{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "import numpy as np\n", "import numpy.linalg as la\n", "import matplotlib.pyplot as pt" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "#nodes = [0, 0.3]\n", "nodes = [0, 0.3, 0.8]\n", "#nodes = [0, 0.3, 0.8, 2, 3]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "def lagrange_basis_func(j, x):\n", " ... \n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 23 }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "(Edit cell for solution)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mesh = np.linspace(-0.5, 3.5, 100)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [ "pt.axhline(0, color=\"black\")\n", "pt.axhline(1, linestyle=\"--\", color=\"black\", alpha=0.3)\n", "for node in nodes:\n", " pt.axvline(node, linestyle=\"--\", color=\"black\", alpha=0.3)\n", "\n", "for i in range(len(nodes)):\n", " pt.plot(mesh, lagrange_basis_func(i, mesh))\n", " \n", "pt.ylim([-2,2])" ], "language": "python", "metadata": {}, "outputs": [ { "latex": [ "$$\\begin{pmatrix}-2, & 2\\end{pmatrix}$$" ], "metadata": {}, "output_type": "pyout", "png": "iVBORw0KGgoAAAANSUhEUgAAAE0AAAAaBAMAAAAArMzMAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMkS7zRCZdiKJ71Rm\nq90icBAQAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABZUlEQVQ4EYVQO0vDUBg9KXncxjYEB9dmdDPS\nP6CTkzRDVzFQ0cldBCGTONlOQkGws4N0cnFx1SkgnQQNCIIgvqCDi/G7N+R1M+TAzfed8537yAGw\niBoYYq64NTY0Qu5QvTofzrljL7ex3a6dM9EdD1YBi45i83yyheZPzninhbhwYPhAk1aKGXCZ9klt\nezAnYF+AOc0nV8Bz+WIzQvsbeAc6dHeKnif71LnwDYD71JTUz8K2RLHoBw6BnZKv8VuinKyMaHno\nlgaWW6KcvNDq2Nik0v/gWKeOHiJB5zuHDl6LuhEWmeiP+Hc4Fedlw2uwICOiWfBxIs7j96ZQfBhB\nSpK6BBzQ+wI8FPTT8dkTttcKCnsb70fifymaDL04/gPPK4Max3EkQqZoJCxLnCjFYDqyfCsLwAag\njyRZq/o0eooykXwtiRNt8Vgfq7qsWDYpfVmt8jsuUeI1YK4w3NTYoHt1jnz+DzR0SI1jX2b1AAAA\nAElFTkSuQmCC\n", "prompt_number": 26, "text": [ "(-2, 2)" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/DXsLiACy4wIKAUsgoMIEJaJKhoSKKmppZd\nr3q/eS01b2Xr/ZlWmnZvi2WbWmY3Q7MiMYG0dNwRF1QURVBJdkWFVES2z++PT4LADLOcc+YMzPv5\nePCoYc58Pm9P9ubwPp/z/igYYwyEEEIshpXcARBCCDEtSvyEEGJhKPETQoiFocRPCCEWhhI/IYRY\nGEr8hBBiYQQl/vz8fERHR2PAgAEICAjARx99pPG4+fPnw8vLCyqVChkZGUKmJIQQIpCNkA/b2tri\ngw8+QHBwMG7evImBAwciJiYGfn5+DcckJycjNzcXOTk5OHToEObMmYO0tDTBgRNCCDGOoCt+Z2dn\nBAcHAwC6dOkCPz8/FBUVNTkmKSkJ06dPBwBERESgvLwcpaWlQqYlhBAigGg1/ry8PGRkZCAiIqLJ\n9wsLC+Hu7t7w2s3NDQUFBWJNSwghxECiJP6bN29i4sSJWLlyJbp06dLi/eZdIRQKhRjTEkIIMYKg\nGj8A1NTUYMKECZg2bRrGjRvX4n1XV1fk5+c3vC4oKICrq2uL4/r374/z588LDYcQQiyKp6cncnNz\nDfqMoCt+xhhmzZoFf39/LFiwQOMx8fHx+OabbwAAaWlpcHBwgFKpbHHc+fPnwRiT9Ku4mKFHD4a6\nOuPHmDt3ruRxZmdnC/r8G2+8IXmMoseZnQ3m7AxWWytKbMOGMWzbJs6f01Tnk+I0r6+2EqcxF8yC\nrvj379+Pb7/9FkFBQQgJCQEALFu2DJcuXQIAzJ49G6NHj0ZycjL69+8Pe3t7rFu3TsiUgjg7A46O\nQGYmoFIZN0ZZWZm4QWmQnZ0Nb29vyecRStQ4N28GJkwArK0FD1VdDaSnA0OGiBAXIe2QoMT/0EMP\nob6+Xudxq1atEjKNqIYOBXbvNj7xE4ls3gysXCnKUOnpgI8P4OAgynCEtDsW9+RudDSwc6fxnw8M\nDBQvGIlERUXJHYJeGuLMyQFKS4GHHhJl3J07+X9nsbS582nmKE75WVzij4oC9uwB6uqM+zwlfvE0\nxLlpk2hlHgDYtYsSvzmjOOVncYnfxQVQKoETJ+SOhAAAGAMSEoCpU0UZrqoKOHwYiIwUZThC2iWL\nS/wAvxrctcu4z/r4+IgbjExziEGUODMzgZs3gcGDhY8F4OBBICAA6NpVlOEIaZcsMvEPG2Z8nd8U\nq23awooeQKQ4N24EpkwBrMT5qyh2mYeQ9sgiE39UFLBvH1BbK3ckFo6xxsQvEkr8hOhmkYm/d2+g\nXz/g6FG5I7Fwhw4BHToAfzX6E+rWLSAjA3jwQVGGI6TdssjEDwir8xOR3L2pK1Lvpv37gZAQwN5e\nlOEIabcsOvELWc9PBKqrA77/XrTVPACVeQjRl8Um/qFD+QqQ6mrDPnfu3DlpAjLxHGIQFOfu3UCf\nPoCIN7Ip8ROiH4tN/D168JyTnm7Y57Kzs6UJyMRziEFQnAkJot7UvXEDOHVKtFWhhLRrFpv4Aarz\ny6aqCvjxR1HLPHv3AoMGAZ06iTYkIe2WRSf+YcOA336TOwoLtHUrEBoKuLmJNuRvvwHDh4s2HCHt\nmkUn/qFD+ZLOmzfljsTC/O9/wFNPiTrk9u1ATIyoQxLSbll04re3B8LC+H1GYiJXrvAueY89JtqQ\nRUX8KyxMtCEJadcsOvED/Cpxxw79j6dePY2MinPTJiAuTtRmOr/9xu/XiNTck5B2z+IT/8iRhiV+\n6tXTyKg4JSjz7NhBZR5CDKFgjDG5gwAAhUIBOUKpqwOcnICTJwENe8ATMWVn80ZJ+fmAjaDN3xow\nxh8H2LcP8PQUZUhC2hRjcqfFX/FbW9PqHpP53//4Ek6Rkj7A1+7b2VHSJ8QQghP/zJkzoVQqte5M\npVar0b17d4SEhCAkJARvv/220ClFZ2idnxihvh749lvgb38TdVgq8xBiOMGJf8aMGUhNTW31mKFD\nhyIjIwMZGRn497//LXRK0d1N/HrsG0+MtXs30K2b6LvcU+InxHCCE39kZCR69OjR6jFmchtBq/vu\n44tMMjN1H0u9ehoZFOe6dcDMmaJ14gSAO3d4R85hw0QbkhCLIHmNX6FQ4MCBA1CpVBg9ejSysrKk\nntIo+pZ7qFdPI73jrKgAkpKAJ58Udf4DBwA/P953iRCiP8kTf2hoKPLz83HixAnMmzcP48aNk3pK\noxi6rJMYYNMmYMQIwNFR1GGpzEOIccRbXqFF13se1ImNjcUzzzyDa9euoWfPni2OXbx4ccO/R0VF\nISoqSurwGkRH8/uOt28DnTubbFrL8NVXwKJFog+7fTvw3nuiD0uIWVOr1VCr1YLGkDzxl5aWwsnJ\nCQqFAunp6WCMaUz6QNPEb2oODvy+4549wKhRsoXR/pw+zdftjxwp6rClpUBuLjBkiKjDEmL2ml8U\nL1myxOAxBCf+qVOnYvfu3SgrK4O7uzuWLFmCmpoaAMDs2bPxww8/4LPPPoONjQ3s7OywceNGoVNK\nZvRoIDmZEr+o1q0Dpk8Xde0+AKSm8uqRra2owxJiESz+yd17HT8OTJoE5ORoP+bcuXOSt1QwxRxi\n0BlnTQ1vvbxvH+DlJercU6bwXyJmzhR1WELaHGNyJyX+ezDG2zbs3i16nrJMiYnABx/w+pmIamt5\nm41Tp3i7BkIsGbVsEEihAGJjgZQUuSNpJ1avBv7xD9GHPXQI6NePkj4hxqLE38zo0ZT4RZGXBxw+\nzGtnIktO5j+gCSHGocTfzIgRvCRdWSl3JG3cmjXAtGmSrI1NSeE/oAkhxqHE30z37sDAgbQJuyA1\nNXzt/uzZog9dXMx/mXjgAdGHJsRiUOLXoLVyD/XqaaQ1zqQkfnfcz0/0OVNT+dO6Iq8OJcSiUOLX\nIDaW15E13SinXj2NtMb5+efAP/8pyZzJyVTmIUQoSvwaBATwakUbufA2L7m5wIkTwIQJog9dU8M3\nzHnkEdGHJsSiUOLXQKHgV5W//CJ3JG3QmjW86VHHjqIPvX8/32lLqRR9aEIsCiV+LeLjeamaGKCq\nirdoePppSYbfsgUYO1aSoQmxKJT4tRg2jLdwKCuTO5I2ZONGviRKgnYTjPHEHx8v+tCEWBxK/Fp0\n7gwMH85vJt7Lx8dH8rlNMYcYmsTJGPDxx8C8eZLMdfo03xozKEiS4QmxKJT4WzF2LL/KvJcpmqe1\nhQZtQLM4Dx4E/vxTsjuvd8s8Iu7cSIjFosTfirg4voqkqkruSNqAjz8Gnn0WsJLmr1RSEpV5CBEL\nJf5W9O7NN2fZuVPuSMxcURHw66/AjBmSDZ+TAzz8sCTDE2JxKPHroKncQ5r54gveIL97d0mG/+UX\nXkGiTVcIEQclfh3uLuusr5c7EjNVXc3bL8+dK9kUtIyTEHFR4tfBywvo0YN3GAaoV8+9zp07x5dw\nBgYC/v6SzHHzJrB3Lz2tS4iYKPHrYezYxoe5qFdPo+yzZ4H//hd48UXJ5ti+nXfilKiKRIhFEpz4\nZ86cCaVSicDAQK3HzJ8/H15eXlCpVMjIyBA6pcmNHct3EZRLWWUZEjIT8Pef/47o9dGYtHkSntn2\nDJbuWYo/yv+QLS7H48f5v8TESDZHYiKVeQgRm+DEP2PGDKSmpmp9Pzk5Gbm5ucjJycHq1asxZ84c\noVOaXHg4X6KelWXaeU9fPo3h3wyH50eeSDiVgHDXcLwe+Tom+k2Ev6M/Sm6WIHR1KCZtnoQD+QdM\nvmexZ2Ii8MILki2uv3OH39h97DFJhifEYgnuah4ZGYm8vDyt7yclJWH69OkAgIiICJSXl6O0tBTK\nNtRpy8oKmDgR+OEHICRE+vlq6muwaNcifHbkM7wZ9SZSnkxBB+sOGo9dNnwZvj7+NZ5KfArhruFY\nO2Yt7DvYSx/kiRPocukSMHWqZFPs2MFvH7i4SDYFIRZJ8hp/YWEh3N3dG167ubmhoKBA6mlFN3Ei\nsHmz9PPkXM3Bc2eeQ+blTByffRxzBs3RmvQBoGvHrpgXMQ+n5pxCR+uOGPLVEFy4fkH6QN97DxfH\njAE6aI9NqM2bJdmylxCLZ5J9jJqXIBRaSgNT77l6DAwMRGBgIHx8fDS2MDh37pzGm6BSHV9fDxQV\njUBpaQ+NsYsRT2FVIZbkLcGcoDlYNHqRQeN3tu2MdWPX4ZPDn2Dwl4OxfNBy9P6zt6B4tB5fUIC6\npCSkLVqE81u3ij8+gFOnzuGnnzwQHb0bW7dW6Tze1H8f6Hg6Xq7ji4qKoFarW7xnECaCixcvsoCA\nAI3vzZ49myUkJDS89vHxYSUlJS2OA8BYfb0Y4Uhm3jzG3npLmrGzy7KZ63uubO3RtYLH2p23mzm+\n68gOXDogQmQavPgiY889J83Yf0lOZmzIEEmnIKRdMCaNS17qiY+PxzfffAMASEtLg4ODg/b6/m+/\nSR2OIHfr/GI7d/Uchq0fhjej38Ss0FmCx3u438NYP249Hvv+MZy/dl6ECO9x9SrfSP3558Udtxkq\n8xAiHcVfPzGMNnXqVOzevRtlZWVQKpVYsmQJampqAACzZ88GAMydOxepqamwt7fHunXrEBoa2jIQ\nhQIsKgrYtUtIOJKqqwPc3IA9e/iDXWK4VX0LYWvCsCBiAWaHzRZn0L98dvgzrDy0EgdmHUDPzj3F\nGfSNN4DCQmDtWnHG06CmBnB25vsh3HN7iBCigUKhMHhFn+DELxaFQgHm4QFs2AAMGSJ3OFrNnQv0\n6QO89po4483cMhN1rA7rx60XZ8BmXtz+Ig4XHcaOp3a0epNYL3/+yfc+PHgQ6N9fnAA1+PVXYPFi\nPg0hpHXGJH7zenL3pZeAd96RO4pWiVnu2XByAw7kH8Anoz8RZ0AN3o15F/a29li2d5nwwT77DBg5\nUtKkD/DzO3GipFMQYtHMK/HPmAEcPQqcOCF3JFopledQVATk5gobJ+dqDhb8ugAbJ25Elw5dmrwn\nZq8eK4UV1oxZg08Pf4oTJQLOa2Ul8MEHwKuvNnxLip5CNTXAzz9T4idESuaV+Dt1Av71L2DpUrkj\n0So3NxuPPw58953xY9TW12Lqj1OxeOhiBDsHt3hf7F49rt1csXzEcszYMgM1dTXGDbJ2LTB4MBAQ\n0PAtKXoK/for4OMD9Osn+tCEkL+YV+IHgDlz+N3TzEy5I9HqySf5rQhj746sProaXTt2xTODnhE3\nsFbMCJ4BJ3sn/OfAfwz/8J07wH/+A7z+uviBNbNhAz+/hBDpmF/i79IFWLiQ390zU+HhfIXPkSOG\nf/Zq5VUsVi/GykdWan2QTQoKhQKrx6zGB2kf4PTl04Z9ePVqIDgYCAuTJri/3LgBpKTQMk5CpGZ+\niR/gV/0HDwJm2slToQCmTeNXp4ZatGsRJvlPQpAySPzAdOjbvS/eGPoGFvy6QP8PVVbyG+5vvild\nYH/5+WcgMpJveUkIkY55Jn47O+CVV/iacTP15JN8D5LaWv0/c7L0JDZnbcab0dInUW1mD5yNvPI8\n/H7hd/0+8MknwIMPmqQ7HZV5CDEN80z8APD008CxY41bX5kJHx8fAPwBrr59gd/1zJ+MMTyX+hwW\nRy1GL7tees0hBVtrW7wd/TZe+f0V3Wt///yT1/aXLNH4tphxlpYChw7xrS4JIdIy38TfqRN/SmrR\nIt3HmtC9DZUMKfckZSfhauVVPD3waYPmkMKkAZNQz+rx45kfWz9w5Upg1Cit2yqKGefGjcCYMfyX\nPUKItMzryd3mody5w9f2rV8PDB0qT2CtKC0FfH2BggLAvpUW+IwxDFozCK9Hvo7xfuNNF2Artp/f\njnkp83D6mdOwsdLQpPX6df5rTVqa5A9sAfyG+Vtv8Z8zhBD9tf0nd5vr2JGv6V+40Pi1kxJSKoGI\niMb9eLXZfn47qmqrMNbXfPYQjLk/Bq5dXbEuY53mA5Yv51tfmSDp5+QAly4Bw4dLPhUhBOae+AG+\nw1NtrWl2QTHCU0/xX0ha8/bet/Fa5GuwUpjP6VYoFFg+Yjne3PMmquuqm76Zl8cf2NJS2xfb118D\nTzwB2JhkdwhCiPlkIm2srPgNxldfBaqrdR9vYo89xu8/X7qk+f09f+xB8Y1iPD7gcdMGpodw13D4\n9PLBplObmr7x+uvAvHkm2fOwtpYn/lnCu1ETQvRk/okf4DUAHx/g88/ljqRFf5rOnYEpU3jy0uTt\nPW/j1Yde1VxH13MOKT0/+Hm8n/Z+Y43wyBHeGvvFF3V+Vow4U1N56+UBAwQPRQjRU9tI/ACwYgWv\n91dUyBqGpv40s2bxvUnq65t+P70wHWfLzuIp1VOC55DKI/0fwZ3aO9iVt4vfR3nxRV7i6dJF52fF\niPPLL4F//EPwMIQQA7SdxB8YCMTFAW+/LXckLYSGAj17tlzTv2L/CiwcslB4H3wJWSms+FX/wfeB\nrVuBsjLeJdUESksBtRqYPNkk0xFC/tJ2Ej8ALFsGrFsHmPCKWF+zZvGr17sK/izArou7MCPENElU\niGlB03Dy0mHc+dd8fj/FRHdZv/kGGD8e6NrVJNMRQv7SthK/szN/qOu558xueecTT/B69dWr/PWa\no2swNWBqi1775qiTTSesyw3A2d4MiI01yZyM8R+UdFOXENNrW4kf4KtNLl3SvXjexHr0AB59FPj2\nW6CmrgZrM9ZizqA5coeln0uXEJ2Ygb8PLceVW1dMMuX+/fyfZrzLJiHtluDEn5qaCl9fX3h5eWHF\nihUt3ler1ejevTtCQkIQEhKCt4XW6G1tgY8+4hu23L4tbCwjtNafZtYsvvx9S3YSPHt4IsApQOux\nxs4hieefh9X85xD64ESsO67lgS4NhMS5di0/XybsTE0IuYsJUFtbyzw9PdnFixdZdXU1U6lULCsr\nq8kxu3btYmPGjNE5lsGhPPYYY0uWGPYZidXVMebtzVjoymHsu5PfyR2OfrZvZ+z++xmrrGT7L+1n\nPh/7sPr6ekmnvHKFMQcH/k9CiDDGpHFBV/zp6eno378/PDw8YGtriylTpmDLli2afrgImUaz99/n\nV/4mXPOui5UVMGlONk5fOYXH/B6TOxzd7tzhpbMPPwQ6d8Zgt8FQKBQ4kH9A0mm//BIYN4767hMi\nF0GJv7CwEO7u7g2v3dzcUFhY2OQYhUKBAwcOQKVSYfTo0cjKyhIyZaN+/YD/9/94++bmC+hldP3+\nz6HImImy0o5yh6LbsmX8wbgxYwDw/1Yzg2fiy4wvdXzQeLW1wKefAnPnSjYFIUQHQev29Nk6MDQ0\nFPn5+bCzs0NKSgrGjRun9YnPxfdstxgVFYWoqKjWB587l+96/uWXwP/9nwGRS+N2zW1sOvs/TLr/\nCD7/nHebNFsnT/IMfOJEk2//TfU3+H7ii5WPrETXjuKvs/zlF8DVFRg4UPShCbEIarUaarVa2CBC\naksHDx5ko0aNani9bNkytnz58lY/4+Hhwa5evdri+0aHcvIkY717M1ZYaNznRfT9qe/ZiG9GsDNn\nGFMqGauqkjsiLWpqGAsLY2zNGo1vj00Yy9YeXSvJ1MOGMbZhgyRDE2KRjMmdgko9YWFhyMnJQV5e\nHqqrq7Fp0ybEN9tCqbS0tKHGn56eDsYYevbsKWTapgIDgX/+k9eqTaC1/jTfZn6LaYHT4OvLwzK2\noajkvXo+/BDo3l3rIvpZIbP0KvcYGmdWFv+aONGgjxFCRCYo8dvY2GDVqlUYNWoU/P39MXnyZPj5\n+eGLL77AF198AQD44YcfEBgYiODgYCxYsAAbN24UJfAm/v1v4MwZvo2TxLT1pymrLIM6T92w0cq8\necDHH4s7hyhycnjfo9Wrta6ljPWKxcXyizhz5UyrQxka56pV/JZMB/PtYEGIZRD99w4jCQ7l6FHG\nHB0Zu3RJnIC0SEpK0vj9T9M/ZZM3T254XVvLmIcHY2lp4s0hWE0NYw88wNjKlToPfXnHy+zFX19s\n9RhD4rx+nbEePcyiIkdIu2JM7mx7T+5qExrKH+qaPl2WVT4bMjdgWtC0htfW1sCCBbz1jdl46y1e\n4tFjSc3fVH9DwqkE1DNxzuWnn/LFQ336iDIcIUSA9pP4AeCll4CaGuCDD0w67YXrF5B9NRujPJtu\nGPuPfwB79phJT7l9+3h5Z906/sCBDv6O/nDo5ICD+QcFT337Nn/k4qWXBA9FCBFB+0r81ta85ePy\n5S2WKUrpu8zv8Lj/47C1tm3yfXt74NlnzeCqv6KC7xG5erVBu2pNHjAZm05v0n2gDuvW8b2JabMV\nQsxD+0r8AHDfffyK//HHgT//FH345v1pGGMtyjz3mjsX+OknoKDA+DkEYQyYM4d33fzrQS19PT7g\ncWzO2oy6+jqN7+sTZ20t/8H3yisGTU0IkVD7S/wAMG0aEB0NzJwpevtmb2/vJq+PFR9DdV01HnB7\nQOPxvXrx2w6GVJ+azyHIp58Cp08D//2vwR/16e0Dpb0S+y7t0/i+PnFu3gz07QsMHmzw9IQQibTP\nxA/wtep//MF7+kho46mNmBowtdWnmJ9/npc7rl2TNJSW9u8H3nyT/8phZ2fUEELKPYzxqhtd7RNi\nXtpv4u/UCfjhB15n2LNHkikYY0g8m6izIZu7O29KtmqVJGFoVlzMy11ffw14eho9zOMDHsePZ35E\nbX2twZ9NSeH/fOQRo6cnhEig/SZ+gDdy+/prYMoUfvUvslOXT6G2vhYhziE6j335Zf5A1/XroofR\nUnU1MGkSf6JZ4I5anj094d7NHbvzdhv0OcaARYv4s3XUc58Q89K+Ez/ALzdfeolv1F5RIerQP535\nCeN9x+vVrM7HB4iPN6rUbhjG+OOxvXsDr78uypDGlHsSE3koEyaIEgIhRETtP/EDfI/e6GjeJKam\nRtBQ9/anSTyb2NCiQR9vvAF8/jlQWqr/HAZbtAg4e5Z3LdVjvb4+Jg2YhJ/O/ISauqbnTlucdXX8\nSn/pUtFCIISIyDL+t1QoGjYbwT//KWilz93+NBevX0TxzWI86P6g3p/t25cvp1+2TL85DLZ6Ne9X\ntHWr0TdzNfFw8ICHgwf25+9v8n1tcW7YwH/hGDVK49uEEJlZRuIH+MNdCQn8wa7XXhO8zDPxbCLi\nveNhbWVt0Odee41vyC76LYdffuG/UqSkAI6OIg8OjPEeg63ZW3UeV13Nw1i6lGr7hJgry0n8AH+U\nNjUV2LYNuGfTF2P8dOYng8o8dzk5Ac88AyxZImj6plJT+TMLW7YA/fuLOHCjeJ94JJ1L0rmN5tq1\ngJ8fEBkpSRiEEBEI2oGrTerdG/jtNyAqCrC15cVoA5XeLMXpK6cx/L7hRoXwwguAtzeQmcn79guS\nksKfENuyBQgPFziYdsHOwaiqrUL21Wz49vbVeExFBe8Dt22bZGEQQkRgWVf8dzk5Ab//Dvzvf7wm\nYWDZZ0v2FjzS/xF0tDFuX10HB37FP3euwIrTvUlf4kdjFQoFHvV6tNVyz+LFvCtEaKikoRBCBLLM\nxA/wZmW7dgGbNgHz5/OlKHrw8fHhq3l8DS/z3Ovpp3krIU17x+jVq+e770yW9O8a4zMGSeeSGl7f\nG+epU/ym7tKlJgmFECKAgukq2pqIQqHQWT+WREUFMH48vwzfsIGv/GnFrepbcH7PGYXPF6Jbx26C\npj5wgD9ce+YM0FXffc0Z49l1zRp+Q1dwrUh/VbVVUP5XiQvzL6CXXa8mIQ0bxlfLPvusycIhhMC4\n3Gm5V/x3de/OSyadOgEjRvBWB61Q56kR1idMcNIHgCFD+JRvvaXnB6qr+U3cxETg4EGTJn0A6GTT\nCcPuG4bknOQm3//+e/5E8uzZJg2HEGIkSvwA0LEjX2M5ciQwcCCv/2uRkpuCRzzFaz6zfDlv4Ham\n9e1tgYsXgYcf5p3e9uyRbSurMd5jsPVcY53/5k3gxRd5HyIby1sqQEibJDjxp6amwtfXF15eXlix\nYoXGY+bPnw8vLy+oVCpkZGQInVIaVlZ8Afo33/CnrJYsaVH3Z4whJTcFsV7C+t/cy9mZP2w7a1Yr\ntxk2beI7mUyezK/27e1Fm99QcV5x2H5+O6rrqgEACxfy31oeeki2kAghhhKyyW9tbS3z9PRkFy9e\nZNXV1UylUrGsrKwmx2zbto3FxsYyxhhLS0tjERERGscSGIq4iooYi4riG5MfP97w7eyybOb6niur\nr68Xdbq6Osaioxl7551mb1y5wtjf/86YlxdjR46IOqcQD6x9gG3P3c5SUxnr25ex8nK5IyLEchmT\nOwVd8aenp6N///7w8PCAra0tpkyZgi1btjQ5JikpCdOnTwcAREREoLy8HKW6mtXIzcWFl3tmzgRi\nYvjC+5s3kZKTgsGOg/VqymYIKyveRPS99/iDxefOnOEbqPj783sQR4/yEpSZiPOKQ+KpFEyfXoOv\nvuIhEkLaDkGJv7CwEO7u7g2v3dzcUFhYqPOYAkP2IZSLlRXwf//H1ymWlQHe3uj08Wfwq+oryXR9\n+wL/WVGPL8dugVPco/yO6e+/8x5Dei/5MY2RniPx3aHtCAsrwHDjnmEjhMhI0O04fa98WbOlRto+\nJ/aVtJiCbYDXjxZj3HfZeO3p9/ElgMsijd0RwJMAFgIYgP6YhcH46eIGIChIpBlEppgALCzEtj3+\nUCiq5I6GEGIgQYnf1dUV+fn5Da/z8/Ph5ubW6jEFBQVwdXXVOF7zHxDmJCUnBe/sewe9Kidj2ZEj\nWJaYCAwaBEydyhvt9+5t2ICVlbzHzo8/AsnJ/CGsl17CZb+h2BNQhZ/XfouxY6X5swiRlQUMHQqo\n7n8cAR/1wYd//1DukAixaMZcMAtK/GFhYcjJyUFeXh769OmDTZs2ISEhockx8fHxWLVqFaZMmYK0\ntDQ4ODhAqVQKmVYWKbkpiO0fi5vlfflTSp98wpvSJCQA//oX74gZHs5r8S4u/AdB795AfT1/RPfP\nP4HCQiAjg3+dPcuT/YQJvLjv7AwAcALwyitH8I9/RKJ/f2DAAHn/3Pe6fh0YO5ZvJlMdEIMN+zfI\nHRIhxAjB6gJAAAAXh0lEQVSCEr+NjQ1WrVqFUaNGoa6uDrNmzYKfnx+++OILAMDs2bMxevRoJCcn\no3///rC3t8e6detECdzUUnJTsHnSZuQf/uu3Fzs7vr3hpEl8HWZ2NnDoEHD8OHDkCL8vcOUKX9ze\nrRv/Uir5D4ZZs3gZR8uyTG/vcrz3Ht+n99AhoGdPE/5BtairA554gm9kNn06kFceg4WpC1HP6mGl\noMdBCGlLqGWDHs5fO4/IdZEofL4QOTk58Pb2lnS+c+fOwdvbG88/z+8tJyfL/3DUyy8Dhw8Dv/7K\nm5oCwH3v34efpv6EEBfdew4TQqRBLRsk8tuF3zDi/hFQKBSSJ30ADXO8+y7fP2bGDL17yEniP//h\nz419/31j0geAR30fxY4LO+QLjBBiFEr8etiZt9Po3vtC2Njwe7/FxfIl//ffB774gjcybX7/OsYz\nBtvPbzd9UIQQQSjx61DP6rHr4i5E3xcty/x2dkBSElBQoKOtgwRWruT3sHftAjQtxIryiEJaQRoq\naypNFxQhRDBK/DqcunwK3Tt1R9/u0jy4pQ87O75/+h9/AE8+Cdy6Je189fW8VdGHHwI7dwL3PH/X\nRLeO3RDqEoo9f+yRNiBCiKgo8euw8+JODPMYJncYsLfnq0c7dOCrQHNzpZmnvJwv2dyxg+8X0K9f\n68fH3B+DHeepzk9IW0KJX4edF3di2H2Nif/cuXOSz6ltDjs7YP163vd+yBC+D4uYMjP5M2n33cev\n9F1cdMc50nMktl+gOj8hbQkl/lbU1tdizx97mtT3s7OzJZ+3tTkUCv782M8/839OnAicPy9svmvX\ngAULgOho3iL6o4/4bxb6xDmwz0BcqriEssoyYUEQQkyGEn8rjhUfQ9/ufeFk7yR3KC0MGcIf/g0N\n5a36n39e5+ZhLVRUAB98APj68s29srL4VgSGsLGywRD3IVTnJ6QNocTfiuZlHnPTuTPw2mvA6dPA\nnTu8i/PQoXw3rAsXgJqapsfX1fGuEd99x+v47u7Avn181c6nnwJORv58i+oXhd15u4X/gQghJkGJ\nvxW/X/zdrBP/XUolX3ZZUsK3QUxP57s02tvzHRpDQwEPD36PYOBAvqf8hAlAfj5/TkBoP6ChHkOh\n/kMtxh+FEGICtEuqFndq7yCtIA2bJ22WOxS9dewIjBnDvwCgthYoLeUloJ49+Vr8jh3Fn3egy0Bc\nvH4R125fQ8/OZtBYiBDSKrri1yKtIA1+vf3g0Mmhyfd9fHwkn1usOWxseLIPCwPuv1/8pH83Tltr\nWwx2H0x1fkLaCEr8Wmir75uyV4+5uzdOqvMT0nZQ4tdiz6U9GNpvqNxhtBlDPYZi9x+U+AlpCyjx\na1BdV43DhYcxxH2I3KG0GWF9wpBzLQfXb1+XOxRCiA6U+DU4VnwMXr280L1Td7lDaTM6WHfAA24P\nYN+lfXKHQgjRgRK/Bnv/2IuH3B+SO4w2J6pfFNR5arnDIIToQIlfg72X9iKyX6TG9+Ts1WNumsdJ\ndX5C2gZK/M3Us3rsz9+Ph/pqvuKXu1ePOWke56A+g5B9NRsVVRUyRUQI0YfRif/atWuIiYmBt7c3\nRo4cifLyco3HeXh4ICgoCCEhIQgPDzc6UFM5c+UMHDo5oE/XPnKH0uZ0tOmIQX0GYX/+frlDIYS0\nwujEv3z5csTExODcuXMYPnw4li9frvE4hUIBtVqNjIwMpKenGx2oqey7tA+RfTWXeYhuQ9yH4GD+\nQbnDIIS0wujEn5SUhOnTpwMApk+fjp9//lnrsYbuAC+nvZf2ai3zEN0edH8QBwoOyB0GIaQVRif+\n0tJSKJVKAIBSqURpaanG4xQKBUaMGIGwsDCsWbPG2OlMhq74hXnA7QGkF6ajtr5W7lAIIVq02qQt\nJiYGJSUlLb6/dOnSJq8VCgUUCoXGMfbv3w8XFxdcuXIFMTEx8PX1RWSk5sS6ePHihn+PiopCVFSU\njvDFlV+Rj8qaSnj30t4yoS316pGapjh7dO6Bvt374mTpSYS6hMoQFSHtm1qthlqtFjSGghlZh/H1\n9YVarYazszOKi4sRHR2Ns2fPtvqZJUuWoEuXLnjhhRdaBqJQyF4SSshMwOaszfhp8k+yxtHWPb31\naQQpgzA3fK7coRDS7hmTO40u9cTHx2P9+vUAgPXr12PcuHEtjqmsrMSNGzcAALdu3cL27dsRGBho\n7JSS23tpL5V5RDDEfQit7CHEjBmd+F955RXs2LED3t7e2LlzJ1555RUAQFFREeLi4gAAJSUliIyM\nRHBwMCIiIvDoo49i5MiR4kQugX2X9tGNXREMcR+CA/l0g5cQc2V0qUdscpd6Kqoq4PaBG669dA22\n1rayxdEeMMbg9F8nZMzOgFs3N7nDIaRdM2mpp705XHQYoS6hlPRFoFAoaD0/IWaMEv9f0grSEOEa\nofM46tXTqLU4h7hRnZ8Qc0WJ/y9pBWl4wO0BncdRr55GrcVJdX5CzBclfvCatL6Jn+gnrE8YTl85\njcqaSrlDIYQ0Q4kfwIXrF2Bna0eN2UTU2bYzAp0CcbjwsNyhEEKaocQP/cs8xDC0np8Q80SJH/rf\n2CWGGew2GIcKD8kdBiGkGUr8ANIK9b/ip149jXTFGe4ajvTCdNlbcRBCmrL4xH+75jayrmTp3VDM\n21t7AzexmGIOMeiKs2/3vqhn9Si8UWiiiAgh+rD4xJ9RkgF/R390tu0sdyjtjkKhaLjqJ4SYD4tP\n/FTfl1Z4H0r8hJgbSvy0okdSdMVPiPmhxE+JX1KDXAfhSNER1NXXyR0KIeQvFp34i24UobKmEp49\nPPX+DPXqaaRPnD0794STvROyr7aNNhSEWAKLTvyHCg4hwi1C67aRmlCvnkb6xknlHkLMi0Un/iNF\nRxDeJ1zuMNo9SvyEmBfLTvzFRzCwz0C5w2j3wl3DcbiIevYQYi4sNvEzxnCk6AgGulDil1qIcwiy\nrmShqrZK7lAIIbDgxJ9XnofONp3h0tVF7lDavc62neHTywcnSk7IHQohBAIS/+bNmzFgwABYW1vj\n2LFjWo9LTU2Fr68vvLy8sGLFCmOnE93R4qNGlXmoV08jQ+KkOj8h5sPoxB8YGIjExEQ8/PDDWo+p\nq6vD3LlzkZqaiqysLCQkJODMmTPGTimqI0VHEOYSZvDnqFdPI0PiDHcNR3oRJX5CzIHRid/X11fn\n//jp6eno378/PDw8YGtriylTpmDLli3GTimqI0VHENbH8MRPjBPuGo5DBdSimRBzIGmNv7CwEO7u\n7g2v3dzcUFgof6dGxpjRpR5iHL/efii+WYyKqgq5QyHE4tm09mZMTAxKSkpafH/ZsmUYM2aMzsEN\neTAKABYvXtzw71FRUYiKijLo8/q6cP0CunboCid7J0nGJy1ZW1kjSBmE4yXHMdRjqNzhENJmqdVq\nqNVqQWO0mvh37NghaHBXV1fk5+c3vM7Pz4ebm5vW4+9N/FKiMo88Qp1Dcaz4GCV+QgRoflG8ZMkS\ng8cQpdSjbYelsLAw5OTkIC8vD9XV1di0aRPi4+PFmFIQIYmfevU0MjTOUJdQHCvRvgKMEGIaRif+\nxMREuLu7Iy0tDXFxcYiNjQUAFBUVIS4uDgBgY2ODVatWYdSoUfD398fkyZPh5+cnTuQCHC0+avSD\nW9Srp5GhcYa68Ct+Qoi8Wi31tGb8+PEYP358i+/36dMH27Zta3gdGxvb8EPBHNSzerqxKxN/R3/k\nlefhVvUt2HewlzscQiyWxT25m3stFz0790Rvu95yh2JxbK1t4e/ojxOl9AQvIXKyuMRPN3bldfcG\nLyFEPhaX+I8WGV/fJ8JRnZ8Q+Vlc4j9SLKwjJ/XqaWRMnJT4CZGfgmlbi2liCoVC67JQsTDG0GNF\nD+TOz6Uav0yqaqvQc0VPXHv5GjrZdJI7HELaPGNyp0Vd8eeV56Frx66U9GXUyaYTvHt5I7M0U+5Q\nCLFYFpX4j5ccR7BzsNxhWDwq9xAiL4tK/BklGQhWUuKXGyV+QuRlUYmfrvjNA7VuIEReFpf4Q1xC\nBI1BvXoaGRunSqnC6cunUVNXI3JEhBB9WEziv1p5FRV3KuDh4CFoHOrV08jYOO072MPDwQNZV7JE\njogQog+LSfzHS45DpVTBSmExf2SzFuISQnV+QmRiMVnweMlxhDgLK/MQ8aiUKurZQ4hMLCbxZ5Rk\n0I1dM0KJnxD5WEzipxU95kXlrMKJkhOSP61NCGnJIhL/7ZrbuHD9Avwd/QWPRb16GgmJ07mLM2yt\nbVF4o1DEiAgh+rCIxH/q8il49/JGR5uOgsfy9vYWISL55xCD0DiDlEE4UULlHkJMzSISP5V5zBPV\n+QmRh9GJf/PmzRgwYACsra1x7Jj2ZXkeHh4ICgpCSEgIwsPDjZ1OEEr85okSPyHyMDrxBwYGIjEx\nEQ8//HCrxykUCqjVamRkZCA9Pd3Y6QQ5XkpLOc3R3Ru8hBDTMnqzdV9fX72PlXPlRl19HU6WnoTK\nWSVbDEQz396++KPiD1TWVMLO1k7ucAixGJLX+BUKBUaMGIGwsDCsWbNG6ulauHD9Anp17gWHTg6i\njEe9ehoJjbODdQd49/LG6cunRYqIEKKPVhN/TEwMAgMDW3xt3bpV7wn279+PjIwMpKSk4JNPPsHe\nvXsFB22Ik6UnEaQMEm086tXTSIw4qc5PiOm1WurZsWOH4AlcXFwAAI6Ojhg/fjzS09MRGRmp8djF\nixc3/HtUVBSioqIEz595OROBToGCxyHSUCmpzk+IIdRqNdRqtaAxjK7x30tbDb+yshJ1dXXo2rUr\nbt26he3bt+ONN97QOs69iV8smZczMcl/kujjEnGonFXYkr1F7jAIaTOaXxQvWbLE4DGMrvEnJibC\n3d0daWlpiIuLQ2xsLACgqKgIcXFxAICSkhJERkYiODgYERERePTRRzFy5EhjpzRKZild8ZszlVKF\nk6UnqXUDISZk9BX/+PHjMX78+Bbf79OnD7Zt2wYAuP/++3H8+HHjoxOosqYS+X/mw7tX23gS1hI5\n2juis21nXKq4hH4O/eQOhxCL0K6f3M26kgWfXj6wtbYVbUzq1dNIrDjpBi8hptWuE//J0pMIVIpb\n5qFePY3EipNu8BJiWu068VN9v21QOdMVPyGm1L4TPy3lbBMCnQJx6vIpucMgxGK0/8QvcqmHiM+n\ntw/yyvNQVVsldyiEWIR2m/gv37qM6rpquHZ1lTsUokMH6w7w7OmJs2Vn5Q6FEIvQbhN/ZmkmgpRB\nUCgUoo5LvXoaiRlngFMAlXsIMZH2m/glqu9Tr55GYsYZ4EiJnxBTabeJ/2TpSbqx24bQFT8hptNu\nEz/d2G1bKPETYjrtMvHX1dch60oWApwC5A6F6On+Hvfj8q3L+PPOn3KHQki71y4T/4XrF+Bo54hu\nHbvJHQrRk7WVNfwc/ZB1JUvuUAhp99pl4peyzEO9ehqJHWeAUwDtxkWICbTPxC9hqwbq1dNI7Dhp\nZQ8hptEuE39WGdX326IApwCcukKJnxCptcvEf/ryafg7+ssdBjEQrewhxDTaXeKvqavB+evn4dOr\nbdTJSSO3bm6orKlEWWWZ3KEQ0q61u8Sfey0Xbt3c0Nm2s9yhEAMpFAq6wUuICbS7xH/6ymkMcBwg\n2fjUq6eRFHHSDV5CpGd04l+4cCH8/PygUqnw2GOPoaKiQuNxqamp8PX1hZeXF1asWGF0oPrKupIl\naX2fevU0kiJOqvMTIj2jE//IkSNx+vRpnDhxAt7e3njnnXdaHFNXV4e5c+ciNTUVWVlZSEhIwJkz\nZwQFrIvUV/yZmZmSjS0WtVotdwh60RSnOa7sacvn0xxRnPIzOvHHxMTAyop/PCIiAgUFBS2OSU9P\nR//+/eHh4QFbW1tMmTIFW7ZsMT5aPUh9xU+JXzxaE//lU2CMmT4gLdry+TRHFKf8RKnxf/XVVxg9\nenSL7xcWFsLd3b3htZubGwoLC8WYUqOauhrkXsuFb29fyeYg0nK0d4StlS2KbhTJHQoh7ZZNa2/G\nxMSgpKSkxfeXLVuGMWPGAACWLl2KDh064IknnmhxnNiboOhy/vp5uHZ1pRU9bZy/oz/OlJ2Bazfa\nPY0QSTAB1q1bx4YMGcJu376t8f2DBw+yUaNGNbxetmwZW758ucZjPT09GQD6oi/6oi/6MuDL09PT\n4NytYMy4YmpqaipeeOEF7N69G71799Z4TG1tLXx8fPD777+jT58+CA8PR0JCAvz8/IyZkhBCiAiM\nrvHPmzcPN2/eRExMDEJCQvDMM88AAIqKihAXFwcAsLGxwapVqzBq1Cj4+/tj8uTJlPQJIURmRl/x\nE0IIaZtke3L32rVriImJgbe3N0aOHIny8nKNx3l4eCAoKAghISEIDw83SWz6PHQ2f/58eHl5QaVS\nISMjwyRxNacrTrVaje7duyMkJAQhISF4++23TR7jzJkzoVQqERiovU22OZxLXXGaw7kEgPz8fERH\nR2PAgAEICAjARx99pPE4uc+pPnHKfU6rqqoQERGB4OBg+Pv749VXX9V4nNznUp84DT6XBt8VEMnC\nhQvZihUrGGOMLV++nL388ssaj/Pw8GBXr141WVy1tbXM09OTXbx4kVVXVzOVSsWysrKaHLNt2zYW\nGxvLGGMsLS2NRUREmCw+Q+LctWsXGzNmjMlju9eePXvYsWPHWEBAgMb3zeFcMqY7TnM4l4wxVlxc\nzDIyMhhjjN24cYN5e3ub5d9PfeI0h3N669YtxhhjNTU1LCIigu3du7fJ++ZwLhnTHaeh51K2K/6k\npCRMnz4dADB9+nT8/PPPWo9lJqxG6fPQ2b2xR0REoLy8HKWlpSaLUd84AdOeO00iIyPRo0cPre+b\nw7kEdMcJyH8uAcDZ2RnBwcEAgC5dusDPzw9FRU2feTCHc6pPnID859TOzg4AUF1djbq6OvTs2bPJ\n++ZwLvWJEzDsXMqW+EtLS6FUKgEASqVS68lUKBQYMWIEwsLCsGbNGsnj0uehM03HaHpyWUr6xKlQ\nKHDgwAGoVCqMHj0aWVnmt5+tOZxLfZjjuczLy0NGRgYiIiKafN/czqm2OM3hnNbX1yM4OBhKpRLR\n0dHw92/61L+5nEtdcRp6Llt9gEsobQ+ALV26tMlrhUKh9WGv/fv3w8XFBVeuXEFMTAx8fX0RGRkp\nSbx3Y9FH85+upn5YTZ/5QkNDkZ+fDzs7O6SkpGDcuHFm2flT7nOpD3M7lzdv3sTEiROxcuVKdOnS\npcX75nJOW4vTHM6plZUVjh8/joqKCowaNQpqtRpRUVFNjjGHc6krTkPPpaRX/Dt27EBmZmaLr/j4\neCiVyoYfCsXFxXByctI4houLCwDA0dER48ePR3p6upQhw9XVFfn5+Q2v8/Pz4ebm1uoxBQUFcHU1\n7VOm+sTZtWvXhl8RY2NjUVNTg2vXrpk0Tl3M4Vzqw5zOZU1NDSZMmIBp06Zh3LhxLd43l3OqK05z\nOqfdu3dHXFwcjhw50uT75nIu79IWp6HnUrZST3x8PNavXw8AWL9+vca/GJWVlbhx4wYA4NatW9i+\nfXurq0PEEBYWhpycHOTl5aG6uhqbNm1CfHx8i9i/+eYbAEBaWhocHBwaylamok+cpaWlDVcr6enp\nYIxprA3KyRzOpT7M5VwyxjBr1iz4+/tjwYIFGo8xh3OqT5xyn9OysrKG1YS3b9/Gjh07EBIS0uQY\ncziX+sRp8Lk0/j6zMFevXmXDhw9nXl5eLCYmhl2/fp0xxlhhYSEbPXo0Y4yx8+fPM5VKxVQqFRsw\nYABbtmyZSWJLTk5m3t7ezNPTs2HOzz//nH3++ecNxzz77LPM09OTBQUFsaNHj5okLkPjXLVqFRsw\nYABTqVRs8ODB7ODBgyaPccqUKczFxYXZ2toyNzc39uWXX5rludQVpzmcS8YY27t3L1MoFEylUrHg\n4GAWHBzMkpOTze6c6hOn3Of05MmTLCQkhKlUKhYYGMjeffddxpj5/b+uT5yGnkt6gIsQQixMu9t6\nkRBCSOso8RNCiIWhxE8IIRaGEj8hhFgYSvyEEGJhKPETQoiFocRPCCEWhhI/IYRYmP8PYF+D/28v\nAx0AAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 26 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Questions:\n", "\n", "* How many interpolating polynomials are there?\n", "* Is interpolation any good outside of the interval?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "nodes = [0, 0.5, 2, 2.5]\n", "values = np.random.randn(4)\n", "\n", "def f(x):\n", " # Make f interpolate 'values' at 'nodes'\n", " return (\n", " ...