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What’s the point of this class?
’Scientific Computing’ describes a family of approaches to obtain
approximate solutions to problems once they’ve been stated
mathematically.
Name some applications:



What do we study, and how?

Problems with real numbers (i.e. continuous problems)

What’s the general approach?



What makes for good numerics?

How good of an answer can we expect to our problem?

How fast can we expect the computation to complete?



Implementation concerns

How do numerical methods get implemented?



Class web page

https://bit.ly/cs450-s19

I Assignments
I HW0!
I Pre-lecture quizzes
I In-lecture interactive content (bring computer or phone if possible)

I Textbook
I Exams
I Class outline (with links to notes/demos/activities/quizzes)
I Virtual Machine Image
I Piazza
I Policies
I Video
I Inclusivity Statement

https://bit.ly/cs450-s19


Programming Language: Python/numpy

I Reasonably readable
I Reasonably beginner-friendly
I Mainstream (top 5 in ‘TIOBE Index’)
I Free, open-source
I Great tools and libraries (not just) for scientific computing
I Python 2/3? 3!
I numpy: Provides an array datatype

Will use this and matplotlib all the time.
I See class web page for learning materials

Demo: Sum the squares of the integers from 0 to 100. First without
numpy, then with numpy.



Supplementary Material

I Numpy (from the SciPy Lectures)
I 100 Numpy Exercises
I Dive into Python3

https://scipy-lectures.github.io/intro/numpy/index.html
http://www.loria.fr/~rougier/teaching/numpy.100/index.html
http://www.diveinto.org/python3/


Sources for these Notes

I M.T. Heath, Scientific Computing: An Introductory Survey, Revised
Second Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA. 2018.

I CS 450 Notes by Edgar Solomonik
I Various bits of prior material by Luke Olson

https://relate.cs.illinois.edu/course/cs450-f18/


Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2020 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

https://github.com/inducer/numerics-notes


What problems can we study in the first place?

To be able to compute a solution (through a process that introduces
errors), the problem. . .

If it satisfies these criteria, the problem is called well-posed. Otherwise,
ill-posed.



Dependency on Inputs

We excluded discontinuous problems–because we don’t stand much chance
for those.
. . . what if the problem’s input dependency is just close to discontinuous?



Approximation

When does approximation happen?

Demo: Truncation vs Rounding

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Truncation vs Rounding.ipynb


Example: Surface Area of the Earth

Compute the surface area of the earth.
What parts of your computation are approximate?



Measuring Error

How do we measure error?
Idea: Consider all error as being added onto the result.



Recap: Norms
What’s a norm?

Define norm.



Norms: Examples

Examples of norms?

Demo: Vector Norms

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Vector Norms.ipynb


Norms: Which one?

Does the choice of norm really matter much?



Norms and Errors

If we’re computing a vector result, the error is a vector.
That’s not a very useful answer to ‘how big is the error’.
What can we do?



Forward/Backward Error
Suppose want to compute y = f (x), but approximate ŷ = f̂ (x).

What are the forward error and the backward error?



Forward/Backward Error: Example

Suppose you wanted y =
√
2 and got ŷ = 1.4.

What’s the (magnitude of) the forward error?



Forward/Backward Error: Example

Suppose you wanted y =
√
2 and got ŷ = 1.4.

What’s the (magnitude of) the backward error?



Forward/Backward Error: Observations

What do you observe about the relative manitude of the relative errors?



Sensitivity and Conditioning

What can we say about amplification of error?



Example: Condition Number of Evaluating a Function

y = f (x). Assume f differentiable.

Demo: Conditioning of Evaluating tan

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Conditioning of Evaluating tan.ipynb


Stability and Accuracy
Previously: Considered problems or questions.
Next: Considered methods, i.e. computational approaches to find solutions.
When is a method accurate?

When is a method stable?



Getting into Trouble with Accuracy and Stability

How can I produce inaccurate results?



In-Class Activity: Forward/Backward Error

In-class activity: Forward/Backward Error

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-fwd-bwd-error/start


Wanted: Real Numbers. . . in a computer
Computers can represent integers, using bits:

23 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = (10111)2

How would we represent fractions?



Fixed-Point Numbers
Suppose we use units of 64 bits, with 32 bits for exponents > 0 and 32 bits
for exponents < 0. What numbers can we represent?

How many ‘digits’ of relative accuracy (think relative rounding error) are
available for the smallest vs. the largest number?



Floating Point Numbers

Convert 13 = (1101)2 into floating point representation.

What pieces do you need to store an FP number?



Floating Point: Implementation, Normalization

Previously: Consider mathematical view of FP.
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?



Unrepresentable numbers?
Can you think of a somewhat central number that we cannot represent as

x = (1._________)2 · 2
−p?

Demo: Picking apart a floating point number

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Picking apart a floating point number.ipynb


Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored
bits in the significand and an exponent range of [−7, 7]?



Subnormal Numbers II
What is the smallest representable number in an FP system with 4 stored
bits in the significand and an exponent range of [−7, 7]? (Attempt 2)

Why learn about subnormals?



Underflow

I FP systems without subnormals will underflow (return 0) as soon as
the exponent range is exhausted.

I This smallest representable normal number is called the underflow
level, or UFL.

I Beyond the underflow level, subnormals provide for gradual underflow
by ‘keeping going’ as long as there are bits in the significand, but it is
important to note that subnormals don’t have as many accurate digits
as normal numbers.

I Analogously (but much more simply–no ‘supernormals’): the overflow
level, OFL.



Rounding Modes
How is rounding performed? (Imagine trying to represent π.)(

1.1101010︸ ︷︷ ︸
representable

11
)
2

What is done in case of a tie? 0.5 = (0.1)2 (“Nearest”?)

Demo: Density of Floating Point Numbers
Demo: Floating Point vs Program Logic

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Density of Floating Point Numbers.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Floating Point vs Program Logic.ipynb


Smallest Numbers Above. . .

I What is smallest FP number > 1? Assume 4 bits in the significand.

What’s the smallest FP number > 1024 in that same system?

Can we give that number a name?



Unit Roundoff

Unit roundoff or machine precision or machine epsilon or εmach is the
smallest number such that

float(1 + ε) > 1.

I Assuming round-to-nearest, in the above system, εmach = (0.00001)2.
I Note the extra zero.
I Another, related, quantity is ULP, or unit in the last place.

(εmach = 0.5ULP)



FP: Relative Rounding Error

What does this say about the relative error incurred in floating point
calculations?



FP: Machine Epsilon

What’s that same number for double-precision floating point? (52 bits in
the significand)

Demo: Floating Point and the Harmonic Series

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Floating Point and the Harmonic Series.ipynb


In-Class Activity: Floating Point

In-class activity: Floating Point

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-floating-point/start


Implementing Arithmetic

How is floating point addition implemented?
Consider adding a = (1.101)2 · 21 and b = (1.001)2 · 2−1 in a system with
three bits in the significand.



Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude?
As an example, consider a = (1.1011)2 · 20 and b = (1.1010)2 · 20.

Demo: Catastrophic Cancellation

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Catastrophic Cancellation.ipynb


Supplementary Material

I Josh Haberman, Floating Point Demystified, Part 1
I David Goldberg, What every computer programmer should know

about floating point

http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
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Solving a Linear System
Given:
I m × n matrix A
I m-vector b

What are we looking for here, and when are we allowed to ask the
question?

Next: Want to talk about conditioning of this operation. Need to measure
distances of matrices.



Matrix Norms

What norms would we apply to matrices?



Matrix Norm Properties

What is ‖A‖1? ‖A‖∞?

How do matrix and vector norms relate for n × 1 matrices?

Demo: Matrix norms

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Matrix norms.ipynb


Properties of Matrix Norms

Matrix norms inherit the vector norm properties:
I ‖A‖ > 0⇔ A 6= 0.
I ‖γA‖ = |γ| ‖A‖ for all scalars γ.
I Obeys triangle inequality ‖A + B‖ 6 ‖A‖+ ‖B‖

But also some more properties that stem from our definition:



Conditioning

What is the condition number of solving a linear system Ax = b?



Conditioning of Linear Systems: Observations

Showed κ(Solve Ax = b) ≤
∥∥A−1∥∥ ‖A‖.

I.e. found an upper bound on the condition number. With a little bit of
fiddling, it’s not too hard to find examples that achieve this bound, i.e.
that it is sharp.

So we’ve found the condition number of linear system solving, also called
the condition number of the matrix A:

cond(A) = κ(A) = ‖A‖
∥∥A−1∥∥ .



Conditioning of Linear Systems: More properties
I cond is relative to a given norm. So, to be precise, use

cond2 or cond∞ .

I If A−1 does not exist: cond(A) =∞ by convention.
What is κ(A−1)?

What is the condition number of matrix-vector multiplication?

Demo: Condition number visualized
Demo: Conditioning of 2x2 Matrices

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Condition number visualized.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Conditioning of 2x2 Matrices.ipynb


Residual Vector

What is the residual vector of solving the linear system

b = Ax?



Residual and Error: Relationship
How do the (norms of the) residual vector r and the error ∆x = x− x̂
relate to one another?



Changing the Matrix
So far, all our discussion was based on changing the right-hand side, i.e.

Ax = b → Ax̂ = b̂.

The matrix consists of FP numbers, too–it, too, is approximate. I.e.

Ax = b → Âx̂ = b.

What can we say about the error now?



Changing Condition Numbers
Once we have a matrix A in a linear system Ax = b, are we stuck with its
condition number? Or could we improve it?

What is this called as a general concept?



In-Class Activity: Matrix Norms and Conditioning

In-class activity: Matrix Norms and Conditioning

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-conditioning/start


Solving Systems: Triangular matrices
Solve 

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44



x
y
z
w

 =


b1
b2
b3
b4

 .

Demo: Coding back-substitution
What about non-triangular matrices?

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Coding back-substitution.ipynb


Gaussian Elimination
Demo: Vanilla Gaussian Elimination
What do we get by doing Gaussian Elimination?

How is that different from being upper triangular?

What if we do not just eliminate downward but also upward?

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Vanilla Gaussian Elimination.ipynb


Elimination Matrices

What does this matrix do?
1

1
−1

2 1
1

1



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗





About Elimination Matrices

Are elimination matrices invertible?



More on Elimination Matrices

Demo: Elimination matrices I
Idea: With enough elimination matrices, we should be able to get a matrix
into row echelon form.

So what do we get from many combined elimination matrices like that?

Demo: Elimination Matrices II

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Elimination matrices I.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Elimination Matrices II.ipynb


Summary on Elimination Matrices

I El.matrices with off-diagonal entries in a single column just “merge”
when multiplied by one another.

I El.matrices with off-diagonal entries in different columns merge when
we multiply (left-column) * (right-column) but not the other way
around.

I Inverse: Flip sign below diagonal



LU Factorization

Can build a factorization from elimination matrices. How?



Solving Ax = b

Does LU help solve Ax = b?

Demo: LU factorization

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/LU factorization.ipynb


LU: Failure Cases?

Is LU/Gaussian Elimination bulletproof?



Saving the LU Factorization

What can be done to get something like an LU factorization?



Recap: Permuation Matrices

How do we capture ‘row switches’ in a factorization?
1

1
1

1


︸ ︷︷ ︸

P


A A A A
B B B B
C C C C
D D D D

 =


A A A A
C C C C
B B B B
D D D D

 .

P is called a permutation matrix.
Q: What’s P−1?



Fixing nonexistence of LU
What does LU with permutations process look like?

Demo: LU with Partial Pivoting (Part I)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/LU with Partial Pivoting.ipynb


What about the L in LU?
Sort out what LU with pivoting looks like. Have: M3P3M2P2M1P1A = U.

Demo: LU with Partial Pivoting (Part II)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/LU with Partial Pivoting.ipynb


Computational Cost

What is the computational cost of multiplying two n × n matrices?

What is the computational cost of carrying out LU factorization on an
n × n matrix?

Demo: Complexity of Mat-Mat multiplication and LU

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Complexity of Mat-Mat multiplication and LU.ipynb


More cost concerns
What’s the cost of solving Ax = b?

What’s the cost of solving Ax = b1, b2, . . . , bn?

What’s the cost of finding A−1?



Cost: Worrying about the Constant, BLAS
O(n3) really means

α · n3 + β · n2 + γ · n + δ.

All the non-leading and constants terms swept under the rug. But: at least
the leading constant ultimately matters.

Shrinking the constant: surprisingly hard (even for ’just’ matmul)

Idea: Rely on library implementation: BLAS (Fortran)
Level 1 z = αx + y vector-vector operations

O(n)
?axpy

Level 2 z = Ax + y matrix-vector operations
O(n2)
?gemv

Level 3 C = AB + βC matrix-matrix operations
O(n3)
?gemm, ?trsm

Show (using perf): numpy matmul calls BLAS dgemm



LAPACK

LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.
I banded
I sparse
I symmetric
I triangular

Sample routine names:
I dgesvd, zgesdd
I dgetrf, dgetrs



LU on Blocks: The Schur Complement

Given a matrix [
A B
C D

]
,

can we do ‘block LU’ to get a block triangular matrix?



LU: Special cases

What happens if we feed a non-invertible matrix to LU?

What happens if we feed LU an m × n non-square matrices?



Round-off Error in LU

Consider factorization of
[
ε 1
1 1

]
where ε < εmach:

I Without pivoting: L =

[
1 0
1/ε 1

]
, U =

[
ε 1
0 1− 1/ε

]
I Rounding: fl(U)) =

[
ε 1
0 −1/ε

]
I This leads to L fl(U)) =

[
ε 1
1 0

]
, a backward error of

[
0 0
0 1

]
Permuting the rows of A in partial pivoting gives PA =

[
1 1
ε 1

]
I We now compute L =

[
1 0
ε 1

]
, U =

[
1 1
0 1− ε

]
, so fl(U) =

[
1 1
0 1

]
I This leads to L fl(U) =

[
1 1
ε 1 + ε

]
, a backward error of

[
0 0
0 ε

]
.



Changing matrices

Seen: LU cheap to re-solve if RHS changes. (Able to keep the expensive
bit, the LU factorization) What if the matrix changes?

Demo: Sherman-Morrison

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Sherman-Morrison.ipynb


In-Class Activity: LU

In-class activity: LU and Cost

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-lu/start


Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares
Introduction
Sensitivity and Conditioning
Solving Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics



What about non-square systems?

Specifically, what about linear systems with ‘tall and skinny’ matrices? (A:
m × n with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?



Example: Data Fitting
Too much data!

Lots of equations, but not many unknowns

f (x) = ax2 + bx + c

Only three parameters to set!
What are the ‘right’ a, b, c?

Want ‘best’ solution

Intro Existence/Uniqueness Sensitivity and Conditioning Transformations Orthogonalization SVD

Have data: (xi , yi ) and model:

y(x) = α + βx + γx2

Find data that (best) fit model!



Data Fitting Continued



Rewriting Data Fitting

Rewrite in matrix form.



Least Squares: The Problem In Matrix Form

‖Ax− b‖22 → min!

is cumbersome to write.
Invent new notation, defined to be equivalent:

Ax ∼= b

NOTE:
I Data Fitting is one example where LSQ problems arise.
I Many other application lead to Ax ∼= b, with different matrices.



Data Fitting: Nonlinearity
Give an example of a nonlinear data fitting problem.

∣∣exp(α) + βx1 + γx21 − y1
∣∣2

+ · · ·+∣∣exp(α) + βxn + γx2n − yn
∣∣2 → min!

But that would be easy to remedy: Do linear least squares with exp(α) as
the unknown. More difficult:

∣∣α + exp(βx1 + γx21 )− y1
∣∣2

+ · · ·+∣∣α + exp(βxn + γx2n )− yn
∣∣2 → min!

Demo: Interactive Polynomial Fit

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Interactive Polynomial Fit.ipynb


Properties of Least-Squares
Consider LSQ problem Ax ∼= b and its associated objective function
ϕ(x) = ‖b− Ax‖22. Does this always have a solution?

Is it always unique?

Examine the objective function, find its minimum.



Least squares: Demos

Demo: Polynomial fitting with the normal equations

What’s the shape of ATA?

Demo: Issues with the normal equations

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Polynomial fitting with the normal equations.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Issues with the normal equations.ipynb


Least Squares, Viewed Geometrically

Why is r ⊥ span(A) a good thing to require?



Least Squares, Viewed Geometrically (II)

Phrase the Pythagoras observation as an equation.

Write that with an orthogonal projection matrix P .



About Orthogonal Projectors
What is a projector?

What is an orthogonal projector?

How do I make one projecting onto span{q1, q2, . . . , q`} for orthogonal qi?



Least Squares and Orthogonal Projection

Check that P = A(ATA)−1AT is an orthogonal projector onto colspan(A).

What assumptions do we need to define the P from the last question?



Pseudoinverse
What is the pseudoinverse of A?

What can we say about the condition number in the case of a
tall-and-skinny, full-rank matrix?

What does all this have to do with solving least squares problems?



In-Class Activity: Least Squares

In-class activity: Least Squares

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-least-squares/start


Sensitivity and Conditioning of Least Squares

What values of θ are bad?



Sensitivity and Conditioning of Least Squares (II)

Any comments regarding dependencies?

What about changes in the matrix?



Recap: Orthogonal Matrices

What’s an orthogonal (=orthonormal) matrix?

One that satisfies QTQ = I and QQT = I .

How do orthogonal matrices interact with the 2-norm?

‖Qv‖22 = (Qv)T (Qv) = vTQTQv = vT v = ‖v‖22 .



Transforming Least Squares to Upper Triangular

Suppose we have A = QR , with Q square and orthogonal, and R upper
triangular. This is called a QR factorization.
How do we transform the least squares problem Ax ∼= b to one with an
upper triangular matrix?



Simpler Problems: Triangular

What do we win from transforming a least-squares system to upper
triangular form?

How would we minimize the residual norm?



Computing QR

I Gram-Schmidt
I Householder Reflectors
I Givens Rotations

Demo: Gram-Schmidt–The Movie
Demo: Gram-Schmidt and Modified Gram-Schmidt
Demo: Keeping track of coefficients in Gram-Schmidt
Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision
arithmetic because of roundoff.

NOTE: Textbook makes further modification to ‘modified’ Gram-Schmidt:
I Orthogonalize subsequent rather than preceding vectors.
I Numerically: no difference, but sometimes algorithmically helpful.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Gram-Schmidt--The Movie.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Gram-Schmidt and Modified Gram-Schmidt.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Keeping track of coefficients in Gram-Schmidt.ipynb


Economical/Reduced QR

Is QR with square Q for A ∈ Rm×n with m > n efficient?



In-Class Activity: QR

In-class activity: QR

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-qr/start


Householder Transformations

Find an orthogonal matrix Q to zero out the lower part of a vector a.



Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):

Ha = ±‖a‖2 e1.

Remarks:
I Q: What if we want to zero out only the i + 1th through nth entry?

A: Use ei above.
I A product Hn · · ·H1A = R of Householders makes it easy (and quite

efficient!) to build a QR factorization.
I It turns out v′ = a + ‖a‖2 e1 works out, too–just pick whichever one

causes less cancellation.
I H is symmetric
I H is orthogonal

Demo: 3x3 Householder demo

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/3x3 Householder demo.ipynb


Givens Rotations

If reflections work, can we make rotations work, too?

Demo: 3x3 Givens demo

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/3x3 Givens demo.ipynb


Rank-Deficient Matrices and QR

What happens with QR for rank-deficient matrices?



Rank-Deficient Matrices and Least-Squares

What happens with Least Squares for rank-deficient matrices?

Ax ∼= b

I QR still finds a solution with minimal residual
I By QR it’s easy to see that least squares with a short-and-fat matrix is

equivalent to a rank-deficient one.
I But: No longer unique. x + n for n ∈ N(A) has the same residual.
I In other words: Have more freedom

Or: Can demand another condition, for example:
I Minimize ‖b− Ax‖22, and
I minimize ‖x‖22, simultaneously.

Unfortunately, QR does not help much with that → Need better tool.



Singular Value Decomposition (SVD)

What is the Singular Value Decomposition of an m × n matrix?



SVD: What’s this thing good for? (I)



SVD: What’s this thing good for? (II)

I Low-rank Approximation

Theorem (Eckart-Young-Mirsky)
If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i ,

then
min

rank(B)=k
‖A− B‖2 = ‖A− Ak‖2 = σk+1.

Demo: Image compression

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Image compression.ipynb


SVD: What’s this thing good for? (III)

I The minimum norm solution to Ax ∼= b:



SVD: Minimum-Norm, Pseudoinverse

y = Σ+UTb is the minimum norm-solution to Σy ∼= UTb.
Observe ‖x‖2 = ‖y‖2.

x = VΣ+UTb

solves the minimum-norm least-squares problem.

Define A+ = VΣ+UT and call it the pseudoinverse of A.
Coincides with prior definition in case of full rank.



In-Class Activity: Householder, Givens, SVD

In-class activity: Householder, Givens, SVD

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-svd/start


Comparing the Methods

Methods to solve least squares with A an m × n matrix:
I Form: ATA: n2m/2

Solve with ATA: n3/6
I Solve with Householder: mn2 − n3/3
I If m ≈ n, about the same
I If m� n: Householder QR requires about twice as much work as

normal equations
I SVD: mn2 + n3 (with a large constant)

Demo: Relative cost of matrix factorizations

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Relative cost of matrix factorizations.ipynb
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Eigenvalue Problems: Setup/Math Recap

A is an n × n matrix.
I x 6= 0 is called an eigenvector of A if there exists a λ so that

Ax = λx.

I In that case, λ is called an eigenvalue.
I The set of all eigenvalues λ(A) is called the spectrum.
I The spectral radius is the magnitude of the biggest eigenvalue:

ρ(A) = max {|λ| : λ(A)}



Finding Eigenvalues

How do you find eigenvalues?

Ax = λx⇔ (A− λI )x = 0
⇔A− λI singular⇔ det(A− λI ) = 0

det(A− λI ) is called the characteristic polynomial, which has degree
n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel-Ruffini theorem: for n > 5 is
no general formula for roots of polynomial. IOW: no.

I For LU and QR, we obtain exact answers (except rounding).
I For eigenvalue problems: not possible—must approximate.

Demo: Rounding in characteristic polynomial using SymPy

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Rounding in characteristic polynomial using SymPy.ipynb


Multiplicity

What is the multiplicity of an eigenvalue?

Actually, there are two notions called multiplicity:
I Algebraic Multiplicity: multiplicity of the root of the

characteristic polynomial
I Geometric Multiplicity: #of lin. indep. eigenvectors

In general: AM > GM.
If AM > GM, the matrix is called defective.



An Example
Give characteristic polynomial, eigenvalues, eigenvectors of[

1 1
1

]
.



Diagonalizability

When is a matrix called diagonalizable?



Similar Matrices

Related definition: Two matrices A and B are called similar if there exists
an invertible matrix X so that A = XBX−1.

In that sense: “Diagonalizable” = “Similar to a diagonal matrix”.

Observe: Similar A and B have same eigenvalues. (Why?)



Eigenvalue Transformations (I)
What do the following transformations of the eigenvalue problem Ax = λx
do?
Shift. A→ A− σI

Inversion. A→ A−1

Power. A→ Ak



Eigenvalue Transformations (II)

Polynomial A→ aA2 + bA + cI

Similarity T−1AT with T invertible



Sensitivity (I)

Assume A not defective. Suppose X−1AX = D. Perturb A→ A + E .
What happens to the eigenvalues?



Sensitivity (II)
X−1(A + E )X = D + F . Have

∥∥(µI − D)−1
∥∥−1 6 ‖F‖.

Demo: Bauer-Fike Eigenvalue Sensitivity Bound

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Bauer-Fike Eigenvalue Sensitivity Bound.ipynb


Power Iteration

What are the eigenvalues of A1000?

Assume |λ1| > |λ2| > · · · > |λn| with eigenvectors x1, . . . , xn.
Further assume ‖xi‖ = 1.



Power Iteration: Issues?

What could go wrong with Power Iteration?



What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to know
eigenvalues?



Convergence of Power Iteration

What can you say about the convergence of the power method?
Say v(k)1 is the kth estimate of the eigenvector x1, and

ek =
∥∥∥x1 − v(k)1

∥∥∥ .



Rayleigh Quotient Iteration
Describe inverse iteration.

Describe Rayleigh Quotient Iteration.

Demo: Power Iteration and its Variants

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Power Iteration and its Variants.ipynb


In-Class Activity: Eigenvalues

In-class activity: Eigenvalues

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-eigenvalues/start


Schur form

Show: Every matrix is orthonormally similar to an upper triangular matrix,
i.e. A = QUQT . This is called the Schur form or Schur factorization.



Schur Form: Comments, Eigenvalues, Eigenvectors
A = QUQT . For complex λ:
I Either complex matrices, or
I 2× 2 blocks on diag.

If we had a Schur form of A, how can we find the eigenvalues?

And the eigenvectors?



Computing Multiple Eigenvalues

All Power Iteration Methods compute one eigenvalue at a time.
What if I want all eigenvalues?



Simultaneous Iteration

What happens if we carry out power iteration on multiple vectors
simultaneously?



Orthogonal Iteration



Toward the QR Algorithm

Demo: Orthogonal Iteration

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Orthogonal Iteration.ipynb


QR Iteration/QR Algorithm



QR Iteration: Incorporating a Shift

How can we accelerate convergence of QR iteration using shifts?



QR Iteration: Computational Expense

A full QR factorization at each iteration costs O(n3)–can we make that
cheaper?

Demo: Householder Similarity Transforms

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Householder Similarity Transforms.ipynb


QR/Hessenberg: Overall procedure

Overall procedure:
1. Reduce matrix to Hessenberg form
2. Apply QR iteration using Givens QR to obtain Schur form

For symmetric matrices:
I Use Householders to attain tridiagonal form
I Use QR iteration with Givens to attain diagonal form



Krylov space methods: Intro

What subspaces can we use to look for eigenvectors?



Krylov for Matrix Factorization

What matrix factorization is obtained through Krylov space methods?



Conditioning in Krylov Space Methods/Arnoldi Iteration (I)

What is a problem with Krylov space methods? How can we fix it?



Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

Demo: Arnoldi Iteration (Part 1)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Arnoldi Iteration.ipynb


Krylov: What about eigenvalues?
How can we use Arnoldi/Lanczos to compute eigenvalues?

Demo: Arnoldi Iteration (Part 2)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Arnoldi Iteration.ipynb


Computing the SVD (Kiddy Version)
How can I compute an SVD of a matrix A?

Demo: Computing the SVD

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Computing the SVD.ipynb
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Solving Nonlinear Equations

What is the goal here?



Showing Existence

How can we show existence of a root?



Sensitivity and Multiplicity
What is the sensitivity/conditioning of root finding?

What are multiple roots?

How do multiple roots interact with conditioning?



In-Class Activity: Krylov and Nonlinear Equations

In-class activity: Krylov and Nonlinear Equations

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-krylov-nonlinear/start


Rates of Convergence

What is linear convergence? quadratic convergence?



About Convergence Rates

Demo: Rates of Convergence
Characterize linear, quadratic convergence in terms of the ‘number of
accurate digits’.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Rates of Convergence.ipynb


Stopping Criteria

Comment on the ‘foolproof-ness’ of these stopping criteria:
1. |f (x)| < ε (‘residual is small’)
2. ‖xk+1 − xk‖ < ε

3. ‖xk+1 − xk‖ / ‖xk‖ < ε



Bisection Method

Demo: Bisection Method

What’s the rate of convergence? What’s the constant?

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Bisection Method.ipynb


Fixed Point Iteration

x0 = 〈starting guess〉
xk+1 = g(xk)

Demo: Fixed point iteration

When does fixed point iteration converge? Assume g is smooth.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Fixed point iteration.ipynb


Fixed Point Iteration: Convergence cont’d.

Error in FPI: ek+1 = xk+1 − x∗ = g(xk)− g(x∗)



Newton’s Method

Derive Newton’s method.



Convergence and Properties of Newton

What’s the rate of convergence of Newton’s method?

Drawbacks of Newton?

Demo: Newton’s method
Demo: Convergence of Newton’s Method

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Newton's method.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Convergence of Newton's Method.ipynb


Secant Method

What would Newton without the use of the derivative look like?



Convergence of Properties of Secant

Rate of convergence (not shown) is
(
1 +
√
5
)
/2 ≈ 1.618.

Drawbacks of Secant?

Demo: Secant Method
Demo: Convergence of the Secant Method

Secant (and similar methods) are called Quasi-Newton Methods.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Secant Method.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Convergence of the Secant Method.ipynb


Root Finding with Interpolants
Secant method uses a linear interpolant based on points f (xk), f (xk−1),
could use more points and higher-order interpolant:

What about existence of roots in that case?



Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally.
How could we use that?



In-Class Activity: Nonlinear Equations

In-class activity: Nonlinear Equations

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-nonlinear/start


Fixed Point Iteration

x0 = 〈starting guess〉
xk+1 = g(xk)

When does this converge?



Newton’s Method
What does Newton’s method look like in n dimensions?

Downsides of n-dim. Newton?

Demo: Newton’s method in n dimensions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Newton's method in n dimensions.ipynb


Secant in n dimensions?

What would the secant method look like in n dimensions?
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Optimization: Problem Statement

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) 6 0.

I g(x) = 0 and h(x) 6 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

I If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

I If f, g, h are linear, this is called linear programming.
Otherwise nonlinear programming.



Optimization: Observations

Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

What about multiple objectives?



Existence/Uniqueness
Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f : S → R is continuous on a closed and bounded set S ⊆ Rn, then

f : S → R is called coercive on S ⊆ Rn (which must be unbounded) if

If f is coercive, . . . . . .



Convexity

S ⊆ Rn is called convex if for all x, y ∈ S and all 0 6 α 6 1

f : S → R is called convex on S ⊆ Rn if for \ x, y ∈ S and all 0 6 α 6 1

Q: Give an example of a convex, but not strictly convex function.



Convexity: Consequences

If f is convex, . . .

If f is strictly convex, . . .



Optimality Conditions

If we have found a candidate x∗ for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.



Optimization: Observations
Q: Come up with a hypothetical approach for finding minima.

Q: Is the Hessian symmetric?

Q: How can we practically test for positive definiteness?



In-Class Activity: Optimization Theory

In-class activity: Optimization Theory

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-optimization-theory/start


Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?



Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?



Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.



Golden Section Search
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.



Golden Section Search: Efficiency
Where to put x1, x2?

Convergence rate?

Demo: Golden Section Proportions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Golden Section Proportions.ipynb


Newton’s Method

Reuse the Taylor approximation idea, but for optimization.

Demo: Newton’s Method in 1D

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Newton's Method in 1D.ipynb


In-Class Activity: Optimization Methods

In-class activity: Optimization Methods

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-optimization-methods/start


Steepest Descent
Given a scalar function f : Rn → R at a point x, which way is down?

Demo: Steepest Descent

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Steepest Descent.ipynb


Steepest Descent: Convergence
Consider quadratic model problem:

f (x) =
1
2
xTAx + cT x

where A is SPD. (A good model of f near a minimum.)

Define error ek = xk − x∗. Then

||ek+1||A =
√

eTk+1Aek+1 =
σmax(A)− σmin(A)

σmax(A) + σmin(A)
||ek ||A

→ confirms linear convergence.

Convergence constant related to conditioning:

σmax(A)− σmin(A)

σmax(A) + σmin(A)
=
κ(A)− 1
κ(A) + 1

.



Hacking Steepest Descent for Better Convergence
Extrapolation methods: Look back a step, maintain ’momentum’.

xk+1 = xk − αk∇f (xk) + βk(xk − xk−1)

Heavy ball method: constant αk = α and βk = β. Gives:

||ek+1||A =

√
κ(A)− 1√
κ(A) + 1

||ek ||A

Conjugate gradient method:

(αk , βk) = argminαk ,βk

[
f
(
xk − αk∇f (xk) + βk(xk − xk−1)

)]
I Will see in more detail later (for solving linear systems)
I Provably optimal first-order method for the quadratic model problem
I Turns out to be closely related to Lanczos (A-orthogonal search

directions)



Nelder-Mead Method

Idea:

Demo: Nelder-Mead Method

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Nelder-Mead Method.ipynb


Newton’s method (n D)

What does Newton’s method look like in n dimensions?



Newton’s method (n D): Observations

Drawbacks?

Demo: Newton’s method in n dimensions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Newton's method in n dimensions.ipynb


Quasi-Newton Methods
Secant/Broyden-type ideas carry over to optimization. How?

BFGS: Secant-type method, similar to Broyden:

Bk+1 = Bk +
ykyTk
yTk sk

−
BksksTk Bk

sTk Bksk

where
I sk = xk+1 − xk
I yk = ∇f (xk+1)−∇f (xk)



Nonlinear Least Squares: Setup

What if the f to be minimized is actually a 2-norm?

f (x) = ‖r(x)‖2 , r(x) = y − a(x)



Gauss-Newton

For brevity: J := Jr(x).



Gauss-Newton: Observations?

Demo: Gauss-Newton

Observations?

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Gauss-Newton.ipynb


Levenberg-Marquardt

If Gauss-Newton on its own is poorly, conditioned, can try
Levenberg-Marquardt:



Constrained Optimization: Problem Setup

Want x∗ so that

f (x∗) = min
x

f (x) subject to g(x) = 0

No inequality constraints just yet. This is equality-constrained
optimization. Develop a necessary condition for a minimum.



Constrained Optimization: Necessary Condition



Lagrange Multipliers

Seen: Need −∇f (x) = JTg λ at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an unconstrained
optimization problem for (x, λ). How?



Lagrange Multipliers: Development

L(x, λ) := f (x) + λTg(x).

Demo: Sequential Quadratic Programming

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Sequential Quadratic Programming.ipynb


Inequality-Constrained Optimization
Want x∗ so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) 6 0

This is inequality-constrained optimization. Develop a necessary condition
for a minimum.



Inequality-Constrained Optimization (cont’d)

Develop a set of necessary conditions for a minimum.
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Interpolation: Setup

Given: (xi )
N
i=1, (yi )

N
i=1

Wanted: Function f so that f (xi ) = yi

How is this not the same as function fitting? (from least squares)



Interpolation: Setup (II)

Given: (xi )
N
i=1, (yi )

N
i=1

Wanted: Function f so that f (xi ) = yi

Does this problem have a unique answer?



Interpolation: Importance

Why is interpolation important?



Making the Interpolation Problem Unique



Existence/Sensitivity
Solution to the interpolation problem: Existence? Uniqueness?

Sensitivity?



Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:
I Monomials 1, x , x2, x3, x4, . . .
I Functions that make V = I →

‘Lagrange basis’
I Functions that make V

triangular → ‘Newton basis’
I Splines (piecewise polynomials)
I Orthogonal polynomials
I Sines and cosines
I ‘Bumps’ (‘Radial Basis

Functions’)

Ideas for points:
I Equispaced
I ‘Edge-Clustered’ (so-called

Chebyshev/Gauss/. . . nodes)

Specific issues:
I Why not monomials on

equispaced points?
Demo: Monomial interpolation

I Why not equispaced?
Demo: Choice of Nodes for
Polynomial Interpolation

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Monomial interpolation.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb


Lagrange Interpolation

Find a basis so that V = I , i.e.

ϕj(xi ) =

{
1 i = j ,

0 otherwise.



Lagrange Polynomials: General Form

ϕj(x) =

∏m
k=1,k 6=j(x − xk)∏m
k=1,k 6=j(xj − xk)



Newton Interpolation

Find a basis so that V is triangular.

Why not Lagrange/Newton?



Better conditioning: Orthogonal polynomials
What caused monomials to have a terribly conditioned Vandermonde?

What’s a way to make sure two vectors are not like that?

But polynomials are functions!



Constructing Orthogonal Polynomials

How can we find an orthogonal basis?

Demo: Orthogonal Polynomials — Obtained: Legendre polynomials.
But how can I practically compute the Legendre polynomials?

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Orthogonal Polynomials.ipynb


Chebyshev Polynomials: Definitions

Three equivalent definitions:
I Result of Gram-Schmidt with weight 1/

√
1− x2. What is that weight?

(Like for Legendre, you won’t exactly get the standard normalization if
you do this.)

I Tk(x) = cos(k cos−1(x))

I Tk(x) = 2xTk−1(x)− Tk−2(x) plus T0 = 1, T0 = x

Demo: Chebyshev Interpolation (Part 1)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Chebyshev Interpolation .ipynb


Chebyshev Interpolation

What is the Vandermonde matrix for Chebyshev polynomials?



Chebyshev Nodes

Might also consider roots (instead of extrema) of Tk :

xi = cos

(
2i − 1
2k

π

)
(i = 1 . . . , k).

Vandermonde for these (with Tk) can be applied in O(N logN) time, too.
It turns out that we were still looking for a good set of interpolation nodes.
We came up with the criterion that the nodes should bunch towards the
ends. Do these do that?

Demo: Chebyshev Interpolation (Part 2)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Chebyshev Interpolation .ipynb


Chebyshev Interpolation: Summary

I Chebyshev interpolation is fast and works extremely well
I http://www.chebfun.org/ and: ATAP
I In 1D, they’re a very good answer to the interpolation question
I But sometimes a piecewise approximation (with a specifiable level of

smoothness) is more suited to the application

http://www.chebfun.org/
http://www.chebfun.org/ATAP/


In-Class Activity: Interpolation

In-class activity: Interpolation

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-interpolation/start


Interpolation Error

If f is n times continuously differentiable on a closed interval I and
pn−1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {xi} (i = 1, ..., n) in that interval, then for each x in the
interval there exists ξ in that interval such that

f (x)− pn−1(x) =
f (n)(ξ)

n!
(x − x1)(x − x2) · · · (x − xn).



Interpolation Error: Proof cont’d

Y (t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi )



Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev
interpolation?



Error Result: Simplified From

Boil the error result down to a simpler form.

Demo: Interpolation Error

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Interpolation Error.ipynb


Going piecewise: Simplest Case

Construct a piecweise linear interpolant at four points.

x0, y0 x1, y1 x2, y2 x3, y3

| f1 = a1x + b1 | f2 = a2x + b2 | f3 = a3x + b3 |
| 2 unk. | 2 unk. | 2 unk. |
| f1(x0) = y0 | f2(x1) = y1 | f3(x2) = y2 |
| f1(x1) = y1 | f2(x2) = y2 | f3(x3) = y3 |
| 2 eqn. | 2 eqn. | 2 eqn. |

Why three intervals?



Piecewise Cubic (‘Splines’)
x0, y0 x1, y1 x2, y2 x3, y3

| f1 | f2 | f3 |
| a1x

3 + b1x
2 + c1x + d1 | a2x

3 + b2x
2 + c2x + d2 | a3x

3 + b3x
2 + c3x + d3 |



Piecewise Cubic (‘Splines’): Accounting
x0, y0 x1, y1 x2, y2 x3, y3

| f1 | f2 | f3 |
| a1x

3 + b1x
2 + c1x + d1 | a2x

3 + b2x
2 + c2x + d2 | a3x

3 + b3x
2 + c3x + d3 |
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Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)

What about existence and uniqueness?



Conditioning

Derive the (absolute) condition number for numerical integration.



Interpolatory Quadrature

Design a quadrature method based on interpolation.



Interpolatory Quadrature: Examples



Interpolatory Quadrature: Computing Weights
How do the weights in interpolatory quadrature get computed?

Demo: Newton-Cotes weight finder

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Newton-Cotes weight finder.ipynb


Examples and Exactness

To what polynomial degree are the following rules exact?

Midpoint rule (b − a)f
(
a+b
2

)
Trapezoidal rule b−a

2 (f (a) + f (b))

Simpson’s rule b−a
6

(
f (a) + 4f

(
a+b
2

)
+ f (b)

) parabola



Interpolatory Quadrature: Accuracy

Let pn−1 be an interpolant of f at nodes x1, . . . , xn (of degree n − 1)
Recall ∑

i

ωi f (xi ) =

∫ b

a
pn−1(x)dx .

What can you say about the accuracy of the method?



Quadrature: Overview of Rules
n Deg. Ex.Int.Deg.

(w/odd)
Intp.Ord. Quad.Ord.

(regular)
Quad.Ord.
(w/odd)

n − 1 (n−1)+1odd n n + 1 (n+1)+1odd
Midp. 1 0 1 1 2 3
Trapz. 2 1 1 2 3 3
Simps. 3 2 3 3 4 5
— 4 3 3 4 5 5
I n: number of points
I “Deg.”: Degree of polynomial used in interpolation (= n − 1)
I “Ex.Int.Deg.”: Polynomials of up to (and including) this degree actually get

integrated exactly. (including the odd-order bump)
I “Intp.Ord.”: Order of Accuracy of Interpolation: O(hn)

I “Quad.Ord. (regular)”: Order of accuracy for quadrature predicted by the error
result above: O(hn+1)

I “Quad.Ord. (w/odd):” Actual order of accuracy for quadrature given ‘bonus’
degrees for rules with odd point count

Observation: Quadrature gets (at least) ‘one order higher’ than interpolation–even more
for odd-order rules. (i.e. more accurate)
Demo: Accuracy of Newton-Cotes

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Accuracy of Newton-Cotes.ipynb


Interpolatory Quadrature: Stability

Let pn be an interpolant of f at nodes x1, . . . , xn (of degree n − 1)
Recall ∑

i

ωi f (xi ) =

∫ b

a
pn(x)dx

What can you say about the stability of this method?



About Newton-Cotes

What’s not to like about Newton-Cotes quadrature?



Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes,
too? Hope: More design freedom → Exact to higher degree.

Demo: Gaussian quadrature weight finder

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Gaussian quadrature weight finder.ipynb


Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness
of the function.
Idea: Stitch together multiple lower-order quadrature rules to alleviate
smoothness requirement.

e.g. trapezoidal



Error in Composite Quadrature

What can we say about the error in the case of composite quadrature?



Composite Quadrature: Notes

Observation: Composite quadrature loses an order compared to
non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by
splitting in half) only those contributing the most to the error.
(adaptivity, → hw)



Taking Derivatives Numerically

Why shouldn’t you take derivatives numerically?

Demo: Taking Derivatives with Vandermonde Matrices

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb


Finite Differences



More Finite Difference Rules

Similarly:

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2)

(Centered differences)

Can also take higher order derivatives:

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+ O(h2)

Can find these by trying to match Taylor terms.
Alternative: Use linear algebra with interpolate-then-differentiate to find
FD formulas.
Demo: Finite Differences vs Noise
Demo: Floating point vs Finite Differences

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Finite Differences vs Noise.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Floating point vs Finite Differences.ipynb


Richardson Extrapolation

If we have two estimates of something, can we get a third that’s more
accurate? Suppose we have an approximation F = F̃ (h) + O(hp) and we
know F̃ (h1) and F̃ (h2).



Richardson Extrapolation: Observations, Romberg Integration

Important observation: Never needed to know a.

Idea: Can repeat this for even higher accuracy.

e.g. 1st 2nd 3rd 4th

order accurate

Carrying out this process for quadrature is called Romberg integration.
Demo: Richardson with Finite Differences

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Richardson with Finite Differences.ipynb


In-Class Activity: Differentiation and Quadrature

In-class activity: Differentiation and Quadrature

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-quadrature/start


Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods (I)
Accuracy and Stability
Stiffness
Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics



What can we solve already?

I Linear Systems: yes
I Nonlinear systems: yes
I Systems with derivatives: no



Some Applications

IVPs BVPs

I Population dynamics
y ′1 = y1(α1 − β1y2) (prey)
y ′2 = y2(−α2 + β2y1)
(predator)

I chemical reactions
I equations of motion

I bridge load
I pollutant concentration

(steady state)
I temperature

(steady state)



Initial Value Problems: Problem Statement
Want: Function y : [0,T ]→ Rn so that
I y(k)(t) = f(t, y, y′, y′′, . . . , y(k−1)) (explicit)

or
I f(t, y, y′, y′′, . . . , y(k)) = 0 (implicit)

are called explicit/implicit kth-order ordinary differential equations (ODEs).
Give a simple example.

Not uniquely solvable on its own. What else is needed?



Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this
example:

y ′′(t) = f (y)



Properties of ODEs
What is a linear ODE?

What is a linear and homogeneous ODE?

What is a constant-coefficient ODE?



Properties of ODEs (II)

What is an autonomous ODE?



Existence and Uniqueness
Consider the perturbed problem{

y′(t) = f(y)
y(t0) = y0

{
ŷ′(t) = f(ŷ)
ŷ(t0) = ŷ0

Then if f is Lipschitz continuous (has ‘bounded slope’), i.e.

‖f(y)− f(ŷ)‖ 6 L ‖y − ŷ‖
(where L is called the Lipschitz constant), then. . .

What does this mean for uniqueness?



Conditioning
Unfortunate terminology accident: “Stability” in ODE-speak
To adapt to conventional terminology, we will use ‘Stability’ for
I the conditioning of the IVP, and
I the stability of the methods we cook up.

Some terminology:

An ODE is stable if and only if. . .

An ODE is asymptotically stable if and only if



Example I: Scalar, Constant-Coefficient

{
y ′(t) = λy
y(0) = y0

where λ = a + ib

Solution?

When is this stable?



Example II: Constant-Coefficient System

{
y′(t) = Ay(t)
y(t0) = y0

Assume V−1 AV = D = diag(λ1, . . . , λn) diagonal.

How do we find a solution?

When is this stable?



Euler’s Method

Discretize the IVP {
y′(t) = f(y)
y(t0) = y0

I Discrete times: t1, t2, . . ., with ti+1 = ti + h

I Discrete function values: yk ≈ y(tk).



Euler’s method: Forward and Backward

y(t) = y0 +

∫ t

t0

f(y(τ))dτ,

Use ‘left rectangle rule’ on integral:

Use ‘right rectangle rule’ on integral:

Demo: Forward Euler stability

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Forward Euler stability.ipynb


Global and Local Error

local error global error

Let uk(t) be the function that solves the ODE with the initial condition
uk(tk) = yk .

Define the local error at step k as. . .

Define the global error at step k as. . .



About Local and Global Error
Is global error =

∑
local errors?

A time integrator is said to be accurate of order p if. . .



ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if `k = O(hp+1)

This requirement is one order higher than one might expect–why?



Stability of a Method

Find out when forward Euler is stable when applied to y ′(t) = λy(t).



Stability: Systems

What about stability for systems, i.e.

y′(t) = Ay(t)?



Stability: Nonlinear ODEs

What about stability for nonlinear systems, i.e.

y′(t) = f(y(t))?



Stability for Backward Euler

Find out when backward Euler is stable when applied to y ′(t) = λy(t).

Demo: Backward Euler stability

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Backward Euler stability.ipynb


Stiff ODEs: Demo

Demo: Stiffness

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Stiffness.ipynb


‘Stiff’ ODEs

I Stiff problems have multiple time scales.
(In the example above: Fast decay, slow evolution.)

I In the case of a stable ODE system

y′(t) = f(y(t)),

stiffness can arise if Jf has eigenvalues of very different magnitude.



Stiffness: Observations

Why not just ‘small’ or ‘large’ magnitude?

What is the problem with applying explicit methods to stiff problems?



Stiffness vs. Methods

Phrase this as a conflict between accuracy and stability.

Can an implicit method take arbitrarily large time steps?



Predictor-Corrector Methods

Idea: Obtain intermediate result, improve it (with same or different
method).

For example:
1. Predict with forward Euler: ỹk+1 = yk + hf (yk)

2. Correct with the trapezoidal rule: yk+1 = yk + h
2 (f (yk) + f (ỹk+1)).

This is called Heun’s method.



Runge-Kutta/‘Single-step’/‘Multi-Stage’ Methods
Idea: Compute intermediate ‘stage values’:

r1 = f (tk + c1h, yk + (a11 · r1 + · · ·+ a1s · rs)h)
...

...
rs = f (tk + csh, yk + (as1 · r1 + · · ·+ ass · rs)h)

Then compute the new state from those:

yk+1 = yk + (b1 · r1 + · · ·+ bs · rs)h

Can summarize in a Butcher tableau:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs



Runge-Kutta: Properties
When is an RK method explicit?

When is it implicit?

When is it diagonally implicit? (And what does that mean?)



