Shooting method:

- Easy
- Breakable: may fail to converge, as root-finding may be unstable.

Finite difference method

<table>
<thead>
<tr>
<th>(u_n(x))</th>
<th>(f(x))</th>
<th>(u(0) = a)</th>
<th>(u(1) = b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Replace: (e.g.)

\[u'(x) = \frac{u(x+h) - u(x-h)}{2h} \]
\[u''(x) = \frac{u(x+2h) - 2u(x) + u(x-h)}{h^2} \]

What happens here?

5-wide stencil. Possibility: biased stencil.

\[u_0 - 2u_1 + u_2 = r_1 \]
\[u_1 - 2u_2 + u_3 = r_2 \]
Galerkin / finite elements

\[u''(x) = f(x) \quad \Rightarrow \quad u''(x) - f(x) = 0 \]

\[u(x) = \sum_{i=1}^{n} a_i \varphi_i(x) \]