# In[7]: import numpy as np import matplotlib.pyplot as pt # We'll integrate # # $$ y'=\alpha y$$ # # with $y'(0) = 1$, # # using forward Euler. # In[119]: # alpha = 1; h = 0.1; final_t = 20 # alpha = -1; h = 0.1; final_t = 20 #alpha = -1; h = 1; final_t = 20 #alpha = -1; h = 1.5; final_t = 20 #alpha = -1; h = 2; final_t = 20 alpha = -1; h = 2.5; final_t = 20 # In[120]: t_values = [0] y_values = [1] def f(y): return alpha * y # In[121]: while t_values[-1] < final_t: t_values.append(t_values[-1] + h) y_values.append(y_values[-1] + h*f(y_values[-1])) # In[122]: mesh = np.linspace(0, final_t, 100) pt.plot(t_values, y_values) pt.plot(mesh, np.exp(alpha*mesh), label="true") pt.legend() # Out[122]: # # image file: # In[ ]: