from __future__ import division
import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as pt
Let's solve \(u''=-30x^2\) with \(u(0)=1\) and \(u(1)=-1\).
n = 50
mesh = np.linspace(0, 1, n)
h = mesh[1] - mesh[0]
A = ...
(edit cell for solution)
b = -30*mesh**2
b[0] = 1
b[-1] = -1
x_true = la.solve(A, b)
pt.plot(mesh, x_true)
x = np.zeros(n)
x_new = np.empty(n)
for i in xrange(n):
x_new[i] = b[i]
for j in xrange(i):
x_new[i] -= ...
for j in xrange(i+1, n):
x_new[i] -= ...
x_new[i] = ...
x = x_new
pt.plot(mesh, x)
pt.plot(mesh, x_true, label="true")
pt.legend()
(Edit cell for solution)
x = np.zeros(n)
x_new = np.empty(n)
for i in xrange(n):
x_new[i] = b[i]
for j in xrange(i):
x_new[i] -= A[i,j]*x_new[j]
for j in xrange(i+1, n):
x_new[i] -= A[i,j]*x[j]
x_new[i] = x_new[i] / A[i,i]
x = x_new
pt.plot(mesh, x)
pt.plot(mesh, x_true, label="true")
pt.legend()
x = np.zeros(n)
x_new = np.empty(n)
for i in xrange(n):
x_new[i] = b[i]
for j in xrange(i):
x_new[i] -= A[i,j]*x_new[j]
for j in xrange(i+1, n):
x_new[i] -= A[i,j]*x[j]
x_new[i] = x_new[i] / A[i,i]
direction = x_new - x
omega = 1.5
x = x + omega*direction
pt.plot(mesh, x)
pt.plot(mesh, x_true, label="true")
pt.legend()
pt.ylim([-1.3, 1.3])