector of A if there exists a λ so that

Ax = λx .

▶ In that case, λ is called an eigenvalue.
▶ The set of all eigenvalues λ(A) is called the spectrum.
▶ The spectral radius is the magnitude of the biggest eigenvalue:

ρ(A) = max {|λ| : λ(A)}

127

Eigenvalue Problems: Motivation from Mechanics
Consider mass-spring systems, e.g. as modeled in (e.g.) myphysicslab.com
What is needed to model?

▶ Hooke’s law: F = α(x − x0): spring force prop. to extension
▶ x(t): vector of mass position
▶ Model Hooke’s law as F (t) = Ax(t), i.e. spring constants and

position differences computed via matrix

F = ma ⇔ Ax(t) = m
∂2x(t)
∂t2

.

Observ thes systems ‘wobble’: assume x(t) = sin(ωt)x0. Then

Ax0(t) sin(ωt) = m(−ω2)x0 sin(ωt).

Cancel sin(ωt): yields an eigenvalue problem for x0 and −ω2.

128

https://www.myphysicslab.com

Finding Eigenvalues

How do you find eigenvalues?

Ax = λx ⇔ (A− λI)x = 0
⇔A− λI singular⇔ det(A− λI) = 0

det(A− λI) is called the characteristic polynomial, which has degree
n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel-Ruffini theorem: for n ⩾ 5 is
no general formula for roots of polynomial. IOW: no.

▶ For LU and QR, we obtain exact answers (except rounding).
▶ For eigenvalue problems: not possible—must iterate.

Demo: Rounding in characteristic polynomial using SymPy [cleared]

129

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Rounding in characteristic polynomial using SymPy.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Rounding in characteristic polynomial using SymPy.ipynb

Multiplicity

What is the multiplicity of an eigenvalue?

Actually, there are two notions called multiplicity:
▶ Algebraic Multiplicity: multiplicity of the root of the

characteristic polynomial
▶ Geometric Multiplicity: #of lin. indep. eigenvectors

In general: AM ⩾ GM.
If AM > GM, the matrix is called defective.

130

An Example

Give characteristic polynomial, eigenvalues, eigenvectors of[
1 1

1

]
.

CP: (λ− 1)2

Eigenvalues: 1 (with algebraic multiplicity 2)
Eigenvectors: [

1 1
1

] [
x
y

]
=

[
x
y

]
⇒ x + y = x ⇒ y = 0. So only a 1D space of eigenvectors.

131

Diagonalizability

When is a matrix called diagonalizable?

If it is not defective, i.e. if it has a n linear independent eigenvectors
(i.e. a full basis of them). Call those (x i)

n
i=1.

In that case, let

X =

 | |
x1 · · · xn

| |

 ,
and observe AX = XD or

A = XDX−1,

where D is a diagonal matrix with the eigenvalues.

132

Similar Matrices

Related definition: Two matrices A and B are called similar if there exists
an invertible matrix X so that A = XBX−1.

In that sense: “Diagonalizable” = “Similar to a diagonal matrix”.

Observe: Similar A and B have same eigenvalues. (Why?)

Suppose Ax = λx . We have B = X−1AX . Let w = X−1v . Then

Bw = X−1Av = λw .

133

Eigenvalue Transformations (I)
What do the following transformations of the eigenvalue problem Ax = λx
do?
Shift. A→ A− σI

(A− σI)x = (λ− σ)x

Inversion. A→ A−1

A−1x = λ−1x

Power. A→ Ak

Akx = λkx

134

Eigenvalue Transformations (II)

Polynomial A→ aA2 + bA+ cI

(aA2 + bA+ cI)x = (aλ2 + bλ+ c)x

Similarity T−1AT with T invertible

Let y := T−1x . Then

T−1ATy = λy

135

Sensitivity (I)
Assume A not defective. Suppose X−1AX = D. Perturb A→ A+ E .
What happens to the eigenvalues?

X−1(A+ E)X = D + F

▶ A+ E and D + F have same eigenvalues
▶ D + F is not necessarily diagonal

Suppose v is an eigenvector of D + F .

(D + F)v = µv
⇔ Fv = (µI − D)v
⇔ (µI − D)−1Fv = v (when is that invertible?)
⇒ ∥v∥ ≤

∥∥(µI − D)−1∥∥ ∥F∥ ∥v∥
⇒

∥∥(µI − D)−1∥∥−1 ≤ ∥F∥

136

Sensitivity (II)
X−1(A+ E)X = D + F . Have

∥∥(µI − D)−1
∥∥−1 ≤ ∥F∥.

Demo: Bauer-Fike Eigenvalue Sensitivity Bound [cleared]

∥∥(µI − D)−1∥∥−1
= |µ− λk |

where λk is the closest eigenvalue of D to µ. (see demo)
Since we made no assumptions on µ other than that it doesn’t match
an existing eigenvalue, this bound holds for all eigenvalues of A+ E .∣∣∣µ− λk ∣∣∣= ∥∥(µI − D)−1∥∥−1 ≤ ∥F∥ =

∥∥X−1EX
∥∥ ≤ cond(X) ∥E∥ .

▶ ‘Bad’ if X ill-conditioned, i.e. if eigenvectors are nearly lin.dep.
▶ X orthogonal (e.g. for symmetric A) ⇒ cond2(X) = 1.
▶ This bound is in terms of all eigenvalues, so may overestimate

for each individual eigenvalue.
137

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Bauer-Fike Eigenvalue Sensitivity Bound.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Bauer-Fike Eigenvalue Sensitivity Bound.ipynb

Power Iteration
Demo: Motivating Power Iteration [cleared]
Let A ∈ Rn×n and Av j = λjv j (j ∈ {1, 2, . . . , n}) and
|λ1| > |λ2| ≥ · · · ≥ |λn|.
Pick some x0, consider x i+1 = Ax i (i ∈ {0, . . .}). Called Power Iteration.

Let x0 =
∑n

j=1 αjv j . Observe that x i = Aix0 =
∑n

j=1 αjλ
iv j .

Define e i = x i/λ
i
1 − α1v1.

∥e i+1∥ =

∥∥∥∥∥x i+1

λi+1
1
− α1v1

∥∥∥∥∥ =

∥∥∥∥∥
∑n

j=1 αjλ
i+1
j v j

λi+1
1

− α1v1

∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=2

αj

(
λj
λ1

)i+1

v j

∥∥∥∥∥∥ ⩽

∣∣∣∣λ2

λ1

∣∣∣∣i+1
∥∥∥∥∥∥

n∑
j=2

αjv j

∥∥∥∥∥∥ =

∣∣∣∣λ2

λ1

∣∣∣∣i+1

∥e0∥ .

I.e. converges to (a multiple of) v1 ‘linearly’ (see later).
138

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Motivating Power Iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Motivating Power Iteration.ipynb

Convergence of Power Iteration: Notation

▶ λmax(A): biggest eigenvalue by magnitude
▶ λmax 2(A): second-biggest eigenvalue by magnitude.
▶ λmin 2(A): second-smallest eigenvalue by magnitude
▶ λmin(A): smallest eigenvalue by magnitude

(Not well-defined if there are multiple λ with the same magnitudes.
Assume that’s not the case.)

139

Power Iteration: Shift
How does a shift (A− σI) change power iteration?

▶ Converges to eigenvector for λmax(A− σI) with convergence
factor

∣∣∣λmax 2(A−σI)
λmax(A−σI)

∣∣∣.
▶ Can help guide convergence to eigenvalues ‘on boundary’ of

spectrum.

Reλ

Imλσ(A)

λmax2λmax

σ

Reλ

Imλσ(A− σI)

λmax

λmax2

140

Power Iteration: Inversion
How does inversion (A−1) change power iteration?

▶ Converges to eigenvector for λmax(A
−1) = 1/λmin(A) with

convergence factor∣∣∣∣λmax 2(A
−1)

λmax(A−1)

∣∣∣∣ = ∣∣∣∣1/λmin 2(A)

1/λmin(A)

∣∣∣∣ = ∣∣∣∣ λmin(A)

λmin 2(A)

∣∣∣∣ .
▶ Guide convergence to smallest eigenvalues.

Reλ

Imλσ(A)

λmax2λmax Reλ

Imλσ(A)

λmin2

λmin

141

Power Iteration: Shift and Inversion
How does shift-invert ((A− σI)−1) change power iteration?

▶ Converges to eigenvector for
λmax((A− σI)−1) = 1/λmin(A− σI) with convergence factor∣∣∣∣λmax 2((A− σI)−1)

λmax((A− σI)−1)

∣∣∣∣ = ∣∣∣∣ λmin(A− σI)
λmin 2(A− σI)

∣∣∣∣ .
▶ Guide convergence to eigenvalue closest to σ.

Reλ

Imλσ(A)

λmax2λmax

σ

Reλ

Imλσ(A− σI)

λmin

λmin2

142

Power Iteration: Issues?
What could go wrong with Power Iteration?

▶ Starting vector has no component along x1
Not a problem in practice: Rounding will introduce one.

▶ Overflow in computing λi1
→ Normalize after each step

▶ |λ1| = |λ2|
▶ If λ1 = λ2: multipliclity, defer.
▶ If λ1 ̸= λ2: use shift+invert to separate magnitudes

▶ Complex eigenvalues
→ use complex-valued shift, and invert.

Recall: for real-valued matrices, eigenvalues come in conjugate
pairs λ and λ∗, with |λ| = |λ∗|.

143

What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to know
eigenvalues?

Estimate them:
xTAx
xTx

▶ = λ if x is an eigenvector w/ eigenvalue λ
▶ Otherwise, an estimate of a ‘nearby’ eigenvalue

This is called the Rayleigh quotient.
Idea: Could use Rayleigh quotient as a shift. Yields Rayleigh quotient
iteration.

Demo: Power Iteration and its Variants [cleared]

144

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Power Iteration and its Variants.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Power Iteration and its Variants.ipynb

In-Class Activity: Eigenvalues

In-class activity: Eigenvalues

145

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-eigenvalues/start

Schur form: Motivation

For finding multiple eigenvalues, want factorization that allows access to all
eigenvalues and eigenvectors.
Suggestions?

▶ Diagonalization A = XDX−1 cannot provide what we need: it
does not always exist.

▶ Even if it did exist, computing/applying X−1 would be subject
to rounding concerns.
▶ Idea: use a similarity transform with orthogonal matrices.

146

Schur form
Show: Every matrix is orthonormally similar to an upper triangular matrix,
i.e. A = QUQT . This is called the Schur form or Schur factorization.

Let (λ, v) be an eigenpair (at least one always exists), i.e. Av = λv
(v ̸= 0). Let V = span{v}. Then

A : V → V

V⊥ → V ⊕ V⊥

A =

 |v Basis of V⊥

|

︸ ︷︷ ︸

Q1

λ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

︸ ︷︷ ︸

U1

QT
1 .

▶ Bottom right of U1: Same eigenvalues as A without λ.
▶ Repeat n times to triangular: A = Qn · · ·Q1UQ

T
1 · · ·QT

n .
147

Schur Form: Comments, Eigenvalues, Eigenvectors
A = QUQT . For complex λ:
▶ Either complex matrices, or
▶ 2× 2 blocks on diag.

If we had a Schur form of A (no 2× 2 blocks), can we find the eigenvalues?

The eigenvalues (of U and A!) are on the diagonal of U.

And the eigenvectors?

Find eigenvector of U: Suppose λ is an eigenvalue.

U − λI =

U11 u U13
0 0 vT

0 0 U31

x = [U−1

11 u;−1; 0]T eigenvector of U, and Qx eigenvector of A.
148

Computing Multiple Eigenvalues

All Power Iteration Methods compute one eigenvalue at a time.
What if I want all eigenvalues?

Two ideas:
1. Deflation: similarity transform to[

λ1 ∗
B

]
,

i.e. use the argument for the existence of Schur form as a
computational procedure.

2. Iterate with multiple vectors simultaneously.

149

Simultaneous Iteration

What happens if we carry out power iteration on multiple vectors
simultaneously?

Simultaneous Iteration:
1. Start with X0 ∈ Rn×p (p ≤ n) with (arbitrary) iteration vectors

in columns
2. Xk+1 = AXk

Problems:
▶ Needs rescaling
▶ X increasingly ill-conditioned: all columns go towards x1

Fix: orthogonalize!

150

Orthogonal Iteration

Orthogonal Iteration:
1. Start with X0 ∈ Rn×p (p ≤ n) with (arbitrary) iteration vectors

in columns
2. Q̂kRk = Xk (reduced)
3. Xk+1 = AQ̂k

Good: Xk obey convergence theory from power iteration
Bad:
▶ Slow/linear convergence
▶ Expensive iteration

151

Toward the QR Algorithm

Q0R0 = X0

X1 = AQ0

Q1R1 = X1 = AQ0 ⇒ Q1R1Q
T
0 = A

X2 = AQ1

Q2R2 = X2 = AQ1 ⇒ Q2R2Q
T
1 = A

Once the Qk converge (Qn+1 ≈ Qn), we have a Schur factorization!

Problem: Qn+1 ≈ Qn works poorly as a convergence test.
Observation 1: Once Qn+1 ≈ Qn, we also have QnRnQ

T
n ≈ A.

Observation 2: X̂n := QT
n AQn ≈ Rn.

Idea: Use below-diag part of X̂n for convergence check.
Q: Can we restate the iteration to compute X̂k directly?

Demo: Orthogonal Iteration [cleared] 152

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Orthogonal Iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Orthogonal Iteration.ipynb

QR Iteration/QR Algorithm

Orthogonal iteration: QR iteration:
X0 = A X̄0 = A
QkRk = Xk Q̄k R̄k = X̄k

Xk+1 = AQk X̄k+1 = R̄kQ̄k

▶ X̄k+1 = R̄kQ̄k = Q̄H
k X̄kQ̄k = Q̄H

k Q̄H
k−1 · · · Q̄H

0︸ ︷︷ ︸A Q̄0 · · · Q̄k︸ ︷︷ ︸.
▶ The X̄k are all similar to A → have same eigenvalues.
▶ A2 = Q̄0R̄0Q̄0R̄0 = Q̄0Q̄1R̄1R̄0 (analogous for Ak)

Claim: (see next slide) Orth.it. and QR it. are equivalent, via
▶ Qk = Q̄0Q̄1 · · · Q̄k .
▶ X̂k = X̄k+1.

From orthogonal iteration: Observed X̂k = X̄k+1 converge.
→ QR iteration produces Schur form.

153

Proof sketch: Equivalence of QR iteration/Orth. iteration
Orthogonal Iteration (no bars)
▶ X0 := A

▶ Q0R0 := X0,
▶ where we may choose

Q0 = Q̄0
▶ X̂0 = QH

0 AQ0 =
QH

0 Q0R0Q0 = R0Q0

▶ X1 := AQ0
▶ Q1R1 := X1,

and because of
X1 = Q0Q

H
0 AQ0 = Q0X̄1 =

Q0Q̄1R̄1
we may choose
Q1 = Q0Q̄1 = Q̄0Q̄1.

▶
...

QR Iteration (with bars)
▶ X̄0 := A

▶ Q̄0R̄0 := A

▶ X̄1 := R̄0Q̄0 = X̂0
▶ Q̄1R̄1 := X̄1

▶ X̄2 := R̄1Q̄1
▶ X̄2 = QH

1 AQ1 = X̂1

▶
...

Demo: QR Iteration [cleared]
154

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/QR Iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/QR Iteration.ipynb

QR Iteration: Forward and Inverse
QR iteration may be viewed as performing inverse iteration. How?

Take an inverse (conjugate) transpose of the whole method.
▶ X̄−H

0 = A−H .
▶ Recall Q̄k R̄k = X̄k . Invert and transpose both sides:

QkR
−H
k = X̄−H

k

▶ Recall X̄k+1 = R̄kQ̄k . Invert and transpose both sides:

X̄−H
k+1 = R̄−H

k Q̄k

I.e. exact same iterates as QR iteration (power iteration ‘from the
left’) would be produced by “QL iteration” on A−H , i.e. inverse iter-
ation ‘from the right’. Therefore: would expect shifts to be effective.

155

QR Iteration: Incorporating a Shift
How can we accelerate convergence of QR iteration using shifts?

Q̄k R̄k = X̄k−σk I
X̄k+1 = R̄kQ̄k+σk I

Still a similarity transform:

X̄k+1 = R̄kQ̄k + σk I = [Q̄T
k X̄k − Q̄T

k σk]Q̄k + σk I

Q: How should the shifts be chosen?
▶ Ideally: Close to existing eigenvalue
▶ Heuristics:

▶ Lower right entry of X̄k

▶ Eigenvalues of lower right 2× 2 of X̄k

Demo: QR Iteration [cleared] (Shifted)
156

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/QR Iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/QR Iteration.ipynb

QR Iteration: Computational Expense
A full QR factorization at each iteration costs O(n3)–can we make that
cheaper?

Idea: Upper Hessenberg form

A = Q

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

QT

▶ Attainable by similarity transforms (!) HAHT

with Householders that start 1 entry lower than ‘usual’
▶ QR factorization of Hessenberg matrices can be achieved in

O(n2) time using Givens rotations.

Demo: Householder Similarity Transforms [cleared]
157

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Householder Similarity Transforms.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Householder Similarity Transforms.ipynb

QR/Hessenberg: Overall procedure
Overall procedure:

1. Reduce matrix to Hessenberg form
2. Apply QR iteration using Givens QR to obtain Schur form

Why does QR iteration stay in Hessenberg form?

Asumme X̄k is upper Hessenberg (“UH”).
▶ Q̄k R̄k = X̄k : Q̄k = R̄−1

k X̄k is UH (UH · upper △ = UH)
▶ X̄k+1 = R̄kQ̄k is UH (upper △ · UH = UH)

What does this process look like for symmetric matrices?

▶ Use Householders to attain tridiagonal form
▶ Use QR iteration with Givens to attain diagonal form

158

Krylov space methods: Intro

What subspaces can we use to look for eigenvectors?

QR:
span{Aℓy1,A

ℓy2, . . . ,A
ℓyk}

Krylov space:
span{ x︸︷︷︸

x0

,Ax , . . . ,Ak−1x︸ ︷︷ ︸
xk−1

}

Define:

Kk :=

 | |
x0 · · · xk−1
| |

 . (n × k)

159

Krylov for Matrix Factorization
What matrix factorization is obtained through Krylov space methods?

AKn =

 | |
x1 · · · xn

| |

 = Kn

 | | |
e2 · · · en K−1

n xn

| | |

︸ ︷︷ ︸

Cn

.

▶ K−1
n AKn = Cn

▶ Cn is upper Hessenberg
▶ So Krylov is ‘just’ another way to get a matrix into upper

Hessenberg form.
▶ But: works well when only matvec is available (searches in

Krylov space, not the space spanned by first columns)

160

Conditioning in Krylov Space Methods/Arnoldi Iteration (I)
What is a problem with Krylov space methods? How can we fix it?

(x i) converge rapidly to eigenvector for largest eigenvalue
→ Kk become ill-conditioned

Idea: Orthogonalize! (at end. . . for now)

QnRn = Kn ⇒ Qn = KnR
−1
n

Then
QT

n AQn = Rn K
−1
n AKn︸ ︷︷ ︸
Cn

R−1
n .

▶ Cn is upper Hessenberg
▶ QT

n AQn is also UH
(because upper △ · UH = UH and UH · upper △ = UH).

161

Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

We find that QT
n AQn is also upper Hessenberg: QT

n AnQn = H.
Also readable as AQn = QnH, which, read column-by-column, is:

Aqk = h1kq1 + · · ·+ hk+1,kqk+1

We find: hjk = qT
j Aqk . Use that to rewrite, letting v = Aqk :

v − (qT
1 v)q1 − · · · − (qT

k v)qk = hk+1,kqk+1

▶ Looks just like Gram-Schmidt QR!
▶ Can compute (k + 1)st column of H and qk+1 from q1, . . . ,qk .

This is called Arnoldi iteration. For symmetric: Lanczos iteration.

Demo: Arnoldi Iteration [cleared] (Part 1)
162

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Arnoldi Iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Arnoldi Iteration.ipynb

Krylov: What about eigenvalues?
How can we use Arnoldi/Lanczos to compute eigenvalues?

Q =
[
Qk Uk

]
Green: known (i.e. already computed), red: not yet computed.

H = QTAQ =

[
QT

k

UT
k

]
A
[
Qk Uk

]
=

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

Use eigenvalues of top-left matrix as approximate eigenvalues.
(still need to be computed, using QR it.)

Those are called Ritz values.

Demo: Arnoldi Iteration [cleared] (Part 2) 163

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Arnoldi Iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Arnoldi Iteration.ipynb

Computing the SVD (Kiddy Version)

1. Compute (orth.) eigenvectors V and eigenvalues D of ATA,

ATAV = VD ⇒ V TATAV = D =: Σ2.

2. Find U from A = UΣV T ⇔ UΣ = AV .
Observe U is orthogonal if Σ−1 exists: (If not, can choose so.)

UTU = Σ−1V TATAVΣ−1 = Σ−1Σ2Σ−1 = I .

Demo: Computing the SVD [cleared]

“Actual”/“non-kiddy” computation of the SVD:

▶ Bidiagonalize A = U

[
B
0

]
V T , then diagonalize via variant of QR.

▶ References: Chan ’82 or Golub/van Loan Sec 8.6.

164

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Computing the SVD.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Computing the SVD.ipynb
https://doi.org/10.1145/355984.355990

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations
Introduction
Iterative Procedures
Methods in One Dimension
Methods in n Dimensions (“Systems of Equations”)

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

165

Solving Nonlinear Equations

What is the goal here?

Solve f (x) = 0 for f : Rn → Rn.

If looking for solution to f̃ (x) = y , simply consider f (x) = f̃ (x)−y .

Intuition: Each of the n equations describes a surface. Looking for
intersections.
Demo: Three quadratic functions [cleared]

166

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Three quadratic functions.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Three quadratic functions.ipynb

Showing Existence
How can we show existence of a root?

▶ Intermediate value theorem (uses continuity, 1D only)
▶ Inverse function theorem (relies on invertible Jacobian Jf)

Get local invertibility, i.e. f (x) = y solvable
▶ Contraction mapping theorem

A function g : Rn → Rn is called contractive if there exists a
0 < γ < 1 so that ∥g(x)− g(y)∥ ≤ γ ∥x − y∥ . A fixed point
of g is a point where g(x) = x .

Then: On a closed set S ⊆ Rn with g(S) ⊆ S there exists a
unique fixed point.
Example: (real-world) map

In general, no uniquness results available.

167

Sensitivity and Multiplicity
What is the sensitivity/conditioning of root finding?

cond (root finding) = cond (evaluation of the inverse function at 0)
Evaluation (of the inverse) at 0: must use absolute condition num-
bers.

What are multiple roots?

0 = f (x) = f ′(x) = · · · = f (m−1)(x)

This is called a root of multiplicity m.

How do multiple roots interact with conditioning?

The inverse function is steep near one, so conditioning is poor.

168

In-Class Activity: Krylov and Nonlinear Equations

In-class activity: Krylov and Nonlinear Equations

169

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-krylov-nonlinear/start

Rates of Convergence
What is linear convergence? quadratic convergence?

ek = ûk−u: error in the kth iterate ûk . Assume ek → 0 as k →∞.

An iterative method converges with rate r if

lim
k→∞

∥ek+1∥
∥ek∥r

= C

{
> 0,
<∞.

▶ r = 1 is called linear convergence.
▶ r > 1 is called superlinear convergence.
▶ r = 2 is called quadratic convergence.

Examples:
▶ Power iteration is linearly convergent.
▶ Rayleigh quotient iteration is quadratically convergent.

170

About Convergence Rates
Demo: Rates of Convergence [cleared]
Characterize linear, quadratic convergence in terms of the ‘number of
accurate digits’.

▶ Linear convergence gains a constant number of digits each step:

∥ek+1∥ ≤ C ∥ek∥

(and C < 1 matters!)
▶ Quadratic convergence

∥ek+1∥ ≤ C ∥ek∥2

(Only starts making sense once ∥ek∥ is small. C doesn’t
matter much.)

171

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Rates of Convergence.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Rates of Convergence.ipynb

Stopping Criteria
Comment on the ‘foolproof-ness’ of these stopping criteria:

1. |f (x)| < ε (‘residual is small’)
2. ∥xk+1 − xk∥ < ε
3. ∥xk+1 − xk∥ / ∥xk∥ < ε

1. Can trigger far away from a root in the case of multiple roots
(or a ‘flat’ f)

2. Allows different ‘relative accuracy’ in the root depending on its
magnitude.

3. Enforces a relative accuracy in the root, but does not actually
check that the function value is small.
So if convergence ‘stalls’ away from a root, this may trigger
without being anywhere near the desired solution.

Lesson: No stopping criterion is bulletproof. The ‘right’ one almost
always depends on the application.

172

Bisection Method

Demo: Bisection Method [cleared]

What’s the rate of convergence? What’s the constant?

Linear with constant 1/2.

173

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Bisection Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Bisection Method.ipynb

Mini Review: Taylor’s Theorem

f (x + h) = f (x) + f ′(x)h +
f ′′(x)

2!
h2 + · · · (requires f analytic)

Taylor with explicit remainder term (θ ∈ [x , x + h], f ∈ C k+1):

f (x + h) = f (x) + · · ·+ f (k−1)(x)

(k − 1)!
hk−1 +

f k(θ)

k!
hk

Special case k = 1: Equivalent to mean value theorem:

f (x + h) = f (x) + f ′(θ)h (θ ∈ [x , x + h], f ∈ C 1)

With big-O truncation:

f (x+h) = f (x)+ · · ·+ f (k−1)(x)

(k − 1)!
hk−1+O(hk) (h→ 0, f ∈ C k+1)

174

Fixed Point Iteration

x0 = ⟨starting guess⟩
xk+1 = g(xk)

Demo: Fixed point iteration [cleared]

When does fixed point iteration converge? Assume g is smooth.