\n", " )" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 36 }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "(Edit this cell for solution.)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "pt.plot(nodes, values, \"o\")\n", "pt.plot(mesh, f(mesh))" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 37, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVWXiBvDnIigQyOLCJopeUAFlc7kuqVfZ3EVzDC2z\n1JxWpRx0bBumyVDLJszSGUtNc6r5OSWuBIpXNAVUcMuNRRQQcAFUBGQ7vz8cGU1kuffAuffwfD+f\n+/mgHN7z+FaPb+899xyFIAgCiIhIFoykDkBEROJhqRMRyQhLnYhIRljqREQywlInIpIRljoRkYzo\nXOqRkZHw9PRE3759MWPGDNy7d0+MXEREpAWdSj0rKwvr1q1DSkoKTp8+jerqavzwww9iZSMioiYy\n1uWH27dvDxMTE5SWlqJNmzYoLS2Fk5OTWNmIiKiJdFqp29raYuHChejatSscHR1hbW2NgIAAsbIR\nEVET6VTqGRkZ+Pzzz5GVlYWrV6+ipKQEW7ZsESsbERE1kU7bL8eOHcOQIUPQoUMHAMCUKVNw+PBh\nPPfcc7XHuLq6IiMjQ7eUREStjFKpRHp6epN/TqeVeu/evZGYmIiysjIIgoC9e/fCw8PjkWMyMjIg\nCILev/7yl79InoE5mdNQMzKn+C9tF8M6lbq3tzdeeOEF9O/fH15eXgCAefPm6TIkERHpQKftFwBY\ntGgRFi1aJEYWIiLSET9R+l9qtVrqCI3CnOIyhJyGkBFgTn2hEAShWR+SoVAo0MynICKSHW27kyt1\nIiIZYakTEckIS52ISEZY6kREMsJSJyKSEZY6EZGMsNSJiGSEpU5EJCMsdSIiGWGpExHJCEudiEhG\nWOpERDLCUicikhGWOhGRjLDUiYhkhKVORCQjLHUiIhlhqRMRyQhLnYhIRljqREQywlInIpIRnUu9\nuLgYU6dOhbu7Ozw8PJCYmChGLiIi0oKxrgMsWLAAY8eOxdatW1FVVYW7d++KkYuIiLSgEARB0PaH\nb926BV9fX2RmZj75BAoFdDgFEVGrpG136rT9cunSJXTq1AkvvfQS/Pz88PLLL6O0tPSx46prqnU5\nDRERNZJO2y9VVVVISUnB6tWrMWDAAISFhWHZsmX48MMPHzlu+pvT4dHJAwCgVquhVqt1OS0Rkexo\nNBpoNBqdx9Fp+yU/Px+DBw/GpUuXAACHDh3CsmXLsHPnzv+dQKHAwHUDkTgnEQqFQufAREStgSTb\nL/b29nB2dsbFixcBAHv37oWnp+djxxWVFeHglYO6nIqIiBpBp5U6AJw8eRJz585FRUUFlEolNmzY\nACsrq/+dQKHA2qNrsePiDuycsbOekYiI6AFtV+o6l3qDJ1AoUFpRiu5R3RE/K752b52IiJ5Mku2X\nxjIzMcPrA17Hp4c/bYnTERG1Wi2yUhcEATdLb8LtCzecfvU0nNo7NecpiYgMnl6v1AGgg3kHzPKe\nhZVHVrbUKYmIWp0WW6kDQO7tXPRd0xcX37yIjuYdm/O0REQGTe9X6gDg1N4JUz2mIioxqiVPS0TU\narToSh0AMgozoPpahYz5GbAytarnJ4mIWi+DWKkDgNJWidGuo7Hm2JqWPjURkey1+EodAM5cO4OA\nTQHIXJAJcxPz5jw9EZFBMpiVOgD06dwHg50HY93xdVKcnohItiRZqQNASl4KJnw/ARnzM2BqbNqc\nEYiIDI5BrdQBwM/BD/0d+3O1TkQkIslW6sD/Vuvpb6bDzMSsOWMQERkUg1upAw+t1lO4WiciEoOk\nK3UASM1Lxfjvx3O1TkT0EINcqQOAr4MvBjgO4GqdiEgEkq/Ugfur9XH/Gof0+em8bp2ICAa8Ugfu\nr9aHdh2K1cmrpY5CRGTQ9GKlDgDnb5zH8A3DcfHNi7A2tW7OSEREes+gV+oA0Ltjb4zvOR4rD/N+\n60RE2tKblToAXC6+DL9/+uHsa2dhZ2HXnLGIiPSawa/UAaCbdTc81/c5RB6KlDoKEZFB0quVOgAU\nlBTA4ysPpMxLQTfrbs2YjIhIf8lipQ4AdhZ2eK3/a3hv/3tSRyEiMjiilHp1dTV8fX0xYcIEMYbD\noqGLsDdzL1LyUkQZj4iotRCl1KOiouDh4QGFQiHGcLBsZ4kPhn+A8Lhwrf73g4iotdK51HNycrB7\n927MnTtX1AKe6zcXubdzsSd9j2hjEhHJnc6l/tZbb+GTTz6BkZG42/MmbUywPGA5FsUtQlVNlahj\nExHJlbEuP7xz50507twZvr6+0Gg0TzwuIiKi9mu1Wg21Wt2o8Sf2moiVR1Zi44mNmOs3V5eoRER6\nTaPR1NujjaXTJY3vvPMONm/eDGNjY5SXl+P27dt45plnsGnTpv+dQMvLch44mnsUk36YhPNvnEf7\ndu21HoeIyJBo252iXad+4MABfPrpp9ixY4cowR72UvRL6GTeCSsCV+g0DhGRodCL69TFuvrl9yL9\nI7E+dT3SbqY1y/hERHKhd58ofZIVv67AwSsHsWP6joYPJiIycHqxUm9OC1QLcP7GecSkx0gdhYhI\nbxlMqbczbofPgj7DW7+8hYrqCqnjEBHpJYMpdQAY33M8ult3x+eJn0sdhYhILxnMnvoDGYUZUH2t\nQsofU9DVqqto4xIR6RPZ76k/oLRVYr5qPsJiwqSOQkSkdwyu1IH7d3E8fe00dl3cJXUUIiK9YpCl\nbmpsii/Hfok397yJssoyqeMQEekNgyx1AAhSBqG/Y3/8LeFvUkchItIbBvdG6cPyS/LhtcYLcTPj\n4G3v3SznICKSQqt5o/Rh9hb2iPSPxNwdc3l7XiIiGHipA8Bs39mwbGuJVUmrpI5CRCQ5g95+eSC9\nMB2Dvh6E5JeT0cOmR7Oei4ioJbTK7ZcHXG1dsWjoIry842XUCDVSxyEikowsSh0A3h78NkoqSrD2\n2FqpoxARSUYW2y8PnL9xHk+vfxpJc5OgtFW2yDmJiJpDq95+eaB3x954d9i7eDH6RVTXVEsdh4io\nxcmq1AFgwaAFMFIYISopSuooREQtTlbbLw9kFmVC9bUKmlkaeHb2bNFzExGJgdsvD+lh0wPL/Jdh\n+n+mo7yqXOo4REQtRpYrdQAQBAHTtk6Dk6UTPh/Nh2oQkWHhSv13FAoF/jn+n/j5/M/YnbZb6jhE\nRC1CtqUOADZmNtgUsglzts9BQUmB1HGIiJqdrEsdAEa4jMAc3zmY+fNMXuZIRLKnc6lnZ2dj5MiR\n8PT0RJ8+fbBqlf7dWCtCHYGK6gosPbhU6ihERM1K5zdK8/PzkZ+fDx8fH5SUlKBfv37Ytm0b3N3d\n759AojdKfy/vTh76/bMfNk3ehIAeAVLHISKql2RvlNrb28PHxwcAYGFhAXd3d1y9elXXYUXnYOmA\n76Z8h5k/z8TVO/qXj4hIDKLuqWdlZSE1NRUqlUrMYUUzqvsovD7gdTy79VlUVldKHYeISHTGYg1U\nUlKCqVOnIioqChYWFo98LyIiovZrtVoNtVot1mmb7J1h7yApNwlv/fIWVo9dLVkOIqKHaTQaaDQa\nnccR5cNHlZWVGD9+PMaMGYOwsLBHT6Ane+oPu1V+C6qvVQgfEo45fnOkjkNE9Bhtu1PnUhcEAbNm\nzUKHDh3w97//XbRgze3CjQsYtmEYokOjMdh5sNRxiIgeIVmpHzp0CMOHD4eXlxcUCgUAIDIyEqNH\nj9YpWEvYeXEnXtw6G55HQqG4Y4t27aowf34Qxo0bLnU0ImrltO1OnffUn376adTUGOYj5BRp7SEk\neSLB6RCwIQGosEBGxrsAwGInIoMk+0+U1mfVqlgUbo8H8nyBZ2YAimpkZCzFF1/ESR2NiEgrrbrU\n790zBqAAdq0BTO4CwQsBAOXlbaQNRkSkpVZd6u3aVd3/orot8O//AMpYQLUKpqa8RwwRGaZWXerz\n5wdBqby/h45ya2DLLrQZ/h68nmvV00JEBky0Dx8Zogdvhn7xxfsoL28DU9NqjB8Qhb9d/jMCMoYi\nSBkkcUIioqaR7ZOPdHHoyiFM/nEydk7fCVUX/bzlARHJG598JKKnuz6NDZM2YNIPk3Dm2hmp4xAR\nNRpL/QnG9xyPz0d/jqDNQTh3/ZzUcYiIGqVV76k3JLRPKKpqqhCwOQDxL8SjV8deUkciIqoXS70B\nz3s9j8rqSgRsDsD+WfvhausqdSQioidiqTfCS74voVqohnqjGrEzY+HRyUPqSEREdWKpN9Jcv7kw\nMzaD/yZ/7JqxC34OflJHIiJ6DEu9CZ7zeg7mJuYYs2UMfn72ZwxxHiJ1JCKiR/Dqlyaa7D4Zm0I2\nIeSHEOy4sEPqOEREj2CpayHYNRg7Z+zEvJ3z8I9j/5A6DhFRLX6iVAfphekYs2UMpnlMw0ejPqp9\nSAgRka4ke/JRgyeQcakDwPW71zHxh4noatUV6yeux1Ntn5I6ElG9BEFAjVADAULtf5vGRsZaL0p2\n7UrAqlWxuHfPmE8PExFLXULlVeWYt2Mezlw7g22h29DVqqvUkUgGGlOWgiDgRukNXLl1Bdm3s5F7\nOxcFdwtQUFKAa6XXUFRWhOLyYhSXF+Nu5V2UVZahrKoMgiBAoVBAgftFXiPUoJ1xO5gam8KirQVs\nTG1gY2YDWzNbOFo4wtHy/qu7TXe42rrC0dIRRgoj7NqVgAULfkFGxtLaTErlu4iKCmax64ilLjFB\nEPDZkc+w8shK/Dj1RwzrNkzqSGTAHitL0yI4+YThmT/ao52TgPTCdKQXpiOjKAOmxqZwbu+MrlZd\n4WjpCHsLe9g9ZYfOT3WGjZkNbExtYGVqBYu2FjAzNoOZiRmMjR698K26phr3qu+hvKocJRUlKCor\nQlF5EW6W3kReSR6u3rmK3Du5uFR0CemF6SgqL0LPDj1x/XQN8k68ABR4A7kD79/CGkBw8PuIiflb\nS0+brLDU9URMegxmbZuF8CHhWDh4IffZqUlqhBqk3UzDHxb8Gaev9QLsTgJ2p4B2t4Eb7nA0Kccb\nodPh1sENrrauUNooYdnOssVzllSU4PyN83j+7b/hQnEPwCEVcDgO3HYGsgejl2kh4r/+Eo6Wji2e\nTS5Y6nrkyq0reHbrs+hk3gkbQzbC1sxW6kikhwRBwJVbV5CUm4SknCQcvXoUJ/JPoKN5R9y5aIob\nZ2YABV73X8XdACgwYkQENJoIqaPXCg5+D7GxH93/hVHV/b+AuhyB3aDVqHAqgIOlA4KVwQjpHYKh\nzkPRxoiPimws3npXj3S16ooDLx6Aq60r/P7hh4TLCVJHIj1QWV2JpJwkfHbkM0z991Q4feYE1dcq\nbDm9BR3MO+CDER8gKywLmQsy4Zc+BUh4D7gwESh2Af67961vj1p85OlhNcZAnh+Uhbn4JvgfuB5+\nHRsnbYRVOyssiFkA+5X2mB09G3EZcaiu0a8/h5xwpd7Mdl3chZd3vIyZXjPx4cgP0c64ndSRqIWU\nV5UjKScJBy4fQMLlBCTlJqGHTQ8MdR6Koc5DMcR5CFysXercoqv7Dch3EBU1Wu/egNy1KwFffBFX\n+/SwN98MrDNjVnEWfjr3E/51+l/IK8nDjD4z8KLPi/Ds7ClBav0n2fZLTEwMwsLCUF1djblz52Lx\n4sWiBJOT63evY97OecgsysTGSRvh6+ArdSRqBpXVlUjOTUb8pXjsz9qP5NxkeHb2xPCuwzHCZQSG\nOg+FjZlNo8drbFkaorPXz+K7U99h44mNcOvghtf6v4bJ7pPRtk1bqaPpDUlKvbq6Gr169cLevXvh\n5OSEAQMG4Pvvv4e7u7vOweRGEARsOrkJ4XHheNHnRUSoI2BuYi51LNJBjVCDM9fOYG/mXuzN3ItD\nVw7B1dYVo7qPwkiXkRjWbRjat2svdUy9VlldiegL0fjq6Fc4f+M85qvm45X+r8Da1FrqaJKTpNSP\nHDmCv/71r4iJiQEALFu2DADw5z//WedgcnXt7jWExYQhKTcJX439CsGuwVJHoibIvZ2LuMw4xGbE\nYt+lfWjfrj0CugfAv4c/RrqMRAfzDlJHNFinC07jk8OfYFfaLsz2mY2FQxbC3sJe6liS0bY7dbpL\nY25uLpydnWt/3aVLFyQlJekypOx1fqoz/vXMv7AnbQ9e3/06PDt7YmXQSj58Q0+VVpbiQNYBxGbE\nIjYzFvkl+fDv7o/AHoH42P9juFi7SB1RNvra9cWmyZtw5dYVrDy8Eh5feuBlv5exaOgi/mXZBDqV\nemOvwY6IiKj9Wq1WQ61W63JaWRjjNga/df8NUUlRGPT1IMz2nY0lTy9p0p4riU8QBJwqOIVfMn5B\nbEYsknKT4Ofgh6AeQdg4aSP8HPx4WV4z62rVFVFjohA+NBwfJXyEnqt7IkwVhoVDFsp6y1Kj0UCj\n0eg8jk7bL4mJiYiIiKjdfomMjISRkdEjb5Zy+6VheXfy8P7+9xF9IRpvDXoL81XzYdHWQupYrUZ+\nST7iMuIQmxmLuIw4WLazRLAyGEHKIKhd1NwXl1hGYQaW7FuCxJxELA9YjtA+oa3iQ32S7KlXVVWh\nV69e2LdvHxwdHTFw4EC+UaqDCzcu4C+av0CTpUH4kHDM6zdPkk8Lyl1ZZRkOXjlYW+RXbl3BqO6j\nENQjCIHKQPSw6SF1RKpDwuUEhMWEwczEDGvGrYGXnZfUkZqVZJc07tmzp/aSxjlz5mDJkiWiBGvN\nTuafROShSOzN3ItX+r+C+ar5OKo5zzvhaam6phopeSnYd2kf9mbuRVJuErztvBGkDEJgj0AMcBrw\n2L1QSD9V11Tjm9Rv8F78e5jtOxsfjPhAtlsyvE2ADKUXpuPTw5/iuxNboLjYHSXxX9+/aRJ4J7z6\nCIKAs9fPIv5SPOKz4nEg6wDsLewR2CMQAT0CMMJlBLdUDFx+ST7CYsJw9OpRrJuwDqO6j5I6kuhY\n6jI2ctzb0BQ7AAPWAKUdgNQ5wG/TEDz877wTHu5fL/7btd+QcDkBmssaHMg6AMt2llB3U8O/hz9G\ndR/Vqi+Nk7Pdabsxb8c8TPWYikj/SJiZmEkdSTQsdRlTqyNw4EAEoKgBlL8APt8CrjHoeMcBa1/7\nCKNdR7eqh3OUVZbh2NVjOJx9GL9m/4pDVw6ho3lHDOs6DGoXNUa4jOA97VuRm6U38dru13C64DQ2\nT96Mfo79pI4kCpa6jD1yJ7wH2t2C57Tn4BhYgcScRIzqPgohvUMQrAyGg6WDNEGbQY1Qg/TCdCTn\nJiMpJwlJuUn47fpv8OzkiSHOQzDUeSiGdRvGlTjh+9PfY0HMArw77F3MV803+CtkWOoy1tDNnYrK\nirDz4k5EX4hG/KV4OLV3QlCP+5fjDXYejI7mHSVM33j3qu7h/I3zOFVwCifyT+B43nGk5qfC2tQa\nA50GQuWkgspJhX6O/WT75hjpJrMoE9P+b9r9x0tOWm/QtxtgqctcY2/uVFVTheNXjyMuMw4HrxxE\nYk4i7J6yw6Aug+Bt5w1ve29423mj01OdJPhT3H8Ts7CsEBlFGUi7mYbzN87j3I1zOHfjHDKLMtHD\npge87LzgbeeNfg794OvgazB/KZF+uFd1D+Fx4dh5cSd+evYn+Nj7SB1JKyx1qlN1TTXOXj+LpNwk\nnMw/iZMFJ3Gq4BTaGLWBq60r3Gzd4GLtAidLJzi1d4KjpSNszWxrH4FmpGjcLferaqpwq/wWisuL\nUVRehIKSgtpnZebczkH27Wxk385GVnEWaoSa2qf29O7YG+4d3eHeyR29O/aGqbFpM88ItRY/nvkR\nb+x5A1+O/RLTPKdJHafJWOrUaIIg4HrpdaTdTENaYRouF19G7p1cXL1zFXkleSgsK0RRWRHuVNyB\nmbEZTI1NYWps+shtUQUIuFd1D2VVZSivKkdFdQWs2lnB2tQa1qbWsLOwg91T919O7Z1qn6HZzbob\nOph1MPj9TjIMJ/JPIOSHEDzv9Tw+HPlhoxcp+oClTqKrqqlCeVU5yir/V9wPl/GDsjc1NoWZsRmL\nmvTStbvX8If/+wNszWyxZcoWg3k/hqVORPQEFdUVmLN9DtJupmHH9B2SvafUFHxGKRHRE7Rt0xab\nQjbBv7s/hqwfgvTCdKkjNRuWOhG1CgqFAkv9lyJ8SDiGbxiO1LxUqSM1C26/EFGr89O5n/Dqrlex\n7dltGOw8WOo4deL2CxFRI01xn4JNIZsw6YdJ2Je5T+o4omKpE1GrFOwajK3TtmL6f6Zjd9puqeOI\nhtsvRNSqJeUkYcL3E7B58ma9ehA8t1+IiLSg6qLCttBtmPnzTMRlxEkdR2csdSJq9YY4D8FPz/6E\nGT/NQPyleKnj6ISlTkQE4OmuT2PrH7YidGsoknOTpY6jNZY6EdF/jXAZgfWT1mPi9xNx7vo5qeNo\nhaVORPSQ8T3H45PATxD8XTCu3LoidZwm4yPUiYh+Z6b3TNwsu4mgzUE4NPuQQd3Tn5c0EhE9weK4\nxTiccxhxM+Na/F7/vEsjEZHIaoQahG4NhbGRMb6b8l2L3o9dkuvUw8PD4e7uDm9vb0yZMgW3bt3S\nZTgiIr1ipDDCtyHfIqs4Cx/s/0DqOI2iU6kHBQXht99+w8mTJ9GzZ09ERkaKlYuISC+YmZghOjQa\n35/5Ht+e+FbqOA3SqdQDAwNhZHR/CJVKhZycHFFCERHpk05PdcLO6TsRHheOpJwkqePUS7QNovXr\n12Ps2LFiDUdEpFfcO7njm4nf4Jl/P4Ord65KHeeJGrykMTAwEPn5+Y/9/scff4wJEyYAAJYuXYq2\nbdtixowZdY4RERFR+7VarYZardYuLRGRhCb0moBTBacw5ccp0LyoEfWKGI1GA41Go/M4Ol/9snHj\nRqxbtw779u2Dqenjf0Be/UJEciIIAqZtnQbLtpb4ZuI3zfbAdUmufomJicEnn3yC6OjoOgudiEhu\nFAoFNkzagOTcZKxPXS91nMfotFJ3c3NDRUUFbG1tAQCDBw/GV1999egJuFInIhk6d/0chm8cjriZ\ncfCx9xF9fH74iIiohf1w5ge8v/99HHv5GKxMrUQdm6VORCSBN3a/gbySPGz9w1ZR99f55CMiIgms\nDFqJK7euYHXyaqmjAOBKnYhIZ+mF6Rj8zWDEvxCPvnZ9RRmTK3UiIom42rpiZdBKTP/PdJRVlkma\nhSt1IiIRCIKA5356DjamNvhy3Jc6j8eVOhGRhBQKBdaMW4Pd6bsRfT5ashwsdSIikViZWuG7yd/h\nlV2v4Nrda5Jk4PYLEZHIFsctRnpRuk6XOXL7hYhIT3w48kNcuHEBW05vafFzc6VORNQMUvJSMPq7\n0Uj5Ywq6tO/S5J/nSp2ISI/4OfjhjYFvYO72uS26sGWpExE1kyVPL8H10uvYeGJji52T2y9ERM3o\nRP4JBG0OwqlXT8Hewr7RP8ftFyIiPeRj74M5vnPw5p43W+R8LHUiomb2wYgPcDL/JLad39bs52Kp\nExE1MzMTM3w98Wu8sfsNFJcXN+u5uKdORNRC/rjjj2hj1AZfjfuqwWP5kAwiIj1XVFYEj688sD10\nOwY4Daj3WL5RSkSk52zMbLA8YDle3fUqqmuqm+UcLHUiohY002smLNpaYO2xtc0yPrdfiIha2Nnr\nZzFi4wicfvX0E69d5/YLEZGB8Ojkgbm+c/Gn2D+JPjZLnYhIAu8Nfw8JlxPw65VfRR1X51JfuXIl\njIyMUFhYKEYeIqJW4am2T2F5wHLMj5kv6pumOpV6dnY24uLi0K1bN7HyEBG1GqF9QmFmbIYNJzaI\nNqZOpf72229jxYoVYmUhImpVFAoFVo1Zhffi3xPtk6Zal3p0dDS6dOkCLy8vUYIQEbVGfg5+mNBz\nAj488KEo4xnX983AwEDk5+c/9vtLly5FZGQkYmNja3+vvktvIiIiar9Wq9VQq9VNT0pEJFNL/ZfC\nbaEbKvZVoKN5R53G0uo69TNnzsDf3x/m5uYAgJycHDg5OSE5ORmdO3d+9AS8Tp2IqEErfl2BIzlH\n8POzPwOQ+N4v3bt3x/Hjx2Fra/v4CVjqREQNKq8qR+/VvbF58mYM6zZM2g8fKRQKMYYhImq1TI1N\nsXTUUiyMXYgaoUbrcUQp9czMzDpX6URE1HjT+05HjVCDf//2b63HqPeNUiIiajlGCiN8GvQpXop+\nSfsxRMxDREQ6Uruo0bdzX61/nndpJCLSM5eLL8PFxoVPPiIikgveepeIiFjqRERywlInIpIRljoR\nkYyw1ImIZISlTkQkIyx1IiIZYakTEckIS52ISEZY6kREMsJSJyKSEZY6EZGMsNSJiGSEpU5EJCMs\ndSIiGWGpExHJCEudiEhGWOpERDKiU6l/8cUXcHd3R58+fbB48WKxMhERkZa0LvX9+/dj+/btOHXq\nFM6cOYM//elPYuZqcRqNRuoIjcKc4jKEnIaQEWBOfaF1qa9ZswZLliyBiYkJAKBTp06ihZKCofyD\nZk5xGUJOQ8gIMKe+0LrU09LSkJCQgEGDBkGtVuPYsWNi5iIiIi0Y1/fNwMBA5OfnP/b7S5cuRVVV\nFYqKipCYmIijR49i2rRpyMzMbLagRETUCIKWRo8eLWg0mtpfK5VK4caNG48dp1QqBQB88cUXX3w1\n4aVUKrXq5npX6vUJCQlBfHw8RowYgYsXL6KiogIdOnR47Lj09HRtT0FERE2kEARB0OYHKysrMXv2\nbJw4cQJt27bFypUroVarRY5HRERNoXWpExGR/hH9E6WFhYUIDAxEz549ERQUhOLi4jqPc3FxgZeX\nF3x9fTFw4ECxYzxRTEwMevfuDTc3NyxfvrzOY+bPnw83Nzd4e3sjNTW1xbI9rKGcGo0GVlZW8PX1\nha+vLz766KMWzzh79mzY2dmhb9++TzxGH+ayoZz6MJfZ2dkYOXIkPD090adPH6xatarO46Sez8bk\n1If5LC8vh0qlgo+PDzw8PLBkyZI6j5N6PhuTs8nzqdVOfD3Cw8OF5cuXC4IgCMuWLRMWL15c53Eu\nLi7CzZs3xT59vaqqqgSlUilcunRJqKioELy9vYWzZ88+csyuXbuEMWPGCIIgCImJiYJKpWrRjI3N\nuX//fmHChAktnu1hCQkJQkpKitCnT586v68PcykIDefUh7nMy8sTUlNTBUEQhDt37gg9e/bUy383\nG5NTH+bupesoAAAEEklEQVRTEATh7t27giAIQmVlpaBSqYSDBw8+8n19mE9BaDhnU+dT9JX69u3b\nMWvWLADArFmzsG3btvr+QhH79PVKTk6Gq6srXFxcYGJigtDQUERHRz9yzMP5VSoViouLUVBQoHc5\ngZafv98bNmwYbGxsnvh9fZhLoOGcgPRzaW9vDx8fHwCAhYUF3N3dcfXq1UeO0Yf5bExOQPr5BABz\nc3MAQEVFBaqrq2Fra/vI9/VhPhuTE2jafIpe6gUFBbCzswMA2NnZPXGSFAoFAgIC0L9/f6xbt07s\nGHXKzc2Fs7Nz7a+7dOmC3NzcBo/JyclpkXz1Zfh9ToVCgcOHD8Pb2xtjx47F2bNnWzRjY+jDXDaG\nvs1lVlYWUlNToVKpHvl9fZvPJ+XUl/msqamBj48P7OzsMHLkSHh4eDzyfX2Zz4ZyNnU+tbqksb4P\nJf0+jEKhqHOMX3/9FQ4ODrh+/ToCAwPRu3dvDBs2TJs4jfakLL/3+78VG/tzYmnM+fz8/JCdnQ1z\nc3Ps2bMHISEhuHjxYgukaxqp57Ix9GkuS0pKMHXqVERFRcHCwuKx7+vLfNaXU1/m08jICCdOnMCt\nW7cQHBwMjUbz2BV6+jCfDeVs6nxqtVKPi4vD6dOnH3tNnDgRdnZ2tYWfl5eHzp071zmGg4MDgPv3\njJk8eTKSk5O1idIkTk5OyM7Orv11dnY2unTpUu8xOTk5cHJyavZs9WWoK6elpWXt/7aNGTMGlZWV\nKCwsbNGcDdGHuWwMfZnLyspKPPPMM3j++ecREhLy2Pf1ZT4byqkv8/mAlZUVxo0b99itTPRlPh94\nUs6mzqfo2y8TJ07Et99+CwD49ttv6/yHXlpaijt37gAA7t69i9jY2HqvoBBL//79kZaWhqysLFRU\nVODHH3/ExIkTH8u/adMmAEBiYiKsra1rt5NaSmNyFhQU1K4ykpOTIQhCnXtxUtKHuWwMfZhLQRAw\nZ84ceHh4ICwsrM5j9GE+G5NTH+bzxo0btVfelZWVIS4uDr6+vo8cow/z2ZicTZ5P7d+zrdvNmzcF\nf39/wc3NTQgMDBSKiooEQRCE3NxcYezYsYIgCEJGRobg7e0teHt7C56ensLHH38sdown2r17t9Cz\nZ09BqVTWnnft2rXC2rVra495/fXXBaVSKXh5eQnHjx9vsWxNybl69WrB09NT8Pb2FgYPHiwcOXKk\nxTOGhoYKDg4OgomJidClSxfhm2++0cu5bCinPszlwYMHBYVCIXh7ews+Pj6Cj4+PsHv3br2bz8bk\n1If5PHXqlODr6yt4e3sLffv2FVasWCEIgv79t96YnE2dT374iIhIRvg4OyIiGWGpExHJCEudiEhG\nWOpERDLCUicikhGWOhGRjLDUiYhkhKVORCQj/w/t88PE2AkDRgAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }