from __future__ import division
import numpy as np
import matplotlib.pyplot as pt
Consider \(y'=-100y+100t + 101\).
Exact solution: \(y(t)=1+t+ce^{-100t}\).
Exact solution derivative: \(y'(t)=1-100ce^{-100t}\).
def f(t, y):
return -100*y+100*t + 101
t_end = 0.2
def plot_solution(t0, y0):
c = (y0-1-t0)/np.exp(-100*t0)
t_mesh = np.linspace(t0, t_end, 1000)
solution = 1+t_mesh+c*np.exp(-100*t_mesh)
pt.plot(t_mesh, solution, label="exact")
pt.plot(t0, y0, "ko")
plot_solution(t0=0, y0=1)
plot_solution(t0=0, y0=1.2)
plot_solution(t0=0, y0=-0.5)
plot_solution(t0=0.05, y0=-0.5)
def integrate_ode(step_function, t0, y0, h):
times = [t0]
ys = [y0]
while times[-1] <= t_end + 1e-14:
t = times[-1]
ys.append(step_function(t, ys[-1], h))
times.append(t + h)
pt.plot(times, ys, label=step_function.__name__[:4])
def forward_euler_step(tk, yk, h):
return ...
def backward_euler_step(tk, yk, h):
return ...
t0 = 0.05
y0 = -0.5
h = 0.1 # start this at 0.001, then grow
plot_solution(t0=t0, y0=y0)
integrate_ode(forward_euler_step, t0=t0, y0=y0, h=h)
integrate_ode(backward_euler_step, t0=t0, y0=y0, h=h)
pt.xlim([t0, t_end])
pt.ylim([-1, 2])
pt.legend()
(Edit this cell for solution.)