{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "import numpy as np\n", "import numpy.linalg as la\n", "import matplotlib.pyplot as pt" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "x = np.linspace(-1, 1, 100)\n", "\n", "pt.xlim([-1.2, 1.2])\n", "pt.ylim([-1.2, 1.2])\n", "\n", "for k in range(2): # crank up\n", " pt.plot(x, np.cos(k*np.arccos(x)))" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD7CAYAAACRxdTpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE/9JREFUeJzt3V9MXHXex/HP2UKyran9s2unODMrbqHCdmGCqW1s0u2Y\nXegW07H1gmI0IWoM0WLvVrOJidRoU+LlQ2LdjemfG7cWWksiJVbd6Sa6SGJhTcQoujY7jEJQSnbT\nXnSL57l4wjxTmIFhzsz5N+9XYsKUQ8/Pw/jN2x9nBsM0TVMAAF/5idMLAAAUHsMdAHyI4Q4APsRw\nBwAfYrgDgA8x3AHAh8qcXsCcaDSqS5cuOb0MAPCUXbt2KR6PL/hz15T7pUuXZJqmbf+8+OKLtp7P\nC/9wTbguXBfvXZdsUeya4Q4AKByGOwD4UMkO92g06vQSXIdrkhnXJTOuS2ZuuS6GaZqueG8ZwzDk\nkqUAgGdkm50lW+4A4GcMdwDwIYY7APgQwx0AfIjhDgA+xHAHAB9iuAOADzHcAcCHLA/3J554QoFA\nQHV1dVmPOXTokKqrqxWJRDQ8PGz1lACAJVge7o8//rgGBgayfr6/v19fffWVxsbG9Kc//UlPP/20\n1VMCAJZgebjv3LlT69aty/r5vr4+tbW1SZK2b9+umZkZTU5OWj0tAGARRd9zTyaTCofDqcehUEjj\n4+PFPi0A2O6Dbz7Qj+aPTi9Dkk2/iWn+m9oYhpHxuM7OztTH0Wi0qO+ulmUJALB8q6ak5g5p4z+k\nkx/I/PedRTtVPB7P+JuX5iv6cA8Gg0okEqnH4+PjCgaDGY9NH+7FxhtQAiiE3tFedVzo0GN1j+ml\nB05o5f+sLOr55ofv4cOHMx5X9OEei8XU3d2t1tZWDQ4Oau3atQoEAsU+LQAU1dS1KXVc6NA/Jv6h\nsy1ndX/4fqeXdAvLw/2RRx7RpUuX9P333yscDuvw4cP673//K0lqb29Xc3Oz+vv7VVVVpdtuu03H\njx+3vGgAcFJ6rZ946IRWlhe31vPBL+sAgBzN1frIxIhOPHTCFbXOL+sAAAt6R3tVf6xev7j9Fxpp\nH3HFYF+MLXfLAIBXpde6G/fWs6HcASALr9V6OsodAOZJvxOmt6VXO8I7nF7SslHuAJAmvdaH24c9\nOdglyh0AJLn/vvXlotwBlLye0R7VH6tX+PawhtuHPT/YJcodQAmbujalg/0H9enkp76o9XSUO4CS\ndOazM6p7rU53rbnLN7WejnIHUFLSa/3cgXO+G+pzKHcAJWNub92vtZ6Ocgfge367EyYXlDsAX/Pj\nnTC5oNwB+FIp1no6yh2A78y9yrTUaj0d5Q7AN0q91tNR7gB8gVq/FeUOwNOo9cwodwCeVap3wuSC\ncgfgOdT60ih3AJ4yV+tz77fOYM+McgfgCdT68lDuAFyPWl8+yh2Aa1Hr+aPcAbgStW4N5Q7AVaj1\nwqDcAbgGtV44lDsAx83V+sjECLVeIJQ7AEel1/pI+wiDvUAodwCOoNaLi3IHYDtqvfgodwC2Sb8T\nprelVzvCO5xekm9R7gBsMf9OGAZ7cVHuAIqK+9adQbkDKBruW3cO5Q6g4Kh151HuAAqKWncHy8N9\nYGBANTU1qq6uVldX14LPx+NxrVmzRg0NDWpoaNDLL79s9ZQAXGjq2pQO9BzQCx+8oLMtZ/Vq06ta\nWb7S6WWVLEvbMrOzs+ro6NB7772nYDCo++67T7FYTLW1tbcct2vXLvX19VlaKAD36hnt0bMXntWj\ndY/qxEMnGOouYGm4Dw0NqaqqSpWVlZKk1tZWnT9/fsFwN03TymkAuBR76+5laVsmmUwqHA6nHodC\nISWTyVuOMQxDH330kSKRiJqbmzU6OmrllABcYm5vPXx7mL11F7JU7oZhLHnMvffeq0QioVWrVunC\nhQvat2+fvvzySyunBeAgat0bLA33YDCoRCKRepxIJBQKhW45ZvXq1amP9+zZo2eeeUbT09Nav379\ngr+vs7Mz9XE0GlU0GrWyPAAFxt668+LxuOLx+JLHGaaFDfGbN2/qnnvu0fvvv68777xT27Zt05tv\nvnnLnvvk5KQ2bNggwzA0NDSklpYWXblyZeFCDIO9ecCl0mv9+EPHqXUXyTY7LZV7WVmZuru7tXv3\nbs3OzurJJ59UbW2tXn/9dUlSe3u7enp69Nprr6msrEyrVq3SX/7yFyunBGAzat2bLJV7IVHugLtQ\n696QbXbyClUAC3AnjPfx3jIAUrgTxj8odwCSqHW/odyBEket+xPlDpQw3sHRvyh3oATN1frIxAi1\n7lOUO1Biekd7U7U+0j7CYPcpyh0oEdR6aaHcgRJArZceyh3wMWq9dFHugE9R66WNcgd8hlqHRLkD\nvkKtYw7lDvgArzLFfJQ74HHptc6rTDGHcgc8Kr3We1t6tSO8w+klwUUod8CD5tc6gx3zUe6Ah7C3\njlxR7oBHsLeO5aDcAZdjbx35oNwBF2NvHfmi3AEXYm8dVlHugMvwu0xRCJQ74BJT16Z0sP+gPp38\nlFqHZZQ74AJnPjujutfqdNeau6h1FATlDjgovdbPHTjHUEfBUO6AQ+b21ql1FAPlDtiMO2FgB8od\nsNFcrfMqUxQb5Q7YgFqH3Sh3oMiodTiBcgeKhFqHkyh3oAiodTiNcgcKiFqHW1DuQIFQ63ATyh2w\niFqHG1HugAXUOtyKcgfyQK3D7SyX+8DAgGpqalRdXa2urq6Mxxw6dEjV1dWKRCIaHh62ekrAUdQ6\nvMBSuc/Ozqqjo0PvvfeegsGg7rvvPsViMdXW1qaO6e/v11dffaWxsTF9/PHHevrppzU4OGh54YDd\nqHV4iaVyHxoaUlVVlSorK1VeXq7W1ladP3/+lmP6+vrU1tYmSdq+fbtmZmY0OTlp5bSA7ah1eI2l\nck8mkwqHw6nHoVBIH3/88ZLHjI+PKxAIWDk1YAtqHV5labgbhpHTcaZp5vR1nZ2dqY+j0aii0Wi+\nSwMs6xnt0bMXntVjdY/pxEMntLJ8pdNLAhSPxxWPx5c8ztJwDwaDSiQSqceJREKhUGjRY8bHxxUM\nBjP+fenDHXAKtQ43mx++hw8fznicpT33rVu3amxsTFeuXNGNGzd0+vRpxWKxW46JxWI6deqUJGlw\ncFBr165lSwauxd46/MJSuZeVlam7u1u7d+/W7OysnnzySdXW1ur111+XJLW3t6u5uVn9/f2qqqrS\nbbfdpuPHjxdk4UAhUevwG8OcvyHuEMMwFuzNA3ZI31t/6YGX2FuHp2SbnbxCFSWLWoef8d4yKEns\nrcPvKHeUFGodpYJyR8mg1lFKKHf4HrWOUkS5w9eodZQqyh2+RK2j1FHu8J25Wg/fHqbWUbIod/gG\ntQ78P8odvtA72sveOpCGcoenUetAZpQ7PGuu1tlbBxai3OE51DqwNModnsKdMEBuKHd4ArUOLA/l\nDtej1oHlo9zhWtQ6kD/KHa5ErQPWUO5wFWodKAzKHa7BOzgChUO5w3FztT4yMUKtAwVCucNR6e8J\nM9I+wmAHCoRyhyOodaC4KHfYLn1vnVoHioNyh224EwawD+UOW3AnDGAvyh1FRa0DzqDcUTT8diTA\nOZQ7Co5aB5xHuaOgqHXAHSh3FER6rfe29GpHeIfTSwJKGuUOy+bfCcNgB5xHuSNv31//Xgf7D/Iq\nU8CFKHfkpWe0R3Wv1fEqU8ClKHcsC3fCAN5AuSNnvMoU8A7KHUui1gHvybvcp6en1djYqM2bN6up\nqUkzMzMZj6usrFR9fb0aGhq0bdu2vBcKZ5z57Exqb51aB7zDME3TzOcLn3vuOf385z/Xc889p66u\nLl29elVHjx5dcNzdd9+tTz75ROvXr198IYahPJeCIpi6NqWD/Qf16eSnOv7QcYY64FLZZmfe5d7X\n16e2tjZJUltbm95+++2sxzK0vWWu1u9acxe1DnhU3uW+bt06Xb16VdL/De/169enHqf75S9/qTVr\n1mjFihVqb2/XU089lXkhlLvjqHXAe7LNzkV/oNrY2KiJiYkFf/7KK68s+MsNw8j4d3z44YeqqKjQ\n1NSUGhsbVVNTo507dy5n7bBBz2iPnr3wrB6re0wn953UyvKVTi8JgAWLDveLFy9m/VwgENDExIQ2\nbtyo7777Ths2bMh4XEVFhSTpjjvu0P79+zU0NJR1uHd2dqY+jkajikajSywfVnEnDOAt8Xhc8Xh8\nyeMs/UD1Zz/7mZ5//nkdPXpUMzMzC36gev36dc3Ozmr16tW6du2ampqa9OKLL6qpqWnhQtiWsV16\nrb/0wEvUOuBB2WZn3sN9enpaLS0t+te//qXKykq99dZbWrt2rb799ls99dRTeuedd/TPf/5TDz/8\nsCTp5s2bevTRR/XHP/5xWQtE4aXXOnvrgLcVfLgXGsPdHtQ64C95/UAV/sHeOlBaeG+ZEjD325HC\nt4e5bx0oEZS7j1HrQOmi3H1q7h0cqXWgNFHuPkOtA5Aod1/h/dYBzKHcfYBaBzAf5e5x1DqATCh3\nj6LWASyGcvcgah3AUih3D6HWAeSKcvcIah3AclDuLketA8gH5e5ivMoUQL4odxei1gFYRbm7DHvr\nAAqBcncJah1AIVHuLkCtAyg0yt1B1DqAYqHcHUKtAygmyt1m1DoAO1DuNpr7XabUOoBio9xtMFfr\nIxMj1DoAW1DuRZZe6yPtIwx2ALag3IuEWgfgJMq9CNLfE4ZaB+AEyr2AuBMGgFtQ7gXCOzgCcBPK\n3SJqHYAbUe4WUOsA3IpyzwO1DsDtKPdlotYBeAHlniNqHYCXUO45oNYBeA3lvghqHYBXUe5Z8H7r\nALyMcp8nvdZ7W3q1I7zD6SUBwLJR7mnm1zqDHYBX5T3cz5w5oy1btmjFihW6fPly1uMGBgZUU1Oj\n6upqdXV15Xu6opq6NqUDPQf0wgcvqLelV682vaqV5SudXhYA5C3v4V5XV6dz587pN7/5TdZjZmdn\n1dHRoYGBAY2OjurNN9/U559/nu8pi2L+nTDUOgA/yHvPvaamZsljhoaGVFVVpcrKSklSa2urzp8/\nr9ra2nxPWzDcCQPAz4q6555MJhUOh1OPQ6GQkslkMU+ZE+6EAeB3i5Z7Y2OjJiYmFvz5kSNHtHfv\n3iX/csMwlrWYzs7O1MfRaFTRaHRZX5+LH80f1fdFH7UOwJPi8bji8fiSxy063C9evGhpEcFgUIlE\nIvU4kUgoFAplPT59uBfLT4yf6NT+U0U/DwAUw/zwPXz4cMbjCrItY5pmxj/funWrxsbGdOXKFd24\ncUOnT59WLBYrxCkBAIvIe7ifO3dO4XBYg4ODevDBB7Vnzx5J0rfffqsHH3xQklRWVqbu7m7t3r1b\nv/rVr3TgwAFX/DAVAPzOMLNlt80Mw8j6fwAAgMyyzU5eoQoAPsRwBwAfYrgDgA8x3AHAhxjuAOBD\nDHcA8CGGOwD4EMMdAHyI4Q4APsRwBwAfKtnhnstbZpYarklmXJfMuC6ZueW6MNyRwjXJjOuSGdcl\nM7dcl5Id7gDgZwx3APAh17zlbzQa1aVLl5xeBgB4yq5duzJuBblmuAMACodtGQDwIYY7APhQSQz3\nM2fOaMuWLVqxYoUuX76c9biBgQHV1NSourpaXV1dNq7QGdPT02psbNTmzZvV1NSkmZmZjMdVVlaq\nvr5eDQ0N2rZtm82rtE8u3/9Dhw6purpakUhEw8PDNq/QGUtdl3g8rjVr1qihoUENDQ16+eWXHVil\nvZ544gkFAgHV1dVlPcbx54pZAj7//HPziy++MKPRqPnJJ59kPObmzZvmpk2bzG+++ca8ceOGGYlE\nzNHRUZtXaq8//OEPZldXl2mapnn06FHz+eefz3hcZWWl+cMPP9i5NNvl8v1/5513zD179pimaZqD\ng4Pm9u3bnViqrXK5Ln/961/NvXv3OrRCZ/ztb38zL1++bP7617/O+Hk3PFdKotxramq0efPmRY8Z\nGhpSVVWVKisrVV5ertbWVp0/f96mFTqjr69PbW1tkqS2tja9/fbbWY81ff5z91y+/+nXa/v27ZqZ\nmdHk5KQTy7VNrv9d+P35Md/OnTu1bt26rJ93w3OlJIZ7LpLJpMLhcOpxKBRSMpl0cEXFNzk5qUAg\nIEkKBAJZn3yGYeh3v/udtm7dqj//+c92LtE2uXz/Mx0zPj5u2xqdkMt1MQxDH330kSKRiJqbmzU6\nOmr3Ml3HDc+VMlvPVkSNjY2amJhY8OdHjhzR3r17l/x6wzCKsSzHZbsur7zyyi2PDcPIeg0+/PBD\nVVRUaGpqSo2NjaqpqdHOnTuLsl6n5Pr9n1+ofn3ezMnl3+/ee+9VIpHQqlWrdOHCBe3bt09ffvml\nDatzN6efK74Z7hcvXrT09cFgUIlEIvU4kUgoFApZXZbjFrsugUBAExMT2rhxo7777jtt2LAh43EV\nFRWSpDvuuEP79+/X0NCQ74Z7Lt//+ceMj48rGAzatkYn5HJdVq9enfp4z549euaZZzQ9Pa3169fb\ntk63ccNzpeS2ZbLtDW7dulVjY2O6cuWKbty4odOnTysWi9m8OnvFYjGdPHlSknTy5Ent27dvwTHX\nr1/Xf/7zH0nStWvX9O677y56h4BX5fL9j8ViOnXqlCRpcHBQa9euTW1r+VUu12VycjL139XQ0JBM\n0yzpwS655Lli+49wHXD27FkzFAqZP/3pT81AIGD+/ve/N03TNJPJpNnc3Jw6rr+/39y8ebO5adMm\n88iRI04t1zY//PCD+dvf/tasrq42GxsbzatXr5qmeet1+frrr81IJGJGIhFzy5Ytvr4umb7/x44d\nM48dO5Y65uDBg+amTZvM+vr6rHde+c1S16W7u9vcsmWLGYlEzPvvv9/8+9//7uRybdHa2mpWVFSY\n5eXlZigUMt944w3XPVd4+wEA8KGS25YBgFLAcAcAH2K4A4APMdwBwIcY7gDgQwx3APAhhjsA+BDD\nHQB86H8Byc1tnytXS/AAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Does any of this matter?\n", "\n", "What if we interpolate random data?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "n = 10 # crank up\n", "\n", "i = np.arange(n, dtype=np.float64)\n", "\n", "# Chebyshev nodes:\n", "nodes = np.cos((2*(i+1)-1)/(2*n)*np.pi)\n", "\n", "# Equispace nodes:\n", "# nodes = np.linspace(-1, 1, n)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "pt.plot(nodes, 0*nodes, \"o\")" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEACAYAAABcXmojAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFj1JREFUeJzt3X9sVXf9x/HXZe0kMjNkGRe4t7Hae0svINdORt0f+3oN\nXgqdNKgEGzU20pGGWSsaJ8Ov38gSgda5mI2qA6MImlQ2NbSOy1XGdjfDqN1GdXFtbIs0u/dCG13X\n+WNuhZvP94+5j2tvW27v6dre8nwkJ+m55/259/05OT2ve+7tAZcxxggAAEnzZroBAMDsQSgAACxC\nAQBgEQoAAItQAABYhAIAwHIcCtFoVCUlJfL7/WpsbByzpr6+Xn6/X8FgUB0dHfbxoaEhbdmyRYFA\nQCtWrFBbW5vTdgAADjgKhVQqpbq6OkWjUXV2dqq5uVldXV0jaiKRiHp7e9XT06NDhw5px44ddtuX\nvvQlVVRUqKurS88//7wCgYCTdgAADjkKhfb2dvl8PhUWFio/P19VVVVqaWkZUdPa2qrq6mpJUllZ\nmYaGhjQwMKBXXnlFv/vd77Rt2zZJUl5enm688UYn7QAAHHIUCslkUgUFBXbd6/UqmUxetSaRSOjC\nhQu6+eab9fnPf1633HKLtm/frldffdVJOwAAhxyFgsvlyqhu9L+k4XK5dOXKFZ07d0533XWXzp07\npwULFqihocFJOwAAh/KcDPZ4PIrH43Y9Ho/L6/VOWJNIJOTxeGSMkdfr1a233ipJ2rJly5ih4PP5\ndP78eSdtAsA1p6ioSL29vZMe5+hKYc2aNerp6VFfX5+Gh4d17NgxVVZWjqiprKzU0aNHJUltbW1a\nuHCh3G63lixZooKCAnV3d0uSHnvsMa1cuTLtNc6fPy9jDMsULd/85jdnvIe5tLA/2Zezdcn2zbSj\nK4W8vDw1NTWpvLxcqVRKNTU1CgQCOnjwoCSptrZWFRUVikQi8vl8WrBggQ4fPmzHHzhwQJ/5zGc0\nPDysoqKiEdsAANPPUShI0saNG7Vx48YRj9XW1o5Yb2pqGnNsMBjUM88847QFAMAU4Y7ma0woFJrp\nFuYU9ufUYV/ODi5jzKz+T3ZcLpdmeYsAMOtke+7kSgEAYBEKAACLUAAAWIQCAMAiFAAAFqEAALAI\nBQCARSgAACxCAQBgEQoAAItQAABYhAIAwCIUAAAWoQAAsAgFAIBFKAAALEIBAGARCgAAi1AAAFiE\nAgDAIhQAABahAACwCAUAgEUoAAAsQgEAYBEKAADLcShEo1GVlJTI7/ersbFxzJr6+nr5/X4Fg0F1\ndHSM2JZKpVRaWqpNmzY5bQUA4JCjUEilUqqrq1M0GlVnZ6eam5vV1dU1oiYSiai3t1c9PT06dOiQ\nduzYMWL7Aw88oBUrVsjlcjlpBQAwBRyFQnt7u3w+nwoLC5Wfn6+qqiq1tLSMqGltbVV1dbUkqays\nTENDQxoYGJAkJRIJRSIR3XnnnTLGOGkFADAFHIVCMplUQUGBXfd6vUomkxnXfPnLX9Z9992nefP4\nagMAZgNHZ+NMP/IZfRVgjNGjjz6qxYsXq7S0lKsEAJgl8pwM9ng8isfjdj0ej8vr9U5Yk0gk5PF4\n9Mtf/lKtra2KRCJ67bXX9Pe//12f+9zndPTo0bTX2bNnj/05FAopFAo5aRsA5pxYLKZYLOb4eVzG\nwdv0K1euaPny5Tp9+rSWLVumtWvXqrm5WYFAwNZEIhE1NTUpEomora1NO3fuVFtb24jnefLJJ/Wd\n73xHv/71r9MbdLm4kgCAScr23OnoSiEvL09NTU0qLy9XKpVSTU2NAoGADh48KEmqra1VRUWFIpGI\nfD6fFixYoMOHD487AQDAzHJ0pTAduFIAgMnL9tzJn/0AACxCAQBgEQoAAItQAABYhAIAwCIUAAAW\noQAAsAgFAIBFKAAALEIBAGARCgAAi1AAAFiEAgDAIhQAABahAACwCAUAgEUoAAAsQgEAYBEKAACL\nUAAAWIQCAMAiFAAAFqEAALAIBQCARSgAACxCAQBgEQoAAItQAABYhAIAwHIcCtFoVCUlJfL7/Wps\nbByzpr6+Xn6/X8FgUB0dHZKkeDyuj3zkI1q5cqVWrVqlBx980GkrAACHHIVCKpVSXV2dotGoOjs7\n1dzcrK6urhE1kUhEvb296unp0aFDh7Rjxw5JUn5+vr773e/qhRdeUFtbm773ve+ljQUATC9HodDe\n3i6fz6fCwkLl5+erqqpKLS0tI2paW1tVXV0tSSorK9PQ0JAGBga0ZMkSfeADH5Ak3XDDDQoEArp4\n8aKTdgAADjkKhWQyqYKCArvu9XqVTCavWpNIJEbU9PX1qaOjQ2VlZU7aAQA4lOdksMvlyqjOGDPu\nuH/+85/asmWLHnjgAd1www1jjt+zZ4/9ORQKKRQKTbpXAJjLYrGYYrGY4+dxFAoej0fxeNyux+Nx\neb3eCWsSiYQ8Ho8k6fLly/rkJz+pz372s9q8efO4r/PWUAAApBv9hvnee+/N6nkcfXy0Zs0a9fT0\nqK+vT8PDwzp27JgqKytH1FRWVuro0aOSpLa2Ni1cuFBut1vGGNXU1GjFihXauXOnkzYAAFPE0ZVC\nXl6empqaVF5erlQqpZqaGgUCAR08eFCSVFtbq4qKCkUiEfl8Pi1YsECHDx+WJJ05c0Y/+9nPtHr1\napWWlkqS9u/frw0bNjicEgAgWy4z+gP/WcblcqV9JwEAmFi2507uaAYAWIQCAMAiFAAAFqEAALAI\nBQCARSgAACxCAQBgEQoAAItQAABYhAIAwCIUAAAWoQAAsAgFAIBFKAAALEIBAGARCgAAi1AAAFiE\nAgDAIhQAABahAACwCAUAgEUoAAAsQgEAYBEKAACLUAAAWIQCAMAiFAAAFqEAALAch0I0GlVJSYn8\nfr8aGxvHrKmvr5ff71cwGFRHR8ekxgIApk+ek8GpVEp1dXV67LHH5PF4dOutt6qyslKBQMDWRCIR\n9fb2qqenR7///e+1Y8cOtbW1ZTT2TeXl39Drr+fpHe+4ovr69brjjv/JuMcTJ57Sgw/+NuvxTszk\na09WLvU6nrkwh9HmypxyZR65fL4YPT5rxoGnn37alJeX2/X9+/eb/fv3j6ipra01P//5z+368uXL\nzaVLlzIaa4wxkoxk7FJU9HXz6KNPZtTfo48+aYqKvp71eCdm8rUnK5d6Hc9cmMNoc2VOuTKPXD5f\njDU+29O7o1B45JFHzJ133mnXf/rTn5q6uroRNR/72MfMmTNn7Pq6devMs88+a37xi19cdawx6aEg\nGVNe/o2M+lu//n/Txk5mvBMz+dqTlUu9jmcuzGG0uTKnXJlHLp8vxh6f3end0cdHLpcr06sRJy8j\nac9bfg7ptdeuy2jU66+PPb1Mxzsxk689WbnU63jmwhxGmytzypV55PL54o3xsf8szjgKBY/Ho3g8\nbtfj8bi8Xu+ENYlEQl6vV5cvX77q2P/aM2Jt/vzTGfU33udq8+enMhrvxEy+9mTlUq/jmQtzGG2u\nzClX5pHL54s3xof+s7zp3uyayer64j8uX75s3ve+95kLFy6Y119/3QSDQdPZ2Tmi5sSJE2bjxo3G\nGGPOnj1rysrKMh5rzFjfKex2+J1C5uOdmMnXnqxc6nU8c2EOo82VOeXKPHL5fDGV3yk4ulLIy8tT\nU1OTysvLlUqlVFNTo0AgoIMHD0qSamtrVVFRoUgkIp/PpwULFujw4cMTjh1Lefn/6bXXrtP8+Sl9\n8YsbMv5G/s26AweyG+/ETL72ZOVSr+OZC3MYba7MKVfmkcvni7HG/+Y32fXiMsbxB/5vK5fLNQXf\nSQDAtSXbcyd3NAMALEIBAGARCgAAi1AAAFiEAgDAIhQAABahAACwCAUAgEUoAAAsQgEAYBEKAACL\nUAAAWIQCAMAiFAAAFqEAALAIBQCARSgAACxCAQBgEQoAAItQAABYhAIAwCIUAAAWoQAAsAgFAIBF\nKAAALEIBAGARCgAAi1AAAFiOQmFwcFDhcFjFxcVav369hoaGxqyLRqMqKSmR3+9XY2Ojffzuu+9W\nIBBQMBjUJz7xCb3yyitO2gEAOOQoFBoaGhQOh9Xd3a1169apoaEhrSaVSqmurk7RaFSdnZ1qbm5W\nV1eXJGn9+vV64YUX9Mc//lHFxcXav3+/k3YAAA45CoXW1lZVV1dLkqqrq3X8+PG0mvb2dvl8PhUW\nFio/P19VVVVqaWmRJIXDYc2b90YLZWVlSiQSTtoBADjkKBQGBgbkdrslSW63WwMDA2k1yWRSBQUF\ndt3r9SqZTKbV/fjHP1ZFRYWTdgAADuVdrSAcDqu/vz/t8b17945Yd7lccrlcaXVjPTbWc11//fX6\n9Kc/Peb2PXv22J9DoZBCodBVnxMAriWxWEyxWMzx81w1FE6dOjXuNrfbrf7+fi1ZskSXLl3S4sWL\n02o8Ho/i8bhdj8fj8nq9dv0nP/mJIpGITp8+Pe7rvDUUAADpRr9hvvfee7N6HkcfH1VWVurIkSOS\npCNHjmjz5s1pNWvWrFFPT4/6+vo0PDysY8eOqbKyUtIbf5V03333qaWlRfPnz3fSCgBgCriMMSbb\nwYODg9q6datefPFFFRYW6uGHH9bChQt18eJFbd++XSdOnJAknTx5Ujt37lQqlVJNTY12794tSfL7\n/RoeHtaiRYskSbfddpu+//3vj2zQ5ZKDFgHgmpTtudNRKEwHQgEAJi/bcyd3NAMALEIBAGARCgAA\ni1AAAFiEAgDAIhQAABahAACwCAUAgEUoAAAsQgEAYBEKAACLUAAAWIQCAMAiFAAAFqEAALAIBQCA\nRSgAACxCAQBgEQoAAItQAABYhAIAwCIUAAAWoQAAsAgFAIBFKAAALEIBAGARCgAAi1AAAFhZh8Lg\n4KDC4bCKi4u1fv16DQ0NjVkXjUZVUlIiv9+vxsbGtO3333+/5s2bp8HBwWxbAQBMkaxDoaGhQeFw\nWN3d3Vq3bp0aGhrSalKplOrq6hSNRtXZ2anm5mZ1dXXZ7fF4XKdOndJ73vOebNsAAEyhrEOhtbVV\n1dXVkqTq6modP348raa9vV0+n0+FhYXKz89XVVWVWlpa7PavfOUr+va3v51tCwCAKZZ1KAwMDMjt\ndkuS3G63BgYG0mqSyaQKCgrsutfrVTKZlCS1tLTI6/Vq9erV2bYAAJhieRNtDIfD6u/vT3t87969\nI9ZdLpdcLlda3ViPSdK///1v7du3T6dOnbKPGWMyahgA8PaZMBTeetIeze12q7+/X0uWLNGlS5e0\nePHitBqPx6N4PG7X4/G4vF6vzp8/r76+PgWDQUlSIpHQBz/4QbW3t4/5PHv27LE/h0IhhUKhq80L\nAK4psVhMsVjM8fO4TJZv0b/2ta/ppptu0q5du9TQ0KChoaG0L5uvXLmi5cuX6/Tp01q2bJnWrl2r\n5uZmBQKBEXXvfe979dxzz2nRokXpDbpcXEUAwCRle+7M+juFe+65R6dOnVJxcbEef/xx3XPPPZKk\nixcv6o477pAk5eXlqampSeXl5VqxYoU+9alPpQXCm80DAGZe1lcK04UrBQCYvGm/UgAAzD2EAgDA\nIhQAABahAACwCAUAgEUoAAAsQgEAYBEKAACLUAAAWIQCAMAiFAAAFqEAALAIBQCARSgAACxCAQBg\nEQoAAItQAABYhAIAwCIUAAAWoQAAsAgFAIBFKAAALEIBAGARCgAAi1AAAFiEAgDAIhQAABahAACw\nsg6FwcFBhcNhFRcXa/369RoaGhqzLhqNqqSkRH6/X42NjSO2HThwQIFAQKtWrdKuXbuybQUAMEWy\nDoWGhgaFw2F1d3dr3bp1amhoSKtJpVKqq6tTNBpVZ2enmpub1dXVJUl64okn1Nraqueff15/+tOf\n9NWvfjX7WSBjsVhspluYU9ifU4d9OTtkHQqtra2qrq6WJFVXV+v48eNpNe3t7fL5fCosLFR+fr6q\nqqrU0tIiSfrBD36g3bt3Kz8/X5J08803Z9sKJoFfvKnF/pw67MvZIetQGBgYkNvtliS53W4NDAyk\n1SSTSRUUFNh1r9erZDIpSerp6dFTTz2lD33oQwqFQnr22WezbQUAMEXyJtoYDofV39+f9vjevXtH\nrLtcLrlcrrS6sR5705UrV/Tyyy+rra1NzzzzjLZu3aq//OUvmfYNAHg7mCwtX77cXLp0yRhjzMWL\nF83y5cvTas6ePWvKy8vt+r59+0xDQ4MxxpgNGzaYWCxmtxUVFZm//e1vac9RVFRkJLGwsLCwTGIp\nKirK6tw+4ZXCRCorK3XkyBHt2rVLR44c0ebNm9Nq1qxZo56eHvX19WnZsmU6duyYmpubJUmbN2/W\n448/rg9/+MPq7u7W8PCwbrrpprTn6O3tzbZFAMAkuYwxJpuBg4OD2rp1q1588UUVFhbq4Ycf1sKF\nC3Xx4kVt375dJ06ckCSdPHlSO3fuVCqVUk1NjXbv3i1Junz5srZt26Y//OEPuv7663X//fcrFApN\n2cQAAJOXdSgAAOaeWXdH8yOPPKKVK1fquuuu07lz58atm+imOPxXpjcZFhYWavXq1SotLdXatWun\nucvZLZNjrb6+Xn6/X8FgUB0dHdPcYW652v6MxWK68cYbVVpaqtLSUn3rW9+agS5zw7Zt2+R2u/X+\n979/3JpJH5tZfRPxNurq6jJ//vOfTSgUMs8999yYNVeuXDFFRUXmwoULZnh42ASDQdPZ2TnNneaG\nu+++2zQ2NhpjjGloaDC7du0as66wsNC89NJL09laTsjkWDtx4oTZuHGjMcaYtrY2U1ZWNhOt5oRM\n9ucTTzxhNm3aNEMd5pannnrKnDt3zqxatWrM7dkcm7PuSqGkpETFxcUT1kx0UxxGyuQmwzcZPklM\nk8mx9tZ9XFZWpqGhoTHv20Hmv7sci5m5/fbb9e53v3vc7dkcm7MuFDIx0U1xGCmTmwylN+4p+ehH\nP6o1a9bohz/84XS2OKtlcqyNVZNIJKatx1ySyf50uVx6+umnFQwGVVFRoc7Ozuluc87I5tjM+k9S\nnRjvprh9+/Zp06ZNVx0/0U1x1yKnNxlK0pkzZ7R06VL99a9/VTgcVklJiW6//fa3pd9ckumxNvqd\nLcfo2DLZL7fccovi8bje+c536uTJk9q8ebO6u7unobu5abLH5oyEwqlTpxyN93g8isfjdj0ej8vr\n9TptK2dNtD/dbrf6+/u1ZMkSXbp0SYsXLx6zbunSpZLe+DeoPv7xj6u9vZ1QUGbH2uiaRCIhj8cz\nbT3mkkz257ve9S7788aNG3XXXXdpcHBQixYtmrY+54psjs1Z/fHReJ8rvvWmuOHhYR07dkyVlZXT\n3F1uePMmQ0nj3mT46quv6h//+Ick6V//+pd++9vfTvjXDNeSTI61yspKHT16VJLU1tamhQsX2o/s\nMFIm+3NgYMD+7re3t8sYQyBkKatjc2q+A586v/rVr4zX6zXz5883brfbbNiwwRhjTDKZNBUVFbYu\nEomY4uJiU1RUZPbt2zdT7c56L730klm3bp3x+/0mHA6bl19+2Rgzcn+eP3/eBINBEwwGzcqVK9mf\no4x1rD300EPmoYcesjVf+MIXTFFRkVm9evW4fzWHN1xtfzY1NZmVK1eaYDBobrvtNnP27NmZbHdW\nq6qqMkuXLjX5+fnG6/WaH/3oR46PTW5eAwBYs/rjIwDA9CIUAAAWoQAAsAgFAIBFKAAALEIBAGAR\nCgAAi1AAAFj/D6uy2ocT//dLAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "V = np.cos(i*np.arccos(nodes.reshape(-1, 1)))\n", "data = np.random.randn(n)\n", "coeffs = la.solve(V, data)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "x = np.linspace(-1, 1, 1000)\n", "Vfull = np.cos(i*np.arccos(x.reshape(-1, 1)))\n", "pt.plot(x, np.dot(Vfull, coeffs))\n", "pt.plot(nodes, data, \"o\")" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 18, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX6B/DPICTiBaIMFbBRLnFRYYjESnRIRxSEtKu6\n7ZLW5pqIbdbWtv0KNnO1X/trvWVmu2U3dLVUNhTFy6ipiCl5A1MpdUBhvYQXvMP5/fE0JjIDM2fO\nzDln5nm/XryS4XDO0zg+853nfL/PVyMIggDGGGMew0vuABhjjLkWJ37GGPMwnPgZY8zDcOJnjDEP\nw4mfMcY8DCd+xhjzMA4lfpPJhJSUFMTGxqJXr16YNWtWs2OMRiP8/f2h0+mg0+kwdepURy7JGGPM\nQd6O/LKPjw/ee+89xMfH48KFC7j33nthMBgQHR3d5LiBAweioKDAoUAZY4xJw6ERf5cuXRAfHw8A\n6NChA6Kjo3H8+PFmx/EaMcYYUw7JavxHjhxBWVkZkpKSmjyu0WiwdetWxMXFIS0tDeXl5VJdkjHG\nmAgOlXrMLly4gMceewwzZ85Ehw4dmvwsISEBJpMJfn5+WLVqFUaMGIGDBw9KcVnGGGNiCA66evWq\nMGTIEOG9996z6XitViucPn262eNhYWECAP7iL/7iL/6y4yssLMzuvO1QqUcQBDzzzDOIiYnBCy+8\nYPGY2traGzX+0tJSCIKAwMDAZsdVVlZCEAT+kuDrzTfflD0Gd/ri55OfTyV/VVZW2p27HSr1bNmy\nBZ9//jn69OkDnU4HAJg2bRqOHTsGABg/fjyWLl2KefPmwdvbG35+fli0aJEjl2SMMeYghxJ///79\n0djY2OIxEydOxMSJEx25DGOMMQnxyl03pNfr5Q7BrfDzKS1+PuWnEQRBkDsIgKZ9KiQUxhhTDTG5\nk0f8jDHmYTjxM8aYh+HEzxhjHoYTP2OMeRhO/Iwx5mE48TPGmIdRReLfvRsYNgz46CO5I2GMMfVT\nfOJvaACefBIYOBD4n/8BSkvljogxxtRNkrbMzlRQAAQEAK+8AnTuDLzxBlBUJHdUjDGmXoof8S9d\nCowbB2g0wJgxwHffAUePyh0VY4ypl6IT//XrNLpPT6fv27UDRo4EvvpK3rgYY0zNFJ349+0DgoKA\n4OBfH8vIAP7zH/liYowxtVN04i8tBfr2bfrY4MH0eH29PDExxpjaKTrx79jRPPH7+QFxccD27fLE\nxBhjaudQ4jeZTEhJSUFsbCx69eqFWbNmWTwuJycHERERiIuLQ1lZmc3nLysDEhKaP96/P7B5s9io\nGWPMszmU+H18fPDee+9h//79KCkpwdy5c1FRUdHkmJUrV+Lw4cM4dOgQPvzwQ0yYMMGmczc2AgcO\nANHRzX+WnAx8+60jkTPGmOdyKPF36dIF8fHxAIAOHTogOjoax48fb3JMQUEBsrKyAABJSUmoq6tD\nbW1tq+c2mQB/f/q61YMPAiUltLiLMcaYfSSr8R85cgRlZWVISkpq8nh1dTVCQ0NvfB8SEoKqqqpW\nz1dRAURFWf5ZYCAt5jp0yKGQGWPMI0mycvfChQt47LHHMHPmTHTo0KHZz2/dFkyj0Vg8T25u7o0/\nnzqlR1SU3uo1ExKAXbusvzkwxpg7MhqNMBqNDp3D4cR/7do1PProo3jqqacwYsSIZj8PDg6GyWS6\n8X1VVRWCb56Yf5ObE/+LLwJdu1q/bkIC3fwdM0Z06Iwxpjp6vb7JhvV5eXl2n8OhUo8gCHjmmWcQ\nExODF154weIxmZmZ+PTTTwEAJSUlCAgIQFBQUKvnPnoUuPtu6z/X6WjEzxhjzD4Ojfi3bNmCzz//\nHH369IFOpwMATJs2DceOHQMAjB8/HmlpaVi5ciXCw8PRvn17fPzxxzadu7XEbx7xCwL18WGMMWYb\njXBrAV4mGo2myb2Azp2BvXuBLl2s/07nzsCePS2XhBhjzJ3dmjttociVu/X1wIULwF13tXxcbCxQ\nXu6amBhjzF0oMvEfOwaEhgJerUQXE8OJnzHG7KXIxN9afd+MEz9jjNlPkYn/2DGge/fWj4uJAfbv\nd348jDHmThSZ+I8fb9qD3xpz4lfG7WnGGFMHRSb+2lragKU1QUGU9E+edH5MjDHmLlSd+DUamtnD\n5R7GGLOdIhN/TU3L8/dvFhkJHDzo3HgYY8ydKDLx2zriB4CICO7SyRhj9nCLxH/4sHPjYYwxd6K4\nxH/hAu2+1bGjbcfziJ8xxuyjuMRvHu3b2ngtLAz48Ud6s2CMMdY6xSZ+W7VvTzty3dTynzHGWAsU\nmfhtndFjxuUexhizneISf02NfSN+gBM/Y4zZQ3GJ//Rp4M477fsdTvyMMWY7hxP/uHHjEBQUhN69\ne1v8udFohL+/P3Q6HXQ6HaZOndri+U6fBu64w74YOPEzxpjtHE78Y8eORVFRUYvHDBw4EGVlZSgr\nK8Prr7/e4rFnztDNWntw4meMMds5tOcuACQnJ+PIkSMtHmPPtmBiRvxhYcCRI0BDA9CmjX2/y5oS\nBGDHDqCoCNi9G/j5Z6BDB3pzfeABYOhQmknFGFMvp9f4NRoNtm7diri4OKSlpaG8lZ1TxIz427Wj\n3zl+3IFAGVavpk3sx4yhhXRPPAG89howbhy9GX/4IRASAkyYQHsmMMbUyeERf2sSEhJgMpng5+eH\nVatWYcSIEThopatabm4uDh4E8vOBa9f00Ov1Nl+nRw/gp59oy0ZmnwsXgOefB7ZuBd59F8jMbL7t\n5YgR9CZw/DgwZw6g0wHjxwNvvAH4+soTN2OeyGg0wmg0OnQOjWDv9uwWHDlyBBkZGdi7d2+rx/bo\n0QM7d+5E4C3DevNO8Z07U5vl1jZav9VTTwEGA5CVZd/vebqTJ4EhQ4C4OGDuXNvLOCdOANnZtPXl\nZ58BiYnOjZMxZpk5d9rD6aWe2traG0GVlpZCEIRmSd+ssZFqyvaWeoBfR/zMdjU1wIABQEYG8PHH\n9tXuu3YFli4FcnOBtDTgn/90WpiMMYk5XOoZPXo0Nm7ciFOnTiE0NBR5eXm4du0aAGD8+PFYunQp\n5s2bB29vb/j5+WHRokVWz3XuHCUfbxFR9egBbNwo9v/C81y6RCWdJ54A8vLEnUOjAZ58kj4tjBwJ\nfP898I9/8A12xpROklKPFDQaDSorBQwaJG7kbjRSvXnTJslDcxuFxYWY9eUsXG68gh/2tUXUHTnY\nsDrd5oZ4LTl7lpJ/YCDw+edc92fMVRRZ6rGHmKmcZj16UJdOZllhcSEmz52MNdo12NRzI2oz18Dk\nOxkr1xZKcn5/f2DVKhrtDx1KN4wZU6OLF+kTsTtTVOIXM5XTLCSEblReuSJtTO5i1pezUKmrbPLY\nj/dWYnb+bMmu0bYtzcgKCwPS0zn5M3U5cAAYNgzo3JkGoBkZ7jttWVGJ35ERf9H6QrQJTUXyb/VI\nHZuKwmJpRrLu4opg+R3xcuNlSa/j5QUsWPBr8q+vl/T0jDmF0QgkJ9Nr9uRJykX33w/060dvCO7G\n6fP47SF2xG8uY1z6bSV2/PJY5Vwa3aYb0qULUMXaatpafNzXS/pivJcX8NFHwLPP0j+kVatokR1j\nSlRRATz+OPDvfwMpKb8+/tprNHstIwP47jsqZ7oLRY346+qAgAD7f89SGaNSJ20ZQ+2eHZmDNl+H\nNXksbFcYJo2e5JTrmZN/cDDNHPplohdjinLlCvDYY8CMGU2TvtnYscDAgcBf/uL62JxJUSP+j1al\nwqvtFXw3ti1yxuTYPFp3VRlDzfbtTEdyV6Dt0dm43HgZvl6+mJQ9yamfiLy8gE8+oVW/48YBCxc2\nXxHMmKuZZ7ddEa6g+qe2uD0wB+PGWf938M47QEwM8NxzQJ8+LgzUiRSV+I8OWQMA+An2lWpcWcZQ\no1OnqM3Cjh3p6NnTtaUvHx9gyRIgNRX44x9pnr8U00cZE8NcFr5RIegBdC+tRGGx9VwTGAi8/DLw\n1lv0WnYHih1/2VOqyRmTg7Ay15Ux1Oadd6jc0rOnPNf38wP+8x9aYPfWW/LEwBhguSx8rG/rueYP\nfwA2b3afG72KGvHfytZSjfmd+u8LZ2Pz9ssYlOz8MoZanDpFtfY9e+SNIyCAun/2708jqOxseeNh\nnklsWbh9e5qsMG8eMHOmMyJzLUUnfntKNemGdKQNTkfHjsCSmUDHjk4MTEXefx945BFa5yC3oCCg\nuJimzQUEUGM9xlzJkbLwc89RV9pp09S/J4ViSz1iSjUaDaDVcrM2s0uXqOPmlClyR/IrrZZG/i+9\nBBQUyB0N8zQ5Y3LQ4ztxZeHu3YG+falsqXaKSvxtF6ai34GBSD2aipnZM0WVarh1w68++4xeqNHR\nckfSVEwM/eN59llgwwa5o2GeJN2QDoN2JoIKUjHwJ/tzzahRQAt9JlVDUU3aOnQQUF0NdOok/jw5\nObRqdPJk6WJTo8ZGSrDz59M8ZCXasIFuOq9cCdx3n9zRME/Q2EgDoY8+opKjvc6epZH/sWPKWdCl\n+iZtFy/S/q6O4FIP2bCBeucMGCB3JNalpFAf/4wM2tCFMWczGunfRf/+4n7f359et8uXSxqWyykq\n8Xfs6PgCnx49aON1Tzd/Pm2NqPQ585mZtN1jaiq/YTPn++wzWo3ryL+LRx5R//0pRZV6uncXcPSo\nY+cpK6O/2O+/lyYuNaqtBe65Bzh6VDkfR1szdy69AaxfT2/ejEnt4kVqIVJeTj14xPrvf4HISPrv\nbbdJF59YspR6xo0bh6CgIPTu3dvqMTk5OYiIiEBcXBzKysqsHidFktJqecS/cCGNStSS9AFg4kSa\n6aPXA4cPyx0Nc0cFBTTZwZGkD9B+4JGRwNat0sQlB4cT/9ixY1FUVGT15ytXrsThw4dx6NAhfPjh\nh5gwYYLVY6VIVAEBgCDQ3r2eSBCoLfL48XJHYr+JE6kZVkoK8MMPckfD3M3nn0u3diQtjSYlqJXD\niT85ORm333671Z8XFBQgKysLAJCUlIS6ujrU1tZaPFaKxG+ey++po/6tW6k/Tt++ckciznPPAX/9\nKyX/nTvljoa5i5MngW+/pe1BpTBsGLUbVyun39ytrq5GaGjoje9DQkJQVVVl8VipShOefIP3iy+A\n3/xG+Td1WzJ2LNX8hw5V96iKKcfXX1OydnTWoNm99wImE72hqJFLWjbceuNBYyUrHTyYi9xc+rNe\nr4derxd1PU8d8V+7Rt0DS0vljsRxI0dSLXbkSCAvjz4JMCbWsmXAM89Idz5vb+DBB4FNm4BHH5Xu\nvLYwGo0wGo0OncPpiT84OBgmk+nG91VVVQgODrZ47EMP/Zr4HeGpc/lXr6abTu4yK6ZfP+qIOHw4\nlX1mzgR8udM2s9PZs1QClbqlsl5P6wJcnfhvHRTn5eXZfQ6nl3oyMzPx6aefAgBKSkoQEBCAoKAg\ni8dK1VjNUxO/uczjTsLDgR076Gb9Aw9QO47C4kKkjk2F/mneX5m1rrCQFjJK3bhRr6dW42rk8Ih/\n9OjR2LhxI06dOoXQ0FDk5eXh2i/77I0fPx5paWlYuXIlwsPD0b59e3z88cdWzyVV/c0TSz3nz1M9\nfLYb7jbZsSOweDH9v8UnFaJtr8k4pf+1pzrvr8xasmyZdDd1b6bT0VqZU6eAO++U/vzOpKgFXAsW\nCHj2WcfPVVdH/TTOnlX3TU57fPEFkJ8PfPON3JE4V/8nUrEldk2zx1OPpqLoX9anFTPPdPkytQM/\nfBjo3Fn686em0t4SGRnSn9tWqu/VI9WIPyAAaNPGs+byf/UVbRrt7rz9eH9lZru1a4H4eOckfQBI\nSgK2b3fOuZ3JLRM/4Fl1/vp6eoHLOepwFWsbaRwq95V9lzGmPMuXAyNGOO/8SUlASYnzzu8sbp34\nPaXOv3o1Ldi64w65I3E+S/sra3eEYXDcJKSlUd31nXdob1RlFDGZXASBFlkNH+68ayQl0eSDhgbn\nXcMZFLX1opSJ35MWcX39NfXm8QTmG7iz82fjcuNl+Hr5YtJk2l+5oYHmVS9aRLXXa9eo/W7v3kBs\nLA0G7rqLvpTQXIs51549QLt2QESE865x551URjpwgF5jaqGom7sVFQKioqQ536xZwKFD7jnL5WZX\nrwJdugD79gHduskdjXIIApX6tm0D9u+n58dkos6lJ09S+28fH1qI4+Nj+yQAf3/avzg0lN5QEhLo\n0xbv8aw806cD1dXOzwFPPQU89BAwbpxzr2ONmJu7bjvi12ppY293t2EDEBXFSf9WGg3Qsyd93aqx\nkd4wr1+nTwW/zD5ulSDQjLGqKprGt3s3sGIF/ff++4GHHwbGjAFaaF3FXGjlSuDVV51/HXOdX67E\nL4ZbJ35PuLnrSWUeqXh5iV8BHBREex3c7Px5urn+739Td9FHHwVee422AGXyqKujvTlEdn2xS1IS\nbeWoJoq6udu+vXTnMt/cVUYhyzkEgebtZ2bKHYln69iRFgjl51N5MTSUksEf/gCcOSN3dJ5p7Vq6\nv+Pn5/xr9ekDHDxIawbUQlGJ38dHunN16kR7a54+Ld05lWb3bnphR0bKHQkz69wZyM2lRODjQzf8\nFi+WOyrPs2oVdeN0BV9fuoG8b59rricFRSV+qbn7lM7CQtoQgilPYCDdVFy+HHjzTeD3vwcuXZI7\nKs9gnsbpqsQP0DTiFjYXVBy3T/zuXOdfuRJI5/Y0imae533hArXxPX5c7ojcn/mTsDOncd6KE7+C\nuPOI//Rp+mg5YIDckbDWdOwIfPkl8Pjj1GG0okLuiNxbcTGt43AlTvwK4s6LuFavphkL3J9eHTQa\n4M9/pk1lUlKAvXvljsh9rV0LDB7s2mvGx9PfqVpW8Lp14nfnET/X99UpKwv4xz9oRHrggNzRuJ8r\nV2jTFVdM47yZvz9N9T10yLXXFYsTvwo1NNCInxO/Oo0aRatKDQZaDMaks20bEBMjzyI6NZV7HE78\nRUVFiIqKQkREBGbMmNHs50ajEf7+/tDpdNDpdJg6daqjl7TZ3Xe751z+7dtppe5Ne9gzlfnd76iP\ne2YmdVdl0li7Fhg0SJ5rx8cD338vz7Xt5dDK3YaGBmRnZ2Pt2rUIDg7Gfffdh8zMTERHRzc5buDA\ngSgoKHAoUDE6dqQmTSdPUmMud7F6tWunqjHn+NOfqNwzOK0QnXrOwhXhCtpq2iJnTA7vJibSunXA\n22/Lc+3evYEPP5Tn2vZyKPGXlpYiPDwcWq0WADBq1CisWLGiWeKXsw+c+QavOyX+4mLgr3+VOwrm\nKI0GePjxQix6YzIua3krSUedPUsz3R54QJ7r9+qlnkVcDpV6qqurEXpTvSEkJATV1dVNjtFoNNi6\ndSvi4uKQlpaG8vJyRy5pN3er8589S7MHHnxQ7kiYFOYtmYXLGZVNHqvUVWJ2vpu3lXUCoxHo10++\nmW49etD+u+fOyXN9eziU+DU29LJNSEiAyWTC7t27MWnSJIxw5nY4FrjbIq6NG+nF3a6d3JEwKVwR\neCtJqaxb5/ppnDfz8gKiowEXj21FcajUExwcDJPJdON7k8mEkJCQJsd0vKlR+bBhw/D888/jzJkz\nCAwMbHa+3NzcG3/W6/XQSzAnS6tVz8cvWxQXy/viZtKytpWkrxcv0LDX2rXAZ5/JG4O53NOvn/Ou\nYTQaYTQaHTuJ4IBr164JPXv2FH766SfhypUrQlxcnFBeXt7kmJqaGqGxsVEQBEHYvn27cPfdd1s8\nl4OhWFVYKAhDhzrl1LKIihKEnTvljoJJ5Zs13whhD4cJyMWNr7tSwoRv1nwjd2iqUlUlCIGBgnD9\nurxx/O//CsLkya69ppjc6dCI39vbG3PmzEFqaioaGhrwzDPPIDo6GvPnzwcAjB8/HkuXLsW8efPg\n7e0NPz8/LFq0yLF3Kju5U42/qopmKMXHyx0Jk8qtW0leOe+Lin2TcG9vvrFrj/XraUV0mzbyxtGr\nF1BUJG8MtlDU1ovOCKW+nlrl1tfbvr2eUn3yCXUd5Da/7u3Pf6a2zl99JXck6pGVReWVCRPkjaOq\nCkhMBGpqXHdNMbnTrVfuArS5S4cOtNeq2nF93zO8+SbN3CoslDsSdRAEefrzWBIcTBuynDoldyQt\nc/vED7hHuUdJL27mXL6+wKxZwOTJ6trVSS4//AB4ewPh4XJHQlWF2Fhg/365I2mZRyR+d+jSuXcv\nrUTu0UPuSJgrDB1KK0HffVfuSJTP3KZBKaVcNSzk8ojE7w4jfh7te5733qNOnkePyh2Jsint3waP\n+BXCHRZxKe3FzZxPq6Vyz0svyR2Jcl2/Tosa5WrMZklUFJWflMxjEr+aR/zXrwNbtri+xziT35Qp\n1Gp4+3a5I1GmnTuBkBDqha8U99yj/L0WOPGrwK5dQPfuwJ13yh0JczU/P9q1609/cr/24lJYt05Z\no32A2qXX1Sm7Z4/HJP5jx4DGRrkjEWfjRh7te7KsLJoe+M03ckeiPEosgXp5AZGRtBZDqTwi8bdr\nR1ujqXUuv9EIDBwodxRMLt7ewIwZwKuvUtmPkUuXgNJSYMAAuSNpTunlHo9I/IB6b/Ca6/tKfHEz\n10lPp1Lf55/LHYlybNkC9OkDdOokdyTNRUVx4lcEtdb5v/+eVgO600YyzH4aDW2+89ZbwLVrckej\nDEqs75spfWaPxyR+tS7i4vo+Mxs4kPaR5lE/UXLi51KPQqh1xM/1fXaz3Fwe9QM0a6aiArj/frkj\nsSwyEjh8GGhokDsSyzwq8autxt/QAHz7LSd+9qsBA+jTq9wbjsjNaKS9ddta3sdGdu3bU3nW2auu\nJ04U93selfjVNuLfvRvo0kVZi1OY/HJzgalTPXvUb+7Po2TOLvdcuwZ88IG43/WYxH/33YDJpK65\n/FzfZ5YkJ/OoX8n1fTNn3+Ctr6eW82I4nPiLiooQFRWFiIgIzJgxw+IxOTk5iIiIQFxcHMrKyhy9\npCi+vkBgIHDihCyXF4Xr+8ya114D3nlHXQMZqVRXA//9r/J3onP2lM4LF2RK/A0NDcjOzkZRURHK\ny8uRn5+PioqKJsesXLkShw8fxqFDh/Dhhx9igoxb5Kip3NPYCGzezImfWfbQQ9Sme8UKuSNxvfXr\n6ZOw3NsstsbZpR7ZRvylpaUIDw+HVquFj48PRo0ahRW3vBILCgqQlZUFAEhKSkJdXR1qZVpCq6Yb\nvHv20JaRXbvKHQlTIo2GVvJOn+55PXzWrVNemwZLnF3qkW3EX11djdDQ0Bvfh4SEoLq6utVjqqqq\nHLmsaGoa8XN9n7VmxAia1rhxo9yRuI4gqKO+DwDdugHnzzuvWduFCzR7SAyHEr/Gxi1vbt0I2Nbf\nk5qaFnFxfZ+1pk0b6to5fbrckbjOoUP034gIeeOwhUYDhIXRfH5ncGTE7+3IhYODg2EymW58bzKZ\nEBIS0uIxVVVVCA4Otni+3NzcG3/W6/XQSzzk1WqBxYslPaVTNDYCmzYBc+bIHQlTuqeeAt54Aygr\nA3Q6uaNxPqVts9iaiAh6s0pIkO6cRqMRRqMR+/aJXyfgUOJPTEzEoUOHcOTIEXTr1g2LFy9Gfn5+\nk2MyMzMxZ84cjBo1CiUlJQgICECQlYnpNyd+Z1BLqWffPpqBZOX9kbEb2rYFXnyRuncuWiR3NM63\nbh2VuNTCnPilZB4UL1hAXYfLy/PsPodDpR5vb2/MmTMHqampiImJwZNPPono6GjMnz8f8+fPBwCk\npaWhZ8+eCA8Px/jx4/H+++87ckmHdO9Oc/mVuozajOv7zB7PPUcjYbVMXBCroYFKoGqo75s5I/Gb\nnT8vvjOpRri1AC8TjUbT7F6AMwQHAyUltEuOUj36KDByJH2MZ8wWr7wCXL1KG7S7q9JSYOxY5W9k\nfrNNm2j21dat0p87L4/eDN96y/7c6TErd82UfoNXEOjFwv33mT2ys4GFC4GzZ+WOxHlWrwZSU+WO\nwj4REc67uXvuHK3lEMPjEr9WC/z4o9xRWFdRQXfqu3eXOxKmJqGhwNChwEcfyR2J86gx8XfpQjuF\nOeMN+fx5Tvw2c+Y7sBQ2beJpnEycF18EZs1yz+0Zz56lpoVq+ySs0QDh4c6p8ztS4/fIxK/kTZC5\nzMPESkykT4pffy13JNJbt47aMLdrJ3ck9nPWDV4e8dshMtJ5d9kdJQg0o4dH/EysF190zxu8aizz\nmDkr8XON3w7mvwRlzGVqynzvoWdPeeNg6pWZSZ0rt22TOxLpCAInfku41GMHf3/6uFhTI3ckzZnL\nPGpZlciUp00bYPJk4P/+T+5IpHPwIN23iImROxJxuNSjEJGRyqzzc5mHSWHsWGDDBmVPW7aHebSv\n1gERJ36FcOZqOkfwjV0mhY4dgXHjaIaPO1BzmQeg9urXrwNnzkh7Xq7x20mJid9konfw6Gi5I2Hu\nYNIk4JNPnNcS2FUuX6YNidTQf98aZ0zpvH6dVmr7+Yn7fY9M/Eos9XB9n0kpNJRGyWpf0GU0An36\nUNNCNZN6sGku84jNFx6Z+JU44ueFW0xqf/yj+hd0/ec/QEaG3FE4zlmJXyyPTPzh4UBlpbI2qt64\nkev7TFp9+9LIX60LugSBE781jtT3AQ9N/O3bA3fcQXV1Jaitpa/eveWOhLmbF18E/v53Za5bac3e\nvYC3t3vc95K6VYwjc/gBD038gLJaN2zeDPTvT3OwGZNSZiZw+rQ6F3SZR/vucN9L6oWjXOoRSUmt\nG7jMw5ylTRvghRfUuaDLXco8AFUYAHoTloJspZ4zZ87AYDAgMjISQ4YMQV1dncXjtFot+vTpA51O\nh759+4oOVGpKusHLN3aZMz39NM2OUXI78lvV1gI//OA+AyKNRtqcc/YsEBAg/vdFJ/7p06fDYDDg\n4MGDGDRoEKZPn27xOI1GA6PRiLKyMpSWlooOVGqRkfTCktuZM7RlnidslM3k0aED8OyzwMyZckdi\nu8JCwGAAbrtN7kikI2Xir6uTKfEXFBQgKysLAJCVlYXly5dbPVYhuzs2ER1Nm57I7dtvgX79AB8f\nuSNh7iw7G/jsM0oYauBOZR4zt0j8tbW1CAoKAgAEBQWhtrbW4nEajQaDBw9GYmIiFixYIPZykuvZ\nkz5O1tcalVs8AAATjElEQVTLGweXeZgrhIQA6emAgv4JWnXhArB+PTB8uNyRSEtJid+7pR8aDAbU\nWGhj+fbbbzf5XqPRQGPl1vuWLVvQtWtXnDx5EgaDAVFRUUhOTrZ4bG5u7o0/6/V66PX6VsIXr00b\nKvdUVNAGFnLZuFGdN96Y+vzxj8DDD9PNXiV/wiwspE1Xbr9d7kikJVXHAKPRiI0bjaiqEt//RyOI\nrMNERUXBaDSiS5cuOHHiBFJSUnDgwIEWfycvLw8dOnTAlClTmgeisX+neEeNGUP7lP7udy697A3n\nzwNdu9Kd/rZt5YmBeZaUFOC554DRo+WOxLrHH6d/l888I3ck0qqrowV15845PkU1I4P+Hmm6q/25\nU3SpJzMzEwsXLgQALFy4ECNGjGh2zMWLF3H+/HkAQH19PdasWYPeClqlFBMDlJfLd/3Nm4H77uOk\nz1xH6Qu66uuBNWsAC+lE9QICAF9fKjE7SrYa/6uvvori4mJERkZi/fr1ePXVVwEAx48fR3p6OgCg\npqYGycnJiI+PR1JSEoYPH44hQ4aIj1ZisbHyJv7164FBg+S7PvM86en0SXPzZrkjsWzVKiAp6dd5\n7+5GqnKPo4lfdKlHanKUen74AUhLo749ckhIAObMoXomY67ywQfAypVAQYHckTQ3ahTw0ENUxnBH\nTz8NJCeLL2MVFhdi1pezYNx6Bf0S2uJP43IwfMhwu3OnRyf+69dp9dvp0+L7Wot15gyg1dK1lXyj\njbmfS5doVtuaNcrqD3XxItCtG8186dxZ7micY9o0Wnw1Y4b9v1tYXIjJcyejUvfrSDWsLAyVKypd\nV+N3B97eNMVKjoVcGzcCDz7ISZ+5Xrt2NMPnb3+TO5KmVqygNS3umvQBx6Z0zvpyVpOkD6DZ97by\n6MQPyHeDd/16+kjLmBwmTACKi6XtGOmoTz+Vb4adqzhS478iXJEsDk78McD+/a6/Lid+JqeOHYGJ\nEwErnVZc7sQJoKTEPWfz3Cw8nHomidkLpK1Guul/nPhlSPw1NfRCj4937XUZu1lODrBsmTL2pcjP\nB0aOdP29Nldr354WplVV2f+7OWNyEFYW1uSxsF1hVo5umccn/rg4YM8e115zwwZq08D995mcAgNp\ndsm778odCZV5fvtbuaNwDbHlnnRDOmZOnInEXanwXz4QqUdTMTNbXOc9j57VA9BHLn9/4Ngx1y0R\n//3vaQPpSZNccz3GrKmpofUs+/cDXbrIE8OuXcAjj1AJxMvNh6KFxYUY//ostOt0BT1D2iJnTA7S\nDel2nWPpUvqE9NVX9L2Y3Nlirx5P4OVFSXj3bsCJrYGaWL+e+qUwJrcuXWhu+dtvA7NnyxPD++8D\n48d7RtKfPHcyqtNoJs5hAJVz6c/2JP/Tpx1f4ObmT7VtdDrg++9dc60jR6j7YEyMa67HWGtefRX4\n8kvaF8LV6upo5OpufXkssTYdc3a+fe+4p04Bd97pWCyc+EE3WV2V+NesoQ0m3GEfUeYeOnemfv15\nea6/9sKFwLBhwF13uf7armZtOublxst2nef0aU78koiPB8rKXHOtoiIgNdU112LMVlOmUJ8cV65p\nEQRqHzFhguuuKSdr0zF9vXztOs+pU1zqkURsLN1lvyLd+giLrl2jGT0K6lPHGACgUyfg5ZeBv/zF\nddcsKqKtFfv3d9015WRtOuak0fbN8uBSj0TatQPCwpw/2tm+HejRA/hl4zLGFCU7myY5rFvnmutN\nnw688ornlD3N0zFTj6YiYMVAJHxH0zHtndUjReL3+Fk9ZjodTStz5qbnXOZhSubrS7vBTZ5MpU9n\n9pHato2mUD/xhPOuoUTphnSkG9KRnU19e9IN9p+Da/wS6tsXKC117jVWr+bEz5Tt4YepQ+a8ec69\nzt/+Brz0EjVK9ESO9OzhGr+E+vWjXiHOcvIk/UVz732mZBoNMHMm8NZbtLjLGbZsoZKSJ0zhtEZs\nl86rV6l9tb+/Y9cXnfiXLFmC2NhYtGnTBrt27bJ6XFFREaKiohAREYEZYppQu0hcHHUq/GWnSMkV\nF9MCsdtuc875GZNKdDRthDJhgvRbNAoCrRv461+ptOSpIiLEjfjNi7ccvS8iOvH37t0by5Ytw4AB\nA6we09DQgOzsbBQVFaG8vBz5+fmoqKgQe0mnuu02mtb53XfOOX9hIc1XZkwN3niDRqT5+dKet6CA\nFm099ZS051UbrZb23q2vt+/3pFi1CziQ+KOiohAZGdniMaWlpQgPD4dWq4WPjw9GjRqFFStWiL2k\n0zmr3HPtGs2RzsyU/tyMOUPbtsAnn9CGLdXV0pzz/HnqCPqPf3CDQrGbQEkxowdwco2/uroaoaGh\nN74PCQlBtVSvIidwVuLftIn6cHfrJv25GXOWxESa4fP441RbdtTrr9MeFIMGOX4udyBmEyipEn+L\n99QNBgNqLNzhmTZtGjIyMlo9ucbOQlRubu6NP+v1euhd1TXtF0lJ1DFTEKSdW1xQQLMlGFObV1+l\nwdBLLwGzZok/z4YNwJIlwN690sWmdjExgL2V7xMngIYGI3JzjQ5du8XEX1xc7NDJg4ODYbpplweT\nyYSQkBCrx9+c+OUQGkofwSoraYQuBUGgvUS/+Uaa8zHmSl5e1Cu/b19g7lzatcteNTVU01+4UJr6\ntLuIiQG++MK+3zlxAkhM1OP11/U3HssT0WRJklKPtV7QiYmJOHToEI4cOYKrV69i8eLFyFRwoVuj\nAVJSaHQilb176R9PbKx052TMlQICaA3K9On0JmCPc+eA9HSaIWQQsVjJnYkp9Zw4AXTt6vi1RSf+\nZcuWITQ0FCUlJUhPT8ewX6asHD9+HOnptATZ29sbc+bMQWpqKmJiYvDkk08iOjra8aidKCWF+uVL\nZdkyKvN4yrJ05p569KDk/9prwDvvWJ7mWVhciNSxqdA/rUfq2FQs+roQ6elUQnVlDyC1CA+n1cv2\n9AiTKvF7/A5ctzpyhG7ynjjheLIWBHpX/9e/gPvvlyQ8xmRVVQUMH04rT2fP/rXvlHmTkZv7zfss\nD8Pwe2ZiyRfpHj+Lx5roaODf/wZ697bt+Lg4mm11c2sZMbmTV+7eQqulpm1SLDfYswe4dIneSBhz\nByEhwNat9AkgJgZ48UXg22+Bdxc232Tk2ohKXPSbzUm/BfaWe2Qv9bizhx4C1q51/DyLFgGjRnGZ\nh7kXPz9gxgxq5Na2LW0junm7NJuMeBp7ZvZcvQr8/DNtnOMoTvwWpKc7PgtHECjxjx4tTUyMKU33\n7tRs7bvvgEH9pdlkxNPYM+KvraWkL8UnKE78FgwZQnOXz50Tf44tW6hk1KePdHExplRSbTLiaexJ\n/FKVeQDux29Rhw7URXPNGuCxx8SdY8EC6j7IZR7mCcybiczOn43LjZfh6+WLSdmT7N5kxNPccw+t\nG7pyhcpmLZEy8fOsHivef59G/fbOWwaoDtejB3X7lGJ5NWPMffXqBXz2WeubQM2eTZ8Obt0rgWf1\nSGjECKrzX7pk/+9+8QUwdCgnfcZY63Q6ulHemp9+ogGlFDjxW9GtG3DffdRuwR6CAMyfD/z+986J\nizHmXuLjOfEryu9+Z3+pZ9UqatHw0EPOiYkx5l50OuD771s/TsrEzzX+FtTX04KVvXvpv7YYMID6\nkvA0TsaYLc6coYWjdXU0aLREEKhn0o8/Nm90xzV+ibVvDzz9dOvtaM09SuIe1uO746lof3uhS+Jj\njKlfYCBw++2U1K2pq6PkHxgozTV5OmcrJk8G7r0X+POf6S/nVk16lGgBJAAvflCJNm3AU9kYYza5\n915gxw7r7eDNZR6ppofziL8VWi3wyCPA1KmWfz7ry+Y9Sip1lZidP9v5wTHG3MIDD1APJGt+/FG6\n+j7Aid8mU6fSJhJ79jT/2RWBe5QwxhzzwAO02t+aigrq5CkVTvw2CAqiDaKfeIJuxNxMc517lDDG\nHHPvvbTx+oULln++fz8t9JIKJ34bPfUULepKTga2bwcaGminrgPf5iBgLfcoYYyJ17YtTevcvt3y\nz/ftk3YXP9E3d5csWYLc3FwcOHAAO3bsQEJCgsXjtFotOnXqhDZt2sDHxwelpaWig5Xb9Om0AcXo\n0cDRo0BUFDDrf9PhF8A9ShhjjnnwQSr3DBrU9PErV6ifT1SUdNcSPY//wIED8PLywvjx4/H3v//d\nauLv0aMHdu7cicBW5iEpcR5/S65fp43ZGWNMCqtWUZvrTZuaPr59O/CHP1hf3evSefxRUVGIjIy0\n6Vg1JXRbcdJnjEkpJYVW8N56H3HbNul38XN6jV+j0WDw4MFITEzEggULnH05xhhTJV9fSv6rVjV9\nfMsW6ffsbnHcajAYUFNT0+zxadOmISMjw6YLbNmyBV27dsXJkydhMBgQFRWF5ORki8fm5ube+LNe\nr4der7fpGowx5g4efhj46ivgN7+h769epW1gb+4eYDQaYTQaHbqOw716UlJSWqzx3ywvLw8dOnTA\nlClTmgeisho/Y4xJ7dw54O67qe9+167A6tXAm2/S3iDWyNarx9pFL168iPPnzwMA6uvrsWbNGvTu\n3VuKSzLGmNvp1An47W/pJi9A64fGjZP+OqIT/7JlyxAaGoqSkhKkp6dj2LBhAIDjx48jPZ2mMtbU\n1CA5ORnx8fFISkrC8OHDMWTIEGkiZ4wxN/TGG8DXXwOPPkq7+GVlSX8NbsvMGGMKc/QosHgxrRkK\nDW35WDG5kxM/Y4ypGPfjZ4wx1ipO/Iwx5mE48TPGmIfhxM8YYx6GEz9jjHkYTvyMMeZhOPEzxpiH\n4cTPGGMehhM/Y4x5GE78jDHmYTjxM8aYh+HEzxhjHoYTP2OMeRhO/Iwx5mFEJ/6XX34Z0dHRiIuL\nwyOPPIKzZ89aPK6oqAhRUVGIiIjAjBkzRAfKGGNMGqIT/5AhQ7B//37s3r0bkZGR+Jt5r7CbNDQ0\nIDs7G0VFRSgvL0d+fj4qKiocCpi1ztGNmFlT/HxKi59P+YlO/AaDAV5e9OtJSUmoqqpqdkxpaSnC\nw8Oh1Wrh4+ODUaNGYcWKFeKjZTbhf1jS4udTWvx8yk+SGv+//vUvpKWlNXu8uroaoTftGxYSEoLq\n6mopLskYY0wk75Z+aDAYUFNT0+zxadOmISMjAwDw9ttv47bbbsOYMWOaHafRaCQKkzHGmGQEB3z8\n8cfCAw88IFy6dMniz7dt2yakpqbe+H7atGnC9OnTLR4bFhYmAOAv/uIv/uIvO77CwsLszt2iN1sv\nKirClClTsHHjRtx5550Wj7l+/TruuecerFu3Dt26dUPfvn2Rn5+P6OhoMZdkjDEmAdE1/kmTJuHC\nhQswGAzQ6XR4/vnnAQDHjx9Heno6AMDb2xtz5sxBamoqYmJi8OSTT3LSZ4wxmYke8TPGGFMnWVbu\nLlmyBLGxsWjTpg127dpl9The/GWbM2fOwGAwIDIyEkOGDEFdXZ3F47RaLfr06QOdToe+ffu6OErl\ns+X1lpOTg4iICMTFxaGsrMzFEapLa8+n0WiEv78/dDoddDodpk6dKkOUyjdu3DgEBQWhd+/eVo+x\n+3Vp910BCVRUVAg//PCDoNfrhZ07d1o85vr160JYWJjw008/CVevXhXi4uKE8vJyF0eqDi+//LIw\nY8YMQRAEYfr06cIrr7xi8TitViucPn3alaGphi2vt8LCQmHYsGGCIAhCSUmJkJSUJEeoqmDL87lh\nwwYhIyNDpgjVY9OmTcKuXbuEXr16Wfy5mNelLCP+qKgoREZGtngML/6yXUFBAbKysgAAWVlZWL58\nudVjBa7sWWTL6+3m5zkpKQl1dXWora2VI1zFs/XfL78eW5ecnIzbb7/d6s/FvC4V26SNF3/Zrra2\nFkFBQQCAoKAgq3/pGo0GgwcPRmJiIhYsWODKEBXPltebpWMsrVhntj2fGo0GW7duRVxcHNLS0lBe\nXu7qMN2CmNdliwu4HGHL4q+W8OKvpqw9n2+//XaT7zUajdXnbsuWLejatStOnjwJg8GAqKgoJCcn\nOyVetbH19XbrCJVfp5bZ8rwkJCTAZDLBz88Pq1atwogRI3Dw4EEXROd+7H1dOi3xFxcXO/T7wcHB\nMJlMN743mUwICQlxNCzVaun5DAoKQk1NDbp06YITJ07grrvusnhc165dAQCdO3fGyJEjUVpayon/\nF7a83m49pqqqCsHBwS6LUU1seT47dux448/Dhg3D888/jzNnziAwMNBlcboDMa9L2Us91mp8iYmJ\nOHToEI4cOYKrV69i8eLFyMzMdHF06pCZmYmFCxcCABYuXIgRI0Y0O+bixYs4f/48AKC+vh5r1qxp\ncZaAp7Hl9ZaZmYlPP/0UAFBSUoKAgIAbJTbWlC3PZ21t7Y1//6WlpRAEgZO+CKJel9Lcd7bP119/\nLYSEhAi+vr5CUFCQMHToUEEQBKG6ulpIS0u7cdzKlSuFyMhIISwsTJg2bZocoarC6dOnhUGDBgkR\nERGCwWAQfv75Z0EQmj6flZWVQlxcnBAXFyfExsby82mBpdfbBx98IHzwwQc3jpk4caIQFhYm9OnT\nx+qMNEZaez7nzJkjxMbGCnFxccL9998vbNu2Tc5wFWvUqFFC165dBR8fHyEkJET45z//6fDrkhdw\nMcaYh5G91MMYY8y1OPEzxpiH4cTPGGMehhM/Y4x5GE78jDHmYTjxM8aYh+HEzxhjHoYTP2OMeZj/\nB+7YcEUS3L2uAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 75 } ], "metadata": {} } ] }