Let x∗ be the fixed point with x∗ = g(x∗).
Claim: If |g ′(x∗)| < 1 at the fixed point, FPI converges.

Error:
ek+1 = xk+1 − x∗ = g(xk)− g(x∗)

[cont’d.]

175

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Fixed point iteration.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Fixed point iteration.ipynb

Fixed Point Iteration: Convergence cont’d.
Error in FPI: ek+1 = xk+1 − x∗ = g(xk)− g(x∗)

Mean value theorem says: There is a θk between xk and x∗ so that

g(xk)− g(x∗) = g ′(θk)(xk − x∗) = g ′(θk)ek .

So: ek+1 = g ′(θk)ek and if ∥g ′∥ ≤ C < 1 near x∗, then we have
linear convergence with constant C .

Q: What if g ′(x∗) = 0?

By Taylor:
g(xk)− g(x∗) = g ′′(ξk)(xk − x∗)2/2

So we have quadratic convergence in this case!

We would obviously like a systematic way of finding g that produces
quadratic convergence.

176

Newton’s Method

Derive Newton’s method.

Idea: Approximate f at xk using Taylor: f (xk +h) ≈ f (xk)+ f ′(xk)h
Now find root of this linear approximation in terms of h:

f (xk) + f ′(xk)h = 0 ⇔ h = − f (xk)

f ′(xk)
.

x0 = ⟨starting guess⟩

xk+1 = xk −
f (xk)

f ′(xk)
= g(xk)

Demo: Newton’s method [cleared]

177

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Newton's method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Newton's method.ipynb

Convergence and Properties of Newton
What’s the rate of convergence of Newton’s method?

Recall the quotient rule (f /g)′ = (f ′g − g ′f)/g2.

g ′(x) =
f (x)f ′′(x)

f ′(x)2

So if f (x∗) = 0 and f ′(x∗) ̸= 0, we have g ′(x∗) = 0, i.e. quadratic
convergence toward single roots.

Drawbacks of Newton?

▶ Convergence (argument) only locally
▶ Have to know f ′!

Demo: Convergence of Newton’s Method [cleared] 178

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Convergence of Newton's Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Convergence of Newton's Method.ipynb

Secant Method

What would Newton without the use of the derivative look like?

Approximate

f ′(xk) ≈
f (xk)− f (xk−1)

xk − xk−1
.

So

x0 = ⟨starting guess⟩

xk+1 = xk −
f (xk)

f (xk)−f (xk−1)
xk−xk−1

.

179

Convergence of Properties of Secant

Rate of convergence is
(
1 +
√

5
)
/2 ≈ 1.618. (proof)

Drawbacks of Secant?

▶ Convergence argument only good locally
Will see: convergence only local (near root)

▶ Slower convergence
▶ Need two starting guesses

Demo: Secant Method [cleared]
Demo: Convergence of the Secant Method [cleared]

Secant (and similar methods) are called Quasi-Newton Methods.

180

https://doi.org/10.1016/S0893-9659(03)90119-4
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Secant Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Secant Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Convergence of the Secant Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Convergence of the Secant Method.ipynb

Improving on Newton?

How would we do “Newton + 1” (i.e. even faster, even better)?

Easy:
▶ Use second order Taylor approximation, solve resulting

quadratic
▶ Get cubic convergence!
▶ Get a method that’s extremely fast and extremely brittle
▶ Need second derivatives
▶ What if the quadratic has no solution?

181

Root Finding with Interpolants
Secant method uses a linear approximation to f based on points f (xk),
f (xk−1), could use more points and higher-order approximation:

▶ Can fit polynomial to (subset of) (x0, f (x0)), . . . , (xk , f (xk))

▶ Look for a root of that
▶ Fit a quadratic to the last three: Muller’s method

▶ Also finds complex roots
▶ Convergence rate r ≈ 1.84

What about existence of roots in that case?

▶ Inverse quadratic interpolation
▶ Fit/‘interpolate’ quadratic polynomial q so that q(f (xi)) = xi

for i ∈ {k, k − 1, k − 2}.
▶ Approximate root by evaluating xk+1 = q(0).

182

Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally.
How could we use that?

▶ Hybrid methods: bisection + Newton
▶ Stop if Newton leaves bracket

▶ Fix a region where they’re ‘trustworthy’ (trust region methods)
▶ Limit step size
▶ Sufficient conditions for convergence of Newton (under strong

assumptions) are available.

183

https://doi.org/10.1137/1.9780898719468

In-Class Activity: Nonlinear Equations

In-class activity: Nonlinear Equations

184

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-nonlinear/start

Fixed Point Iteration

x0 = ⟨starting guess⟩
xk+1 = g(xk)

When does this converge?

Converges (locally) if ∥Jg (x∗)∥ < 1 in some norm, where the Jaco-
bian matrix

Jg (x∗) =

∂x1g1 · · · ∂xng1
...

∂x1gn · · · ∂xngn

 .
Similarly: If Jg (x∗) = 0, we have at least quadratic convergence.

Better: There exists a norm ∥·∥A such that ρ(A) ≤ ∥A∥A < ρ(A)+ϵ,
so ρ(A) < 1 suffices. (proof)

185

https://math.stackexchange.com/a/3834891

Newton’s Method
What does Newton’s method look like in n dimensions?

Approximate by linear: f (x + s) = f (x) + Jf (x)s.

Set to 0: Jf (x)s = −f (x) ⇒ s = −(Jf (x))−1f (x).

x0 = ⟨starting guess⟩
xk+1 = xk − (Jf (xk))

−1f (xk)

Downsides of n-dim. Newton?

▶ Still only locally convergent
▶ Computing and inverting Jf is expensive.

Demo: Newton’s method in n dimensions [cleared]

186

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/nonlinear/Newton's method in n dimensions.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Newton's method in n dimensions.ipynb

Secant in n dimensions?
What would the secant method look like in n dimensions?

Need an ‘approximate Jacobian’ satisfying

J̃ · (xk+1 − xk) = f (xk+1)− f (xk).

Suppose we have already taken a step to xk+1. Could we ‘reverse
engineer’ J̃ from that equation?
▶ No: n2 unknowns in J̃, but only n equations
▶ Can only hope to ‘update’ J̃ with information from current

guess.
Some choices, all called Broyden’s method:
▶ update Jn, minimize ∥Jn − Jn−1∥F
▶ update J−1

n (via Sherman-Morrison), minimize
∥∥J−1

n − J−1
n−1

∥∥
F

multiple variants (“good” Broyden and “bad” Broyden)
187

Numerically Testing Derivatives
Getting derivatives right is important. How can I test/debug them?

Verify convergence of the Taylor remainder by checking that, for a
unit vector s and an input vector x ,∥∥∥∥ f (x + hs)− f (x)

h
− Jf (x)s

∥∥∥∥ = O(h) (h→ 0).

▶ Same trick can be used to check the Hessian (needed in
optimization): It is the Jacobian of the gradient.

▶ Norm is not necessarily small. Convergence (i.e. decrease with
h) matters.

▶ Important to divide by h, so that the norm is O(1).
▶ Can “bootstrap” the derivatives: do the above one term at a

time.

188

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization
Introduction
Methods for unconstrained opt. in one dimension
Methods for unconstrained opt. in n dimensions
Nonlinear Least Squares
Constrained Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

189

Optimization: Problem Statement

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) ≤ 0.

▶ g(x) = 0 and h(x) ≤ 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

▶ If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

▶ If f , g , h are linear, this is called linear programming.
Otherwise nonlinear programming.

190

Optimization: Observations
Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

▶ What is the fastest/cheapest/shortest. . . way to do. . . ?
▶ Solve a system of equations ‘as well as you can’ (if no exact

solution exists)–similar to what least squares does for linear
systems:

min ∥F (x)∥

What about multiple objectives?

▶ In general: Look up Pareto optimality.
▶ For 450: Make up your mind–decide on one (or build a

combined objective). Then we’ll talk.

191

Existence/Uniqueness
Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f : S → R is continuous on a closed and bounded set S ⊆ Rn, then

a minimum exists.

f : S → R is called coercive on S ⊆ Rn if

lim
∥x∥→∞

f (x) = +∞

If f is coercive and continuous and S is closed, . . .

a global minimum exists (but is possibly non-unique).
192

Convexity

S ⊆ Rn is called convex if for all x , y ∈ S and all 0 ≤ α ≤ 1

αx + (1− α)y ∈ S .

f : S → R is called convex on S ⊆ Rn if for x , y ∈ S and all 0 ≤ α ≤ 1

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y).

With ‘<’: strictly convex.

Q: Give an example of a convex, but not strictly convex function.

193

Convexity: Consequences

If f is convex, . . .

▶ then f is continuous at interior points.
(Why? What would happen if it had a jump?)

▶ a local minimum is a global minimum.

If f is strictly convex, . . .

▶ a local minimum is a unique global minimum.

194

Optimality Conditions
If we have found a candidate x∗ for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.

▶ In one dimension:
▶ Necessary: f ′(x∗) = 0 (i.e. x∗ is an extremal point)
▶ Sufficient: f ′(x∗) = 0 and f ′′(x∗) ≥ 0

(implies x∗ is a local minimum)

▶ In n dimensions:
▶ Necessary: ∇f (x∗) = 0 (i.e. x∗ is an extremal point)
▶ Sufficient: ∇f (x∗) = 0 and Hf (x∗) positive semidefinite

(implies x∗ is a local minimum)

where the Hessian

Hf (x∗) =

∂2

∂x2
1

· · · ∂2

∂x1∂xn
...

...
∂2

∂xn∂x1
· · · ∂2

∂x2
n

 f (x∗).

195

Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

A: Solve ∇f = 0.

Q: Is the Hessian symmetric?

A: Yes. (Schwarz’s theorem)

Q: How can we practically test for positive definiteness?

A: Attempt a Cholesky factorization. If it succeeds, the matrix is PD.

196

Sensitivity and Conditioning (1D)
How does optimization react to a slight perturbation of the minimum?

Suppose we still have |f (x̃)− f (x∗)| < tol (where x∗ is true min.).
Apply Taylor’s theorem:

f (x∗ + h) = f (x∗) + f ′(x∗)︸ ︷︷ ︸
0

h + f ′′(x∗)
h2

2
+ O(h3)

Ignore higher-order terms, solve for h: |x̃ − x∗| ⪅
√

2 tol /f ′′(x∗).
In other words: Can expect half as many digits in x̃ as in f (x̃).
This is important to keep in mind when setting tolerances.

It’s only possible to do better when derivatives are explicitly known
and convergence is not based on function values alone. (then: can
solve ∇f = 0)

197

Sensitivity and Conditioning (nD)
How does optimization react to a slight perturbation of the minimum?

Suppose we still have |f (x̃)− f (x∗)| < tol, where x∗ is true min.
and x = x∗ + hs. Assume ∥s∥ = 1.

f (x∗ + hs) = f (x∗) + h∇f (x∗)T︸ ︷︷ ︸
0

s +
h2

2
sTHf (x∗)s + O(h3)

After ignoring high-order terms, yields:

|h|2 ⪅
2 tol

λmin(Hf (x∗))
.

In other words: Conditioning of Hf determines sensitivity of x∗.

198

Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.

f is called unimodal on an open interval if there exists an x∗ in the
interval such that for all x1 < x2 in the interval
▶ x2 < x∗ ⇒ f (x1) > f (x2)

▶ x∗ < x1 ⇒ f (x1) < f (x2)

199

In-Class Activity: Optimization Theory

In-class activity: Optimization Theory

200

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-optimization-theory/start

Golden Section Search
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.

1. Pick x1, x2

2. If f (x1) > f (x2), reduce to (x1, b)

3. If f (x1) ≤ f (x2), reduce to (a, x2)
201

Golden Section Search: Efficiency
Where to put x1, x2?

▶ Want symmetry:
x1 = a+ (1− τ)(b − a)
x2 = a+ τ(b − a)

▶ Want to reuse function evaluations

0 1τ1− τ

0 ττ2τ(1− τ)

Need: τ2 = 1− τ . Find: τ =
(√

5− 1
)
/2.

Also known as the golden section. Hence golden section search.

Convergence rate?

Linearly convergent. Can we do better?
202

Newton’s Method
Reuse the Taylor approximation idea, but for optimization.

f (x + h) ≈ f (x) + f ′(x)h + f ′′(x)
h2

2
=: f̂ (h)

Solve 0 = f̂ ′(h) = f ′(x) + f ′′(x)h : h = −f ′(x)/f ′′(x).
1. x0 = ⟨some starting guess⟩
2. xk+1 = xk − f ′(xk)

f ′′(xk)

Q: Notice something? Identical to Newton for solving f ′(x) = 0.
Because of that: locally quadratically convergent.

Good idea: Combine slow-and-safe (bracketing) strategy with fast-
and-risky (Newton).

Demo: Newton’s Method in 1D [cleared]

203

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Newton's Method in 1D.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Newton's Method in 1D.ipynb

Steepest Descent/Gradient Descent
Given a scalar function f : Rn → R at a point x , which way is down?

Direction of steepest descent: −∇f

Q: How far along the gradient should we go?

Unclear–do a line search. For example using Golden Section Search.
1. x0 = ⟨some starting guess⟩
2. sk = −∇f (xk)

3. Use line search to choose αk to minimize f (xk + αksk)
4. xk+1 = xk + αksk
5. Go to 2.

Observation: (from demo)
▶ Linear convergence

Demo: Steepest Descent [cleared] (Part 1) 204

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Steepest Descent.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Steepest Descent.ipynb

Steepest Descent: Convergence
Consider quadratic model problem:

f (x) =
1
2
xTAx + cTx

where A is SPD. (A good model of f near a minimum.)

Define error ek = xk − x∗. Then can show:

∥ek+1∥A =
√

eT
k+1Aek+1 =

σmax(A)− σmin(A)

σmax(A) + σmin(A)
∥ek∥A

where ∥x∥A =
√

xTAx . → confirms linear convergence.

Convergence constant related to conditioning:

σmax(A)− σmin(A)

σmax(A) + σmin(A)
=
κ(A)− 1
κ(A) + 1

.

205

Hacking Steepest Descent for Better Convergence

Extrapolation methods:

Look back a step, maintain ’momentum’.

xk+1 = xk − αk∇f (xk) + βk(xk − xk−1)

Heavy ball method:

For specific constant αk = α and βk = β, can attain:

||ek+1||A =

√
κ(A)− 1√
κ(A) + 1

||ek ||A

Demo: Steepest Descent [cleared] (Part 2)

206

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Steepest Descent.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Steepest Descent.ipynb

Optimization in Machine Learning
What is stochastic gradient descent (SGD)?

Common in ML: Objective functions of the form

f (x) =
1
n

n∑
i=1

fi (x),

where each fi comes from an observation (“data point”) in a (training)
data set. Then “batch” (i.e. normal) gradient descent is

xk+1 = xk − α
1
n

n∑
i=1

∇fi (xk).

Stochastic GD uses one (or few, “minibatch”) observation at a time:

xk+1 = xk − α∇fϕ(k)(xk).

ADAM optimizer: GD with exp. moving avgs. of ∇ and its square.
207

https://arxiv.org/abs/1412.6980

Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

(αk , βk) = argminαk ,βk

[
f
(
xk − αk∇f (xk) + βk(xk − xk−1)

)]
▶ Will see in more detail later (for solving linear systems)
▶ Provably optimal first-order method for the quadratic model

problem
▶ Turns out to be closely related to Lanczos (A-orthogonal search

directions)

Demo: Conjugate Gradient Method [cleared]

208

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Conjugate Gradient Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Conjugate Gradient Method.ipynb

Nelder-Mead Method

Idea:

Form a n-point polytope in n-dimensional space and adjust worst
point (highest function value) by moving it along a line passing
through the centroid of the remaining points.

Demo: Nelder-Mead Method [cleared]

209

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Nelder-Mead Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Nelder-Mead Method.ipynb

Newton’s method (n D)
What does Newton’s method look like in n dimensions?

Build a Taylor approximation:

f (x + s) ≈ f (x) +∇f (x)T s +
1
2
sTHf (x)s =: f̂ (s)

Then solve ∇f̂ (s) = 0 for s to find

Hf (x)s = −∇f (x).

1. x0 = ⟨some starting guess⟩
2. Solve Hf (xk)sk = −∇f (xk) for sk
3. xk+1 = xk + sk

210

Newton’s method (n D): Observations

Drawbacks?

▶ Need second (!) derivatives
(addressed by Conjugate Gradients, later in the class)

▶ local convergence
▶ Works poorly when Hf is nearly indefinite

Demo: Newton’s Method in n dimensions [cleared]

211

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Newton's Method in n dimensions.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Newton's Method in n dimensions.ipynb

Quasi-Newton Methods
Secant/Broyden-type ideas carry over to optimization. How?
Come up with a way to update to update the approximate Hessian.

xk+1 = xk − αkB
−1
k ∇f (xk)

▶ αk : a line search/damping parameter.
▶ sk = xk+1 − xk

▶ yk = ∇f (xk+1)−∇f (xk)

▶ Secant condition: Bk+1sk = yk

▶ Ansatz for Hessian update: Bk+1 = Bk + auuT + bvvT

BFGS: Secant-type method, similar to Broyden:

Bk+1 = Bk +
ykyT

k

yT
k sk

−
BksksTk Bk

sTk Bksk
212

In-Class Activity: Optimization Methods

In-class activity: Optimization Methods

213

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-optimization-methods/start

Nonlinear Least Squares: Setup
What if the f to be minimized is actually a 2-norm?

f (x) = ∥r(x)∥2 , r(x) = y − a(x)

Define ‘helper function’

φ(x) =
1
2
r(x)T r(x) =

1
2
f 2(x)

and minimize that instead.

∂

∂xi
φ =

1
2

n∑
j=1

∂

∂xi
[rj(x)2] =

∑
j

(
∂

∂xi
rj

)
rj ,

or, in matrix form:
∇φ = Jr (x)T r(x).

214

Gauss-Newton
For brevity: J := Jr (x).

Can show similarly:

Hφ(x) = JT J +
∑
i

riHri (x).

Newton step s can be found by solving Hφ(x)s = −∇φ.

Observation:
∑

i riHri (x) is inconvenient to compute and unlikely to
be large (since it’s multiplied by components of the residual, which is
supposed to be small) → forget about it.

Gauss-Newton method: Find step s by JT Js = −∇φ = −JT r(x).
Does that remind you of the normal equations? Js ∼= −r(x). Solve
that using our existing methods for least-squares problems.

215

Gauss-Newton: Observations?

Demo: Gauss-Newton [cleared]

Observations?

▶ Newton on its own is still only locally convergent
▶ Gauss-Newton is clearly similar
▶ It’s worse because the step is only approximate
→ Much depends on the starting guess.

216

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Gauss-Newton.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Gauss-Newton.ipynb

Levenberg-Marquardt

If Gauss-Newton on its own is poorly conditioned, can try
Levenberg-Marquardt:

(Jr (xk)
T Jr (xk)+µk I)sk = −Jr (xk)

T r(xk)

for a ‘carefully chosen’ µk . This makes the system matrix ‘more
invertible’ but also less accurate/faithful to the problem.

What Levenberg-Marquardt does is generically called regularization:
Make H more positive definite.
Easy to rewrite to least-squares problem:[

Jr (xk)√
µk I

]
sk ∼=

[
−r(xk)

0

]
.

217

Constrained Optimization: Problem Setup
Want x∗ so that

f (x∗) = min
x

f (x) subject to g(x) = 0

No inequality constraints just yet. This is equality-constrained
optimization. Develop a (local) necessary condition for a minimum.

Necessary cond.: “no feasible descent possible”. Assume g(x) = 0.

Recall unconstrained necessary condition, “no descent possible”:

∇f (x) = 0

Look for feasible descent directions from x . (Necessary cond.: ̸ ∃)

s is a feasible direction at x if

x + αs feasible for α ∈ [0, r] (for some r)

218

Constrained Optimization: Necessary Condition

Need: ∇f (x) · s ⩾ 0 (“uphill that way”) for any feasible direction s.
▶ Not at boundary: s and −s are feasible directions
⇒ ∇f (x) = 0
⇒ Only the boundary of the feasible set is different from the
unconstrained case (i.e. interesting)

▶ At boundary: (the common case) g(x) = 0. Need:

−∇f (x) ∈ rowspan(Jg)

a.k.a. “all descent directions would cause a change
(→violation) of the constraints.”
Q: Why ‘rowspan’? Think about shape of Jg .

⇔ −∇f (x) = JTg λ for some λ.

219

Lagrange Multipliers

Seen: Need −∇f (x) = JTg λ at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an unconstrained
optimization problem for (x ,λ). How?

Need a new function L(x ,λ) to minimize:

L(x ,λ) := f (x) + λTg(x).

220

Lagrange Multipliers: Development

L(x ,λ) := f (x) + λTg(x).

Then: ∇L = 0 at unconstrained minimum, i.e.

0 = ∇L =

[
∇xL
∇λL

]
=

[
∇f + Jg (x)Tλ

g(x)

]
.

Convenient: This matches our necessary condition!

So we could use any unconstrained method to minimized L.
For example: Using Newton to minimize L is called Sequential
Quadratic Programming. (‘SQP’)

Demo: Sequential Quadratic Programming [cleared]

221

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Sequential Quadratic Programming.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Sequential Quadratic Programming.ipynb

Inequality-Constrained Optimization
Want x∗ so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) ≤ 0.

Develop a necessary condition for a minimum.

Again: Assume we’re at a feasible point, on the boundary of the
feasible region. Must ensure descent directions are infeasible.

Motivation: g = 0 ⇔ two inequality constraints: g ≤ 0 ∧ g ≥ 0.

Consider the condition −∇f (x) = JTh λ2.
▶ Descent direction must start violating constraint.

But only one direction is dangerous here!
▶ −∇f : descent direction of f , ∇hi : ascent direction of hi
▶ If we assume λ2 > 0, going towards −∇f would increase h

(and start violating h ≤ 0)
222

Lagrangian, Active/Inactive
Put together the overall Lagrangian.

L(x ,λ1,λ2) := f (x) + λT
1 g(x) + λT

2 h(x)

What are active and inactive constraints?

▶ Active: active ⇔ hi (x∗) = 0⇔ at ‘boundary’ of ineq.
constraint
(Equality constrains are always ‘active’)

▶ Inactive: If hi inactive (hi (x∗) < 0), must force λ2,i = 0.
Otherwise: Behavior of h could change location of minimum of
L. Use complementarity condition hi (x∗)λ2,i = 0.
⇔ at least one of hi (x∗) and λ2,i is zero.

223

Karush-Kuhn-Tucker (KKT) Conditions
Develop a set of necessary conditions for a minimum.

Assuming Jg and Jh,active have full rank, this set of conditions is
necessary:

(∗) ∇xL(x∗,λ∗
1,λ

∗
2) = 0

(∗) g(x∗) = 0
h(x∗) ≤ 0

λ2 ⩾ 0
(∗) h(x∗) · λ2 = 0

These are called the Karush-Kuhn-Tucker (‘KKT’) conditions.

Computational approach: Solve (∗) equations by Newton.

224

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation
Introduction
Methods
Error Estimation
Piecewise interpolation, Splines

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

225

Interpolation: Setup

Given: (xi)
N
i=1, (yi)

N
i=1

Wanted: Function f so that f (xi) = yi

How is this not the same as function fitting? (from least squares)

It’s very similar–but the key difference is that we are asking for exact
equality, not just minimization of a residual norm.
→ Better error control, error not dominated by residual

Idea: There is an underlying function that we are approximating from
the known point values.

Error here: Distance from that underlying function

226

Interpolation: Setup (II)

Given: (xi)
N
i=1, (yi)

N
i=1

Wanted: Function f so that f (xi) = yi

Does this problem have a unique answer?

No–there are infinitely many functions that satisfy the problem as
stated:

227

Interpolation: Importance

Why is interpolation important?

It brings all of calculus within range of numerical operations.
▶ Why?

Because calculus works on functions.
▶ How?

1. Interpolate (go from discrete to continuous)
2. Apply calculus
3. Re-discretize (evaluate at points)

228

Making the Interpolation Problem Unique

Limit the set of functions to span of an interpolation basis {φi}NFunc
i=1 :

pn−1(x) =

Nfunc∑
j=1

αjφj(x)

Interpolation becomes solving the linear system:

yi = pn−1(xi) =

Nfunc∑
j=1

αj φj(xi)︸ ︷︷ ︸
Vij

↔ Vα = y .

▶ Want unique answer: Pick Nfunc = N → V square.
▶ V is called the (generalized) Vandermonde matrix.
▶ V (coefficients) = (values at nodes).
▶ Can prescribe derivatives: Use φ′

j , f
′ in a row. (Hermite interp.)

229

Existence/Sensitivity
Solution to the interpolation problem: Existence? Uniqueness?

Equivalent to existence/uniqueness of the linear system

Sensitivity?

▶ Shallow answer: Simply consider the condition number of the
linear system

▶ ∥coefficients∥ does not suffice as measure of stability.
f (x) can be evaluated in many places. (f is interpolant.)

▶ Want: maxx∈[a,b] |f (x)| ≤ Λ∥y∥∞
▶ Λ: Lebesgue constant
▶ Λ depends on n and {xi}i

▶ Technically also depends on {ϕi}i
▶ But: same for all polynomial bases

230

Modes and Nodes (aka Functions and Points)
Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:
▶ Monomials 1, x , x2, x3, x4, . . .

▶ Functions that make V = I →
‘Lagrange basis’

▶ Functions that make V
triangular → ‘Newton basis’

▶ Splines (piecewise polynomials)
▶ Orthogonal polynomials
▶ Sines and cosines
▶ ‘Bumps’ (‘Radial Basis

Functions’)

Ideas for points:
▶ Equispaced
▶ ‘Edge-Clustered’ (so-called

Chebyshev/Gauss/. . . nodes)

Specific issues:
▶ Why not monomials on

equispaced points?
Demo: Monomial interpolation
[cleared]

▶ Why not equispaced?
Demo: Choice of Nodes for
Polynomial Interpolation
[cleared]

231

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Monomial interpolation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Monomial interpolation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb

Lagrange Interpolation
Find a basis so that V = I , i.e.

φj(xi) =

{
1 i = j ,

0 otherwise.

Start with simple example. Three nodes: x1, x2, x3

φ1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)

φ2(x) =
(x − x1) (x − x3)

(x2 − x1) (x2 − x3)

φ3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)

Numerator: Ensures φi zero at other nodes.
Denominator: Ensures φi (xi) = 1.

232

Lagrange Polynomials: General Form

φj(x) =

∏m
k=1,k ̸=j(x − xk)∏m
k=1,k ̸=j(xj − xk)

Write down the Lagrange interpolant for nodes (xi)
m
i=1 and values (yi)

m
i=1.

pm−1(x) =
m∑
j=1

yjφj(x)

233

Newton Interpolation
Find a basis so that V is triangular.

Easier to build than Lagrange, but: coefficient finding costs O(n2).

φj(x) =

j−1∏
k=1

(x − xk).

(At least) two possibilities for coefficent finding:
▶ Set up V , run forward substitution.
▶ Divided Differences (Wikipedia link)

Why not Lagrange/Newton?

Cheap to form, expensive to evaluate, expensive to do calculus on.

234

https://en.wikipedia.org/wiki/Divided_differences

Better conditioning: Orthogonal polynomials

What caused monomials to have a terribly conditioned Vandermonde?

Being close to linearly dependent.

What’s a way to make sure two vectors are not like that?

Orthogonality

But polynomials are functions!

235

Orthogonality of Functions

How can functions be orthogonal?

Need an inner product. Orthogonal then just means ⟨f , g⟩ = 0.

f · g =
n∑

i=1

figi = ⟨f , g⟩

⟨f , g⟩ =

∫ 1

−1
f (x)g(x)dx

236

Constructing Orthogonal Polynomials
How can we find an orthogonal basis?

Apply Gram-Schmidt to the monomials.

Demo: Orthogonal Polynomials [cleared] — Got: Legendre polynomials.
But how can I practically compute the Legendre polynomials?

→ DLMF: Chapter on orthogonal polynomials
▶ Three-term recurrence: (n + 1)Pn+1 = (2n + 1)xPn − nPn−1,

P0 = 1, P1 = x

▶ A whole zoo of polynomials there, depending on the weight
function w in the (generalized) inner product:

⟨f , g⟩ =
∫

w(x)f (x)g(x)dx .

237

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Orthogonal Polynomials.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Orthogonal Polynomials.ipynb
https://dlmf.nist.gov/18

Chebyshev Polynomials: Definitions

Three equivalent definitions:
▶ Result of Gram-Schmidt with weight 1/

√
1− x2. What is that weight?

1/ (Half circle), i.e. x2 + y2 = 1, with y =
√

1− x2

(Like for Legendre, you won’t exactly get the standard normalization if
you do this.)

▶ Tk(x) = cos(k cos−1(x))

▶ Tk(x) = 2xTk−1(x)− Tk−2(x) plus T0 = 1, T1 = x

238

Chebyshev Interpolation
What is the Vandermonde matrix for Chebyshev polynomials?

▶ Need to know the nodes to answer that
▶ The answer would be very simple if the nodes were cos(∗).
▶ So why not cos(equispaced)? Maybe

xi = cos

(
i

k
π

)
(i = 0, 1, . . . , k)

These are just the extrema (minima/maxima) of Tk .

Vij = cos

(
j cos−1

(
cos

(
i

k
π

)))
= cos

(
j
i

k
π

)
.

▶ Called the Discrete Cosine Transform (DCT)
▶ Matvec (and inverse!) available with O(N logN) cost (→ FFT)

239

Chebyshev Nodes

Might also consider roots (instead of extrema) of Tk :

xi = cos

(
2i − 1

2k
π

)
(i = 1 . . . , k).

Vandermonde for these (with Tk) can be applied in O(N logN) time, too.

Edge-clustering seemed like a good thing in interpolation nodes. Do these
do that?

Yes.

Demo: Chebyshev Interpolation [cleared] (Part I-IV)

240

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Chebyshev Interpolation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Chebyshev Interpolation.ipynb

Chebyshev Interpolation: Summary

▶ Chebyshev interpolation is fast and works extremely well
▶ http://www.chebfun.org/ and: ATAP
▶ In 1D, they’re a very good answer to the interpolation question
▶ But sometimes a piecewise approximation (with a specifiable level of

smoothness) is more suited to the application

241

http://www.chebfun.org/
http://www.chebfun.org/ATAP/

In-Class Activity: Interpolation

In-class activity: Interpolation

242

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-interpolation/start

Truncation Error in Interpolation
If f is n times continuously differentiable on a closed interval I and
pn−1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {xi} (i = 1, ..., n) in that interval, then for each x in the
interval there exists ξ in that interval such that

f (x)− pn−1(x) =
f (n)(ξ(x))

n!
(x − x1)(x − x2) · · · (x − xn).

Define the error R(x) := f (x)− pn−1(x) and an auxiliary function:

Yx(t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi).

▶ Let x ∈ I (where we prove the identity) with x ̸= xi for
i ∈ {1, . . . , n} (WLOG).

▶ Note the introduction of the additional variable t. 243

Truncation Error in Interpolation: cont’d.

Yx(t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi)

▶ Since xi are roots of R(t) and W (t), we have
Yx(x) = Yx(xi) = 0, which means Yx has at least n + 1 roots.

▶ From Rolle’s theorem, Y ′
x(t) has at least n roots, then Y

(n)
x

has at least one root ξ, where ξ ∈ I .
▶ Since pn−1(x) is a polynomial of degree at most n − 1,

R(n)(t) = f (n)(t). Thus

Y
(n)
x (t) = f (n)(t)− R(x)

W (x)
n!.

▶ Plugging Y
(n)
x (ξ) = 0 into the above yields the result.

244

Error Result: Connection to Chebyshev
What is the connection between the error result and Chebyshev
interpolation?

▶ The error bound suggests choosing the interpolation nodes
such that the product |

∏n
i=1(x − xi)| is as small as possible.

The Chebyshev nodes achieve this.
▶ If nodes are edge-clustered,

∏n
i=1(x − xi) clamps down the

(otherwise quickly-growing) error there.
▶ Confusing: Chebyshev approximating polynomial (or

“polynomial best-approximation”). Not the Chebyshev
interpolant.

▶ Chebyshev nodes also do not minimize the Lebesgue constant.

Demo: Chebyshev Interpolation [cleared] (Part V)

245

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Chebyshev Interpolation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Chebyshev Interpolation.ipynb

Error Result: Simplified Form
Boil the error result down to a simpler form.

Assume x1 < · · · < xn.
▶
∣∣f (n)(x)∣∣ ≤ M for x ∈ [x1,xn],

▶ Set the interval length h = xn − x1.
Then |x − xi | ≤ h.

Altogether–there is a constant C independent of h so that:

max
x
|f (x)− pn−1(x)| ≤ CMhn.

For the grid spacing h → 0, we have E (h) = O(hn). This is called
convergence of order n.

▶ Demo: Interpolation Error [cleared]
▶ Demo: Jump with Chebyshev Nodes [cleared]

246

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Interpolation Error.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Interpolation Error.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/interpolation/Jump with Chebyshev Nodes.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Jump with Chebyshev Nodes.ipynb

Going piecewise: Simplest Case

Construct a pieceweise linear interpolant at four points.

x0, y0 x1, y1 x2, y2 x3, y3

f1 = a1x + b1	f2 = a2x + b2	f3 = a3x + b3
2 unk.	2 unk.	2 unk.
f1(x0) = y0	f2(x1) = y1	f3(x2) = y2
f1(x1) = y1	f2(x2) = y2	f3(x3) = y3
2 eqn.	2 eqn.	2 eqn.

Why three intervals?

General situation → two end intervals and one middle interval. Can
just add more middle intervals if needed.

247

Piecewise Cubic (‘Splines’)
x0, y0 x1, y1 x2, y2 x3, y3

| f1 | f2 | f3 |
| a1x

3 + b1x
2 + c1x + d1 | a2x

3 + b2x
2 + c2x + d2 | a3x

3 + b3x
2 + c3x + d3 |

4 unknowns 4 unknowns 4 unknowns
f1(x0) = y0 f2(x1) = y1 f3(x2) = y2
f1(x1) = y1 f2(x2) = y2 f3(x3) = y3

Not enough: need more conditions. Ask for more smoothness.
f ′1(x1) = f ′2(x1) f ′2(x2) = f ′3(x2)
f ′′1 (x1) = f ′′2 (x1) f ′′2 (x2) = f ′′3 (x2)

Not enough: need yet more conditions.
f ′′1 (x0) = 0 f ′′3 (x3) = 0

Now: have a square system.

248

Piecewise Cubic (‘Splines’): Accounting
x0, y0 x1, y1 x2, y2 x3, y3

| f1 | f2 | f3 |
| a1x

3 + b1x
2 + c1x + d1 | a2x

3 + b2x
2 + c2x + d2 | a3x

3 + b3x
2 + c3x + d3 |

Number of conditions: 2Nintervals + 2Nmiddle nodes + 2 where

Nintervals − 1 = Nmiddle nodes

so
2Nintervals + 2(Nintervals − 1) + 2 = 4Nintervals,

which is exactly the number of unknown coefficients.

These conditions are fairly arbitrary: Can choose different ones basi-
cally at will. The above choice: ‘natural spline’.

Can also come up with a basis of spline functions (with the chosen
smoothness conditions). These are called B-Splines.

249

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation
Numerical Integration
Quadrature Methods
Accuracy and Stability
Gaussian Quadrature
Composite Quadrature
Numerical Differentiation
Richardson Extrapolation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

250

Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)

Given a, b, f , approximate ∫ b

a
f (x)dx .

What about existence and uniqueness?

▶ Answer exists e.g. if f is integrable in the Riemann or Lebesgue
senses.

▶ Answer is unique if f is e.g. piecewise continuous and bounded.
(this also implies existence)

251

Conditioning

Derive the (absolute) condition number for numerical integration.

Let f̂ (x) := f (x) + e(x), where e(x) is a perturbation.

∣∣∣∣∫ b

a
f (x)dx −

∫ b

a
f̂ (x)dx

∣∣∣∣
=

∣∣∣∣∫ b

a
e(x)dx

∣∣∣∣ ≤ ∫ b

a
|e(x)| dx ≤ (b − a) max

x∈[a,b]
|e(x)| .

252

Interpolatory Quadrature: Examples

Example: Fix (xi). Then f (x) ≈ pn−1(x) =
∑

i f (xi)ℓi (x), where
ℓi (x) is the Lagrange polynomial for the node xi . Then∫ b

a
f (x)dx ≈

∑
i

f (xi)

∫ b

a
ℓi (x)dx︸ ︷︷ ︸
ωi

.

→ a computational recipe (“quadrature rule”) applicable to any f :∫ b

a
f (x)dx ≈

∑
i

f (xi)ωi .

xi : quadrature nodes, ωi : quadrature weights.
▶ Equispaced nodes: Newton-Cotes quadrature.
▶ Chebyshev nodes: Clenshaw-Curtis quadrature.

253

Interpolatory Quadrature: Computing Weights
How do the weights in interpolatory quadrature get computed?

Done by solving linear system.
Know: This quadrature should at least integrate monomials exactly.

b − a =

∫ b

a
1dx = ω1 · 1 + · · ·+ ωn · 1

...
1

k + 1
(bk+1 − ak+1) =

∫ b

a
xkdx = ω1 · xk1 + · · ·+ ωn · xkn

Write down n equations for n unknowns, solve linear system, done.

This is called the method of undetermined coefficients.

Demo: Newton-Cotes weight finder [cleared] 254

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Newton-Cotes weight finder.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Newton-Cotes weight finder.ipynb

Examples and Exactness
To what polynomial degree are the following rules exact?

Midpoint rule (b − a)f
(
a+b
2

)
Trapezoidal rule b−a

2 (f (a) + f (b))

Simpson’s rule b−a
6

(
f (a) + 4f

(
a+b
2

)
+ f (b)

) parabola

Midpoint: technically 0 (constants), actually 1 (linears)
Trapezoidal: 1 (linears)
Simpson’s: technically 2 (parabolas), actually 3 (cubics)
▶ Cancellation of odd-order error requires symmetric nodes.
▶ (trapz.−midpt.) usable as (“a-posteriori”) error estimate.

255

Interpolatory Quadrature: Accuracy
Let pn−1 be an interpolant of f at nodes x1, . . . , xn (of degree n − 1)
Recall ∑

i

ωi f (xi) =

∫ b

a
pn−1(x)dx .

What can you say about the accuracy of the method?

Notation: ∥f ∥∞ = maxx∈[a,b] |f (x)|∣∣∣∣∫ b

a
f (x)dx −

∫ b

a
pn−1(x)dx

∣∣∣∣
≤

∫ b

a
|f (x)− pn−1(x)| dx

≤ (b − a) ∥f − pn−1∥∞
(using interp. error) ≤ C (b − a)hn

∥∥∥f (n)∥∥∥
∞
≤ Chn+1

∥∥∥f (n)∥∥∥
∞

256

Quadrature: Overview of Rules
n Deg. Ex.Int.Deg.

(w/odd)
Intp.Ord. Quad.Ord.

(regular)
Quad.Ord.
(w/odd)

n − 1 (n−1)+1odd n n + 1 (n+1)+1odd
Midp. 1 0 1 1 2 3
Trapz. 2 1 1 2 3 3
Simps. 3 2 3 3 4 5
S. 3/8 4 3 3 4 5 5
▶ n: number of points
▶ “Deg.”: Degree of polynomial used in interpolation (= n − 1)
▶ “Ex.Int.Deg.”: Polynomials of up to (and including) this degree actually get

integrated exactly. (including the odd-order bump)
▶ “Intp.Ord.”: Order of Accuracy of Interpolation: O(hn)

▶ “Quad.Ord. (regular)”: Order of accuracy for quadrature predicted by the error
result above: O(hn+1)

▶ “Quad.Ord. (w/odd):” Actual order of accuracy for quadrature given ‘bonus’
degrees for rules with odd point count

Observation: Quadrature gets (at least) ‘one order higher’ than interpolation–even more
for odd-order rules. (i.e. more accurate)
Demo: Accuracy of Newton-Cotes [cleared]

257

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Accuracy of Newton-Cotes.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Accuracy of Newton-Cotes.ipynb

Interpolatory Quadrature: Stability
Let pn−1 be an interpolant of f at nodes x1, . . . , xn (of degree n − 1)
Recall ∑

i

ωi f (xi) =

∫ b

a
pn−1(x)dx

What can you say about the stability of this method?

Again consider f̂ (x) = f (x) + e(x).∣∣∣∣∣∑
i

ωi f (xi)−
∑
i

ωi f̂ (xi)

∣∣∣∣∣ ≤∑
i

|ωie(xi)| ≤

(∑
i

|ωi |

)
∥e∥∞

So, what quadrature weights make for bad stability bounds?

Quadratures with large negative weights. (Recall:
∑

i ωi is fixed.)

258

About Newton-Cotes

What’s not to like about Newton-Cotes quadrature?
Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)

In fact, Newton-Cotes must have at least one negative weight as soon
as n ⩾ 11.

More drawbacks:
▶ All the fun of high-order interpolation with monomials and

equispaced nodes (i.e. convergence not guaranteed)
▶ Weights possibly non-negative (→stability issues)
▶ Coefficients determined by (possibly ill-conditioned)

Vandermonde matrix
▶ Thus hard to extend to arbitrary number of points.

259

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Newton-Cotes weight finder.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Newton-Cotes weight finder.ipynb

Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes,
too? Hope: More design freedom → Exact to higher degree.

Idea: method of undetermined coefficients
But: Resulting system would be nonlinear.

Can use orthogonal polynomials to get a leg up.
Gaussian quadrature with n points: Exactly integrates polynomials
up to degree 2n − 1.

Demo: Gaussian quadrature weight finder [cleared]

260

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Gaussian quadrature weight finder.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Gaussian quadrature weight finder.ipynb

Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness
of the function.
Idea: Stitch together multiple lower-order quadrature rules to alleviate
smoothness requirement.

e.g. trapezoidal

261

Error in Composite Quadrature

What can we say about the error in the case of composite quadrature?

Error for one panel of length h:
∣∣∫ (f − pn−1)

∣∣ ≤ C · hn+1
∥∥f (n)∥∥∞∣∣∣∣∣∣

∫ b

a
f (x)dx −

m∑
j=1

n∑
i=1

ωj ,i f (xj ,i)

∣∣∣∣∣∣ ≤ C
∥∥∥f (n)∥∥∥

∞

m∑
j=1

(aj − aj−1)
n+1

= C
∥∥∥f (n)∥∥∥

∞

m∑
j=1

(aj − aj−1)
n︸ ︷︷ ︸

≤hn

(aj − aj−1) ≤ C
∥∥∥f (n)∥∥∥

∞
hn(b − a),

where h is the length of a single panel.

262

Composite Quadrature: Notes

Observation: Composite quadrature loses an order compared to
non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by
splitting in half) only those contributing the most to the error.
(adaptivity)

263

Taking Derivatives Numerically

Why shouldn’t you take derivatives numerically?

▶ ‘Unbounded’
A function with small ∥f ∥∞ can have arbitrarily large ∥f ′∥∞

▶ Amplifies noise
Imagine a smooth function perturbed by small, high-frequency
wiggles

▶ Subject to cancellation error
▶ Inherently less accurate than integration

▶ Interpolation: hn

▶ Quadrature: hn+1

▶ Differentiation: hn−1

(where n is the number of points)

264

Numerical Differentiation: How?
How can we take derivatives numerically?

Let x = (xi)
n
i=1 be nodes and (φi)

n
i=1 an interpolation basis.

Find interpolation coefficients α = (αi)
n
i=1 = V−1f (x). Then

f (ξ) ≈ pn−1(ξ) =
n∑

i=1

αiφi (ξ).

Then, simply take a derivative:

f ′(ξ) ≈ p′n−1(ξ) =
n∑

i=1

αiφ
′
i (ξ).

φ′
i are known because the interpolation basis φi is known!

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Basics)
265

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb

Numerical Differentiation: Accuracy

Interpolation error: If x = (xi)
n
i=1 and f (x) = pn−1(x), then

f (x)− pn−1(x) =
f (n)(ξ)

n!

n∏
i=1

(x − xi).

f ′(x)− p′n−1(x) ≈
f (n)(ξ)

n!

(
n∏

i=1

(x − xi)

)′

.

(ignoring dependency of ξ on x) Note that the derivative of
∏
(x−xi)

has n − 1 roots (extrema of
∏
(x − xi)), interspersed between (xi),

so can be bounded by hn−1:∣∣f ′(x)− pn−1(x)
∣∣ ⩽ C

∥∥∥f (n)∥∥∥
∞
hn−1.

Demo: Taking Derivatives with Vandermonde Matrices [cleared]
(Accuracy)

266

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb

Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?

Let

V ′ =

φ
′
1(x1) · · · φ′

n(x1)
...

. . .
...

φ′
1(xn) · · · φ′

n(xn)

 .
Then altogether:

f ′(x) ≈ pn−1(x) = V ′α = V ′V−1f (x).

So D = V ′V−1 acts as a differentiation matrix.

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)

267

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb

Properties of Differentiation Matrices

How do I find second derivatives?

D2.

Does D have a nullspace?

▶ Yes, constant vectors.
(At least for polynomial interpolation bases.)

▶ I.e. rows of differentiation matrices always sum to 0.

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Shifting
and scaling the nodes)

268

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb

Numerical Differentiation: Shift and Scale
Does D change if we shift the nodes (xi)

n
i=1 → (xi + c)ni=1?

Let f̃ (x) = f (x − c). Define p̃n−1 via p̃n−1(x + c) = f̃ (x + c). Then
p̃n−1(x) = pn−1(x − c) for all x because polynomial bases of degree
⩽ n−1 are closed under translation, i.e. a shifted basis again consists
of polynomials of degree ⩽ n − 1. Thus p̃′n−1(x + c) = p′n−1(x).
In other words, Dx = Dx+c .

Does D change if we scale the nodes (xi)
n
i=1 → (αxi)

n
i=1?

Let f̃ (x) = f (x/α). Define p̃n−1 via p̃n−1(αx) = f̃ (αx). Then
p̃n−1(x) = pn−1(x/α) for all x because polynomial bases of degree
⩽ n − 1 are closed under dilation, i.e. a dilated basis again consists
of polynomials of degree ⩽ n − 1. Thus p̃′n−1(αx) = p′n−1(x)/α. In
other words, Dαx = Dx/α.

269

Finite Difference Formulas from Diff. Matrices
How do the rows of a differentiation matrix relate to FD formulas?

Let D = (di ,j)
n
i ,j=1. Then f ′(xi) ≈

n∑
j=1

di ,j f (xj).

For example, if D is 3× 3, then . . .
▶ first row: f ′(x1) ≈ d1,1f (x1) + d1,2f (x2) + d1,3f (x3),
▶ second row: f ′(x2) ≈ d2,1f (x1) + d2,2f (x2) + d2,3f (x3), . . .

Assume a large equispaced grid and 3 nodes w/same spacing. How to use?

▶ First-row formula for left boundary,
▶ second-row formula for interior grid points,
▶ third-row formula for right boundary.

270

Finite Differences: via Taylor

Idea: Start from definition of derivative. Called a forward difference.

f ′(x) ≈ f (x + h)− f (x)

h

Q: What accuracy does this achieve?
Using Taylor:

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2
+ · · ·

Plug in:

f (x) + f ′(x)h + f ′′(x)h
2

2 + · · · − f (x)

h
= f ′(x) + O(h)

→ first order accurate.
271

More Finite Difference Rules

Similarly:

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2)

(Centered differences)

Can also take higher order derivatives:

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2 + O(h2)

Can find these by trying to match Taylor terms.
Alternative: Use linear algebra with interpolate-then-differentiate to find
FD formulas.
Demo: Finite Differences vs Noise [cleared]
Demo: Floating point vs Finite Differences [cleared]

272

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Finite Differences vs Noise.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Finite Differences vs Noise.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Floating point vs Finite Differences.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Floating point vs Finite Differences.ipynb

Richardson Extrapolation
Deriving high-order methods is hard work. Can I just do multiple low-order
approximations (with different h and get a high-order one out?

Suppose we have F = F̃ (h) + O(hp) and F̃ (h1) and F̃ (h2).

Grab one more term of the Taylor series: F = F̃ (h) + ahp + O(hq)
Typically: q = p + 1 (but not necessarily). Do not know a.

Idea: Construct new approximation with the goal of O(hq) accuracy:

F = αF̃ (h1) + βF̃ (h2) + O(hq)

▶ Need αahp1 + βahp2 = 0
▶ Need α+ β = 1 (⇔ β = 1− α) (maintain low-order terms!)

α(hp1 − hp2) + 1hp2 = 0 ⇔ α =
−hp2

hp1 − hp2
273

Richardson Extrapolation: Observations,

What are α and β for a first-order (e.g. finite-difference) method if we
choose h2 = h1/2?

p = 1.

α =
−hp2

hp1 − hp2
=
−1

2

1− 1
2
= −1, β = 1− α = 2.

Demo: Richardson with Finite Differences [cleared]

274

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Richardson with Finite Differences.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Richardson with Finite Differences.ipynb

Romberg Integration

Can this be used to get even higher order accuracy?

e.g. 1st 2nd 3rd 4th

order accurate

Carrying out this process for quadrature is called Romberg integration.

275

In-Class Activity: Differentiation and Quadrature

In-class activity: Differentiation and Quadrature

276

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-quadrature/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods (I)
Accuracy and Stability
Stiffness
Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

277

What can we solve already?

▶ Linear Systems: yes
▶ Nonlinear systems: yes
▶ Systems with derivatives: no

278

Some Applications

IVPs BVPs

▶ Population dynamics
y ′1 = y1(α1 − β1y2) (prey)
y ′2 = y2(−α2 + β2y1)
(predator)

▶ chemical reactions
▶ equations of motion

▶ bridge load
▶ pollutant concentration

(steady state)
▶ temperature

(steady state)
▶ waves

(time-harmonic)

Demo: Predator-Prey System [cleared]

279

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/ivp_odes/Predator-Prey System.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/ivp_odes/Predator-Prey System.ipynb

Initial Value Problems: Problem Statement
Want: Function y : [0,T]→ Rn so that
▶ y (k)(t) = f (t, y , y ′, y ′′, . . . , y (k−1)) (explicit), or
▶ f (t, y , y ′, y ′′, . . . , y (k)) = 0 (implicit)

are called explicit/implicit kth-order ordinary differential equations (ODEs).
Give a simple example.

y ′(t) = αy

Not uniquely solvable on its own. What else is needed?

Initial conditions. (Q: How many?)

y(0) = g0, y ′(0) = g1, . . . y (k−1)(0) = gk−1.

Boundary Value Problems (BVPs) trade some derivatives for condi-
tions at the ‘other end’.

280

Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this
example:

y ′′(t) = f (y)

In first-order form: [
y1
y2

]′
(t) =

[
y2(t)

f (y1(t))

]
Because:

y ′′1 (t) = (y ′1(t))
′ = y ′2(t) = f (y1(t)).

So we can design our methods to only handle first-order problems.

281

Properties of ODEs

What is a linear ODE?

f (t, x) = A(t)x + b(t)

What is a linear and homogeneous ODE?

f (t, x) = A(t)x

What is a constant-coefficient ODE?

f (t, x) = Ax + b

282

Properties of ODEs (II)

What is an autonomous ODE?

One in which the function f does not depend on time t.
An ODE can made autonomous by introducing an extra variable:

y ′0(t) = 1, y0(0) = 0.

→ Without loss of generality: Get rid of explicit t dependency.

283

Existence and Uniqueness
Consider the perturbed problem{

y ′(t) = f (y)
y(t0) = y0

{
ŷ ′(t) = f (ŷ)
ŷ(t0) = ŷ0

Then if f is Lipschitz continuous (has ‘bounded slope’), i.e.

∥f (y)− f (ŷ)∥ ≤ L ∥y − ŷ∥ ,

▶ there exists a solution y in a neighborhood of t0, and. . .
▶ ∥y(t)− ŷ(t)∥ ≤ eL(t−t0) ∥y0 − ŷ0∥
▶ This is the Picard-Lindelöf theorem.

What does this mean for uniqueness?

It implies uniqueness. If there were two separate solutions with iden-
tical initial values, they are not allowed to be different.

284

Conditioning
Unfortunate terminology accident: “Stability” in ODE-speak
To adapt to conventional terminology, we will use ‘Stability’ for
▶ the conditioning of the IVP, and
▶ the stability of the methods we cook up.

Some terminology:

An IVP is stable if and only if. . .

The solution is continously dependent on the initial condition, i.e.
For all ε > 0 there exists a δ > 0 so that

∥ŷ0 − y0∥ < δ ⇒ ∥ŷ(t)− y(t)∥ < ε for all t ⩾ t0.

An IVP is asymptotically stable if and only if

∥ŷ(t)− y(t)∥ → 0 (t →∞).
285

Example I: Scalar, Constant-Coefficient{
y ′(t) = λy
y(0) = y0

where λ = a+ ib

Solution?

y(t) = y0e
λt = y0(e

at · e ibt)

When is this stable?

Re(λ) > 0:

t

|y(t)|

Unstable

Re(λ) = 0:

t

|y(t)|

Stable, not asympt.
stable

Re(λ) < 0:

t

|y(t)|

Asymptotically
stable

286

Example II: Constant-Coefficient System{
y ′(t) = Ay(t)
y(t0) = y0

Assume V−1 AV = D = diag(λ1, . . . , λn) diagonal. Find a solution.

Define w(t) := V−1y(t). Then

w ′(t) = V−1y ′(t) = V−1Ay(t) = V−1 AVw(t) = Dw(t).

Now: n decoupled IVPs (with w0 = V−1y0) → Solve as scalar.
Find y(t) = Vw(t).

When is this stable?

When Reλi ≤ 0 for all eigenvalues λi .

287

Euler’s Method

Discretize the IVP {
y ′(t) = f (y)
y(t0) = y0

▶ Discrete times: t1, t2, . . ., with ti+1 = ti + h

▶ Discrete function values: yk ≈ y(tk).

Idea: Rewrite the IVP in integral form:

y(t) = y0 +

∫ t

t0

f (y(τ))dτ,

then throw a simple quadrature rule at that. With the rectangle rule,
we obtain Euler’s method.

288

Euler’s method: Forward and Backward

y(t) = y0 +

∫ t

t0

f (y(τ))dτ,

Use ‘left rectangle rule’ on integral:

yk+1 = yk + hf (yk)

Requires evaluating the RHS. Called an explicit method. Forward
Euler.

Use ‘right rectangle rule’ on integral:

yk+1 = yk + hf (yk+1)

Requires solving a system of equations. Called an implicit method.
Backward Euler.

Demo: Forward Euler stability [cleared] 289

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/ivp_odes/Forward Euler stability.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/ivp_odes/Forward Euler stability.ipynb

Global and Local Error

local error global error

Let uk(t) be the function that solves the ODE with the initial condition
uk(tk) = yk . Define the local error at step k as. . .

ℓk = yk − uk−1(tk)

Define the global error at step k as. . .

gk = y(tk)− yk

290

About Local and Global Error
Is global error =

∑
local errors?

No.
Consider an analogy with interest rates–at any given moment, you
receive 5% interest (∼ incur 5%error) on your current balance.
But your current balance includes prior interest (error from prior
steps), which yields more interest (in turn contributes to the error).

This contribution to the error is called propagated error.
The local error is much easier to estimate → will focus on that.

A time integrator is said to be accurate of order p if. . .

ℓk = O(hp+1)

291

ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if ℓk = O(hp+1)

This requirement is one order higher than one might expect–why?

A: To get to time 1, at least 1/h steps need to be taken, so that the
global error is roughly

1
h︸︷︷︸

#steps

·O(hp+1) = O(hp).

(Note that this ignores ‘accrual’ of propagated error.)

292

Stability of a Method
Find out when forward Euler is stable when applied to y ′(t) = λy(t).

yk = yk−1 + hλyk−1

= (1 + hλ)yk−1

= (1 + hλ)ky0

So: stable ⇔ |1 + hλ| ≤ 1.
|1 + hλ| is also called the amplification factor.
Gives rise to the stability region in the complex plane:

293

Stability: Systems

What about stability for systems, i.e.

y ′(t) = Ay(t)?

1. Diagonalize system as before
2. Notice that same V also diagonalizes the time stepper
3. apply scalar analysis to components.
→ Stable if |1 + hλi | ≤ 1 for all eigenvalues λi .

294

Stability: Nonlinear ODEs

What about stability for nonlinear systems, i.e.

y ′(t) = f (y(t))?

Consider perturbation e(t) = y(t)− ŷ(t). Linearize:

e ′(t) = f (y(t))− f (ŷ(t)) ≈ Jf (y(t))e(t)

I.e. can (at least locally) apply analysis for linear systems to the
nonlinear case.

295

Stability for Backward Euler
Find out when backward Euler is stable when applied to y ′(t) = λy(t).

yk = yk−1 + hλyk

yk(1− hλ) = yk−1

yk =
1

1− hλ
yk−1 =

(
1

1− hλ

)k

y0.

So: stable ⇔ |1− hλ| ⩾ 1.

In particular: stable for any h if ℜλ ≤ 0 (“unconditionally stable”).

BE can be stable even when ODE is unstable. (Reλ > 0). Accuracy?
▶ Explicit methods: main concern in choosing h is stability (but

also accuracy).
▶ Implicit methods: main concern in chosing h is accuracy.

Demo: Backward Euler stability [cleared] 296

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/ivp_odes/Backward Euler stability.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/ivp_odes/Backward Euler stability.ipynb

Stiff ODEs: Demo

Demo: Stiffness [cleared]

297

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/ivp_odes/Stiffness.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/ivp_odes/Stiffness.ipynb

‘Stiff’ ODEs

▶ Stiff problems have multiple time scales.
(In the example above: Fast decay, slow evolution.)

▶ In the case of a stable ODE system

y ′(t) = f (y(t)),

stiffness can arise if Jf has eigenvalues of very different magnitude.

298

Stiffness: Observations

Why not just ‘small’ or ‘large’ magnitude?

Because the discrepancy between time scales is the root of the prob-
lem. If all time scales are similar, then time integration must simply
‘deal with’ that one time scale.
If there are two, then some (usually the fast ones) may be considered
uninteresting.

What is the problem with applying explicit methods to stiff problems?

Fastest time scale governs time step → tiny time step → inefficient.

299

Stiffness vs. Methods

Phrase this as a conflict between accuracy and stability.

▶ Accuracy (here: capturing the slow time scale) could be
achieved with large time steps.

▶ Stability (in explicit methods) demands a small time step.

Can an implicit method take arbitrarily large time steps?

In terms of stability: sure.
In terms of accuracy: no.

300

Predictor-Corrector Methods

Idea: Obtain intermediate result, improve it (with same or different
method).

For example:
1. Predict with forward Euler: ỹk+1 = yk + hf (yk)

2. Correct with the trapezoidal rule:
yk+1 = yk +

h
2 (f (yk) + f (ỹk+1)).

This is called Heun’s method.

301

Runge-Kutta/‘Single-step’/‘Multi-Stage’ Methods
Idea: Compute intermediate ‘stage values’, compute new state from those:

r1 = f (tk + c1h, yk + (a11 · r1 + · · ·+ a1s · rs)h)
...

...
rs = f (tk + csh, yk + (as1 · r1 + · · ·+ ass · rs)h)

yk+1 = yk + (b1 · r1 + · · ·+ bs · rs)h

Can summarize in a Butcher tableau:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

302

Runge-Kutta: Properties
When is an RK method explicit?

If the diagonal entries in the Butcher tableau and everything above
it are zero.

When is it implicit?

(Otherwise)

When is it diagonally implicit? (And what does that mean?)

If the everything above the diagonal entries in the Butcher tableau is
zero.
This means that one can solve for one stage value at a time (and not
multiple).

303

Runge-Kutta: Embedded Pairs
How can error in RK integration be controlled?

Most of the cost is in computing stage values r1, . . . , rs . Reuse for a
second (order p∗ accurate) state estimate:

yk+1 = yk + (b1 · r1 + · · ·+ bs · rs)h
y∗k+1 = yk + (b∗1 · r1 + · · ·+ bs

∗ · rs)h

|yk+1 − y∗k+1| can serve as an estimate of local error ℓk+1, e.g. for
time step control. Called an embedded pair.

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
p b1 · · · bs
p∗ b∗1 · · · b∗s

304

Heun and Butcher

Stuff Heun’s method into a Butcher tableau:
1. ỹk+1 = yk + hf (yk)

2. yk+1 = yk +
h
2 (f (yk) + f (ỹk+1)).

0
1 1

1
2

1
2

305

RK4

What is RK4?

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Note similarity to
Simpson’s rule!

k1 = f (tn, yn),

k2 = f

(
tn +

h

2
, yn + h

k1

2

)
,

k3 = f

(
tn +

h

2
, yn + h

k2

2

)
,

k4 = f (tn + h, yn + hk3)

yn+1 = yn +
1
6
h (k1 + 2k2 + 2k3 + k4) ,

Demo: Dissipation in Runge-Kutta Methods [cleared]

306

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/ivp_odes/Dissipation in Runge-Kutta Methods.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/ivp_odes/Dissipation in Runge-Kutta Methods.ipynb

Multi-step/Single-stage/Adams Methods/Backward Differencing
Formulas (BDFs)

Idea: Instead of computing stage values, use history (of either values of f
or y–or both):

yk+1 =
M∑
i=1

αiyk+1−i + h
N∑
i=1

βi f (yk+1−i)

Extensions to implicit possible.

Method relies on existence of history. What if there isn’t any? (Such as at
the start of time integration?)

These methods are not self-starting.
Need another method to produce enough history.

307

Stability Regions

Why does the idea of stability regions still apply to more complex time
integrators (e.g. RK?)

As long as the method doesn’t “treat individual vector entries spe-
cially”, a matrix that diagonalizes the ODE also diagonalizes the time
integrator.
⇒ Can consider stability one eigenvalue at a time.

Demo: Stability regions [cleared]

308

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/ivp_odes/Stability regions.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/ivp_odes/Stability regions.ipynb

More Advanced Methods

Discuss:
▶ What is a good cost

metric for time
integrators?

▶ AB3 vs RK4
▶ Runge-Kutta-Chebyshev
▶ LSERK and AB34
▶ IMEX and multi-rate
▶ Parallel-in-time

(“Parareal”) 4 2 0
Re h

2

0

2

Im

h

ab3
ab34
lserk
rk4

309

https://doi.org/10.1016/S0168-9274(99)00141-5
https://arxiv.org/abs/1805.06607
https://doi.org/10.1007/978-3-642-56118-4_12

In-Class Activity: Initial Value Problems

In-class activity: Initial Value Problems

310

https://relate.cs.illinois.edu/course/cs450-f24//flow/inclass-ivp/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

311

BVP Problem Setup: Second Order

Example: Second-order linear ODE

u′′(x) + p(x)u′(x) + q(x)u(x) = r(x)

with boundary conditions (‘BCs’) at a:
▶ Dirichlet u(a) = ua
▶ or Neumann u′(a) = va
▶ or Robin αu(a) + βu′(a) = wa

and the same choices for the BC at b.

Note: BVPs in time are rare in applications, hence x (not t) is typically
used for the independent variable.

312

BVP Problem Setup: General Case
ODE:

y ′(x) = f (y(x)) f : Rn → Rn

BCs:
g(y(a), y(b)) = 0 g : R2n → Rn

(Recall the rewriting procedure to first-order for any-order ODEs.)

Does a first-order, scalar BVP make sense?

No–need second order (or n ⩾ 2) to allow two boundary conditions.

Example: Linear BCs Bay(a) + Bby(b) = c .
Is this Dirichlet/Neumann/. . . ?

Could be any–we’re in the system case, and Ba and Bb are matrices–
so conditions could be ony any component.

313

Do solutions even exist? How sensitive are they?
General case is harder than root finding, and we couldn’t say much there.
→ Only consider linear BVP.

(∗)

{
y ′(x) = A(x)y(x) + b(x)
Bay(a) + Bby(b) = c

Exploit linearity: split into multiple problems.

Split into boundary (B) and volume (V) parts.

(B)

{
y ′
B(x) = A(x)yB(x)

BayB(a) + BbyB(b) = c

(V)

{
y ′
V (x) = A(x)yV (x) + b(x)

BayV (a) + BbyV (b) = 0

Then y = yB + yV .
314

Solving the “Boundary” BVP

(B)

{
y ′
B(x) = A(x)yB(x)

BayB(a) + BbyB(b) = c

y ′
B,i (x) = A(x)yB,i (x), yB,i (a) = e i . (i = 1, . . . , n)

e i is the ith unit vector. Define fundamental sol. matrix:

Y (x) =

 | |
yB,1 · · · yB,n

| |

Let Q := BaY (a) + BbY (b). (∗) has a unique solution ⇔ Q is
invertible. Solve Qα = c to find coefficients: Y (x)α solves (B).
Define Φ(x) := Y (x)Q−1. Φ(x)c also solves (B).

315

Solving the “Volume” BVP

(V)

{
y ′
V (x) = A(x)yV (x) + b(x)

BayV (a) + BbyV (b) = 0

Define Green’s function

G (x , z) :=

{
Φ(x)BaΦ(a)Φ

−1(z) z ≤ x ,

−Φ(x)BbΦ(b)Φ
−1(z) z > x .

Then

yV (x) =

∫ b

a
G (x , y)b(z)dz

solves (V).

316

ODE Systems: Conditioning

Altogether:

y(x) = yB + yV = Φ(x)c +

∫ b

a
G (x , y)b(y)dy .

For perturbed problem with b(x) + ∆b(x) and c +∆c , derive a bound on
∥∆y∥∞.

∥∆y∥∞ ≤ max (∥Φ∥∞ , ∥G∥∞)

(
∥∆c∥1 +

∫
∥∆b(y)∥1 dy

)
.

▶ Conditioning bound implies uniqueness.
▶ Also get continuous dependence on data.

317

Shooting Method
Idea: Want to make use of the fact that we can already solve IVPs.
Problem: Don’t know all left BCs.

Demo: Shooting method [cleared]

What about systems?

No problem–cannons are aimed in 2D as well. :)

What are some downsides of this method?

▶ Can fail
▶ Can be unstable even if ODE is stable

What’s an alternative approach?

Set up a big linear system.
318

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/bvp_odes/Shooting method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/bvp_odes/Shooting method.ipynb

Finite Difference Method
Idea: Replace u′ and u′′ with finite differences.
For example: second-order centered

u′(x) =
u(x + h)− u(x − h)

2h
+ O(h2)

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2 + O(h2)

Demo: Finite differences [cleared]

What happens for a nonlinear ODE?

Get a nonlinear system→Use Newton.

Demo: Sparse matrices [cleared]

319

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/bvp_odes/Finite differences.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/bvp_odes/Finite differences.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/bvp_odes/Sparse matrices.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/bvp_odes/Sparse matrices.ipynb

Collocation Method

(∗)
{

y ′(x) = f (y(x),
g(y(a), y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)

ŷ(x) =
n∑

i=1

αiTi (x)

Want ŷ to be close to solution y . So: plug into (∗).

Problem: ŷ won’t satisfy the ODE at all points at least.
We do not have enough unknowns for that.

2. Idea: Pick n points where we would like (∗) to be satisfied.
→ Get a big (non-)linear system

3. Solve that (LU/Newton)→ done.
320

Galerkin/Finite Element Method

u′′(x) = f (x), u(a) = u(b) = 0.

Problem with collocation: Big dense matrix.
Idea: Use piecewise basis. Maybe it’ll be sparse.

"hat functions"

one "finite element"

What’s the problem with that?

u′ does not exist. (at least at a few points where it’s discontinuous)
u′′ really does not exist.

321

Weak solutions/Weighted Residual Method
Idea: Enforce a ‘weaker’ version of the ODE.

Compute ‘moments’:∫ b

a
u′′(x)ψ(x)dx =

∫ b

a
f (x)ψ(x)dx

Require that this holds for some test functions ψ from some set W .
Now possible to get rid of (undefined) second derivative using inte-
gration by parts:∫ b

a
u′′(x)ψ(x)dx = [u′(x)ψ(x)]ba −

∫ b

a
u′(x)ψ′(x)dx .

▶ Also called weighted residual methods.
▶ Can view collocation as a WR method with ψj(x) = δ(x − xj)

322

Galerkin: Choices in Weak Solutions

Make some choices:
▶ Solve for u ∈ span {hat functions φi}
▶ Choose ψ ∈W = span {hat functions φi} with ψ(a) = ψ(b) = 0.
→ Kills boundary term [u′(x)ψ(x)]ba .

These choices are called the Galerkin method. Also works with other bases.

323

Discrete Galerkin
Assemble a matrix for the Galerkin method.

−
∫ b

a
u′(x)ψ′(x)dx =

∫ b

a
f (x)ψ(x)dx

−
∫ b

a

 n∑
j=1

αjφ
′
j(x)

ψ′(x)dx =

∫ b

a
f (x)ψ(x)dx

−
n∑

j=1

αj

∫ b

a
φ′
j(x)φ

′
i (x)dx︸ ︷︷ ︸

Sij

=

∫ b

a
f (x)φi (x)dx︸ ︷︷ ︸

ri

Sα = r .

Now: Compute S , solve sparse (!) linear system.

324

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra
Sparse Linear Algebra
PDEs

Fast Fourier Transform

Additional Topics

325

Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?
▶ CS555 → Numerical Methods for PDEs
▶ CS556 → Iterative and Multigrid Methods
▶ CS554 → Parallel Numerical Algorithms

We would love to see you there! :)

326

Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don’t factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In” [cleared]

327

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/pdes/Sparse Matrix Factorizations and ``Fill-In''.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/pdes/Sparse Matrix Factorizations and ``Fill-In''.ipynb

‘Stationary’ Iterative Methods
Idea: Invert only part of the matrix in each iteration. Split

A = M − N,

where M is the part that we are actually inverting. Convergence?

Ax = b
Mx = Nx + b

Mxk+1 = Nxk + b
xk+1 = M−1(Nxk + b)

▶ These methods are called stationary because they do the same
thing in every iteration.

▶ They carry out fixed point iteration.
→ Converge if contractive, i.e. ρ(M−1N) < 1.

▶ Choose M so that it’s easy to invert.
328

Choices in Stationary Iterative Methods

What could we choose for M (so that it’s easy to invert)?

Name M N

Jacobi D −(L+ U)
Gauss-Seidel D + L −U
SOR 1

ωD + L
(1
ω − 1

)
D − U

where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods [cleared]

329

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/pdes/Stationary Methods.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/pdes/Stationary Methods.ipynb

Conjugate Gradient Method

Assume A is symmetric positive definite.
Idea: View solving Ax = b as an optimization problem.

Minimize φ(x) =
1
2
xTAx − xTb ⇔ Solve Ax = b.

Observe −∇φ(x) = b − Ax = r (residual).

Use an iterative procedure (sk is the search direction):

x0 = ⟨starting vector⟩
xk+1 = xk + αksk ,

330

CG: Choosing the Step Size
What should we choose for αk (assuming we know sk)?

0 !
=

∂

∂α
φ(xk + αksk)

= ∇φ(xk+1) · sk = −rk+1 · sk .

Learned: Choose α so that next residual is ⊥ to current search direc-
tion.

rk+1 = rk − αkAsk

0 !
= sTk rk+1 = sTk rk − αksTk Ask

Solve:

αk =
sTk rk
sTk Ask

= −
sTk Aek

sTk Ask
, (∗)

where ek = xk − x∗ and rk = −Aek .
331

CG: Choosing the Search Direction
What should we choose for sk?

Idea: sk = rk = −∇φ(xk), i.e. steepest descent. No–still a bad
idea.

x , y are called A-orthogonal or conjugate if and only if xTAy = 0.

Better Idea: Require sTi As j = 0 if i ̸= j .

View error as linear combination of search directions, with some (thus
far unknown) coefficients:

e0 = x0 − x∗ =
∑
i

δis i .

▶ We run out of A-orthogonal directions after n iterations.
▶ Is the error going to be zero then? If δk = −αk , then yes.

332

CG: Further Development

sTk Ae0 =
∑
i

δisTk As i = δksTk Ask .

Solve for δk and expand:

δk =
sTk Ae0

sTk Ask
=

sTk A
(
e0 +

∑k−1
i=1 αis i

)
sTk Ask

=
sTk Aek

sTk Ask
= −αk .

How do we generate the sk?
▶ Pick a random one to start with. Perhaps r0?
▶ Generate next one by orthogonalizing from Krylov space

procedure z ,Az ,A2z
Insight: Use three-term Lanczos it. to generate. → cheap!

333

Introduction
Notation:

∂

∂x
u = ∂xu = ux .

A PDE (partial differential equation) is an equation with multiple partial
derivatives:

uxx + uyy = 0

Here: solution is a function u(x , y) of two variables.

Examples: Wave propagation, fluid flow, heat diffusion
▶ Typical: Solve on domain with complicated geometry.

334

Initial and Boundary Conditions
▶ Sometimes one variable is time-like.

What makes a variable time-like?
▶ Causality
▶ No geometry

Have:
▶ PDE
▶ Boundary conditions
▶ Initial conditions (in t)

335

Time-Dependent PDEs

Time-dependent PDEs give rise to a steady-state PDE:

ut = f (ux , uy , uxx, uyy) → 0 = f (ux , uy , uxx, uyy)

Idea for time-dep problems (Method of Lines):
▶ Discretize spatial derivatives first
▶ Obtain large (semidiscrete) system of ODEs
▶ Use ODE solver from Chapter 9

Demo: Time-dependent PDEs [cleared]

336

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/pdes/Time-dependent PDEs.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/pdes/Time-dependent PDEs.ipynb

Notation: Laplacian

Laplacian (dimension-independent)

∆u = div grad u = ∇ · (∇u) = uxx + uyy

337

Classifying PDEs

Three main types of PDEs:
▶ hyperbolic (wave-like, conserve energy)

▶ first-order conservation laws: ut + f (u)x = 0
▶ second-order wave equation: utt = ∆u

▶ parabolic (heat-like, dissipate energy)
▶ heat equation: ut = ∆u

▶ elliptic (steady-state, of heat and wave eq. for example)
▶ Laplace equation ∆u = 0
▶ Poisson equation ∆u = f

(Pure BVP, similar to 1D BVPs, same methods apply–FD, Galerkin,
etc.)

338

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

339

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

340

	Introduction to Scientific Computing
	Notes
	Notes (unfilled, with empty boxes)
	Notes (source code on Github)
	About the Class
	Errors, Conditioning, Accuracy, Stability
	Floating Point

	Systems of Linear Equations
	Theory: Conditioning
	Methods to Solve Systems
	LU: Application and Implementation

	Linear Least Squares
	Introduction
	Sensitivity and Conditioning
	Solving Least Squares

	Eigenvalue Problems
	Properties and Transformations
	Sensitivity
	Computing Eigenvalues
	Krylov Space Methods

	Nonlinear Equations
	Introduction
	Iterative Procedures
	Methods in One Dimension
	Methods in n Dimensions (``Systems of Equations'')

	Optimization
	Introduction
	Methods for unconstrained opt. in one dimension
	Methods for unconstrained opt. in n dimensions
	Nonlinear Least Squares
	Constrained Optimization

	Interpolation
	Introduction
	Methods
	Error Estimation
	Piecewise interpolation, Splines

	Numerical Integration and Differentiation
	Numerical Integration
	Quadrature Methods
	Accuracy and Stability
	Gaussian Quadrature
	Composite Quadrature
	Numerical Differentiation
	Richardson Extrapolation

	Initial Value Problems for ODEs
	Existence, Uniqueness, Conditioning
	Numerical Methods (I)
	Accuracy and Stability
	Stiffness
	Numerical Methods (II)

	Boundary Value Problems for ODEs
	Existence, Uniqueness, Conditioning
	Numerical Methods

	Partial Differential Equations and Sparse Linear Algebra
	Sparse Linear Algebra
	PDEs

	Fast Fourier Transform
	Additional Topics

