from __future__ import division
import numpy as np
import matplotlib.pyplot as pt
x = np.linspace(0, 4.5, 200)
def f(x):
return x**2 - x - 2
pt.plot(x, f(x))
pt.grid()
Actual roots: \(2\) and \(-1\)
def fp1(x): return x**2-2
def fp2(x): return np.sqrt(x+2)
def fp3(x): return 1+2/x
def fp4(x): return (x**2+2)/(2*x-1)
fixed_point_functions = [fp1, fp2, fp3, fp4]
for fp in fixed_point_functions:
plot(x, fp(x), label=fp.__name__)
pt.ylim([0, 3])
pt.legend(loc="best")
Common feature?
for fp in fixed_point_functions:
...
(Edit this cell for solution.)
z = 2.1; fp = fp1
#z = 1; fp = fp2
#z = 1; fp = fp3
#z = 1; fp = fp4
n_iterations = 4
pt.figure(figsize=(8,8))
pt.plot(x, fp(x))
pt.plot(x, x, "--")
pt.gca().set_aspect("equal")
pt.ylim([-0.5, 4])
for i in range(n_iterations):
z_new = fp(z)
pt.arrow(z, z, 0, z_new-z)
pt.arrow(z, z_new, z_new-z, 0)
z = z_new
print z