Heun and Butcher

Stuff Heun’s method into a Butcher tableau:
1. ỹk+1 = yk + hf (yk)

2. yk+1 = yk + h
2 (f (yk) + f (ỹk+1)).

What is RK4?

Demo: Dissipation in Runge-Kutta Methods

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Dissipation in Runge-Kutta Methods.ipynb


Multi-step/Single-stage/Adams Methods/Backward Differencing
Formulas (BDFs)

Idea: Instead of computing stage values, use history (of either values of f
or y–or both):

yk+1 =
M∑
i=1

αiyk+1−i + h
N∑
i=1

βi f (yk+1−i )

Extensions to implicit possible.
Method relies on existence of history. What if there isn’t any? (Such as at
the start of time integration?)



Stability Regions

Why does the idea of stability regions still apply to more complex time
integrators (e.g. RK?)

Demo: Stability regions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Stability regions.ipynb


More Advanced Methods

Discuss:
I What is a good cost

metric for time
integrators?

I AB3 vs RK4
I Runge-Kutta-Chebyshev
I LSERK and AB34
I IMEX and multi-rate
I Parallel-in-time

(“Parareal”) 4 2 0
Re h

2

0

2

Im
 

h

ab3
ab34
lserk
rk4

https://doi.org/10.1016/S0168-9274(99)00141-5
https://arxiv.org/abs/1805.06607
https://doi.org/10.1007/978-3-642-56118-4_12


In-Class Activity: Initial Value Problems

In-class activity: Initial Value Problems

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-ivp/start
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BVP Problem Setup: Second Order

Example: Second-order linear ODE

u′′(x) + p(x)u′(x) + q(x)u(x) = r(x)

with boundary conditions (‘BCs’) at a:
I Dirichlet u(a) = ua
I or Neumann u′(a) = va
I or Robin αu(a) + βu′(a) = wa

and the same choices for the BC at b.

Note: BVPs in time are rare in applications, hence x (not t) is typically
used for the independent variable.



BVP Problem Setup: General Case
ODE:

y′(x) = f(y(x)) f : Rn → Rn

BCs:
g(y(a), y(b)) = 0 g : R2n → Rn

(Recall the rewriting procedure to first-order for any-order ODEs.)

Does a first-order, scalar BVP make sense?

Example: Linear BCs
Bay(a) + Bby(b) = c

Is this Dirichlet/Neumann/. . . ?



Does a solution even exist? How sensitive are they?
General case is harder than root finding, and we couldn’t say much there.
→ Only consider linear BVP.

(∗)
{

y′(x) = A(x)y(x) + b(x)
Bay(a) + Bby(b) = c

To solve that, consider homogeneous IVP

y′i (x) = A(x)yi (x)

with initial condition
yi (a) = ei .

Note: y 6= yi. ei is the ith unit vector. With that, build the fundamental
solution matrix

Y (x) =

 | |
y1 · · · yn
| |





ODE Systems: Existence
Let

Q := BaY (a) + BbY (b)

Then (∗) has a unique solution if and only if Q is invertible. Solve to find
coefficients:

Qα = c

Then Y (x)α solves (∗) with b(x) = 0.

Define Φ(x) := Y (x)Q−1. So Φ(x)c solves (∗) with b(x) = 0.
Define Green’s function

G (x , y) :=

{
Φ(x)BaΦ(a)Φ−1(y) y 6 x ,

−Φ(x)BbΦ(b)Φ−1(y) y > x .

Then

y(x) = Φ(x)c +

∫ b

a
G (x , y)b(y)dy .

Can verify that this solves (∗) by plug’n’chug.



ODE Systems: Conditioning

For perturbed problem with b(x) + ∆b(x) and c + ∆c:

‖∆y‖∞ 6 max (‖Φ‖∞ , ‖G‖∞)

(
‖∆c‖1 +

∫
‖∆b(y)‖1 dy

)
.

I Did not prove uniqueness. (But true.)
I Also get continuous dependence on data.



Shooting Method
Idea: Want to make use of the fact that we can already solve IVPs.
Problem: Don’t know all left BCs.

Demo: Shooting method

What about systems?

What are some downsides of this method?

What’s an alternative approach?

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/bvp_odes/Shooting method.ipynb


Finite Difference Method
Idea: Replace u′ and u′′ with finite differences.
For example: second-order centered

u′(x) =
u(x + h)− u(x − h)

2h
+ O(h2)

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+ O(h2)

Demo: Finite differences

What happens for a nonlinear ODE?

Demo: Sparse matrices

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/bvp_odes/Finite differences.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/bvp_odes/Sparse matrices.ipynb


Collocation Method

(∗)
{

y ′(x) = f (y(x),
g(y(a), y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)

ŷ(x) =
n∑

i=1

αiTi (x)

Want ŷ to be close to solution y . So: plug into (∗).

Problem: ŷ won’t satisfy the ODE at all points at least.
We do not have enough unknowns for that.

2. Idea: Pick n points where we would like (∗) to be satisfied.
→ Get a big (non-)linear system

3. Solve that (LU/Newton)→ done.



Galerkin/Finite Element Method

u′′(x) = f (x), u(a) = u(b) = 0.

Problem with collocation: Big dense matrix.
Idea: Use piecewise basis. Maybe it’ll be sparse.

"hat functions"

one "finite element"

What’s the problem with that?



Weak solutions/Weighted Residual Method

Idea: Enforce a ‘weaker’ version of the ODE.



Galerkin: Choices in Weak Solutions

Make some choices:
I Solve for u ∈ span {hat functions ϕi}
I Choose ψ ∈W = span {hat functions ϕi} with ψ(a) = ψ(b) = 0.
→ Kills boundary term [u′(x)ψ(x)]ba .

These choices are called the Galerkin method. Also works with other bases.



Discrete Galerkin

Assemble a matrix for the Galerkin method.
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Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?
I CS555 → Numerical Methods for PDEs
I CS556 → Iterative and Multigrid Methods
I CS554 → Parallel Numerical Algorithms

We would love to see you there! :)



Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don’t factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In”

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Sparse Matrix Factorizations and ``Fill-In''.ipynb


‘Stationary’ Iterative Methods
Idea: Invert only part of the matrix in each iteration. Split

A = M − N,

where M is the part that we are actually inverting. Convergence?

Ax = b
Mx = Nx + b

Mxk+1 = Nxk + b
xk+1 = M−1(Nxk + b)

I These methods are called stationary because they do the same
thing in every iteration.

I They carry out fixed point iteration.
→ Converge if contractive, i.e. ρ(M−1N) < 1.

I Choose M so that it’s easy to invert.



Choices in Stationary Iterative Methods

What could we choose for M (so that it’s easy to invert)?

Name M N

Jacobi D −(L + U)
Gauss-Seidel D + L −U
SOR 1

ωD + L
( 1
ω − 1

)
D − U

where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Stationary Methods.ipynb


Conjugate Gradient Method

Assume A is symmetric positive definite.
Idea: View solving Ax = b as an optimization problem.

Minimize ϕ(x) =
1
2
xTAx− xTb ⇔ Solve Ax = b.

Observe −∇ϕ(x) = b− Ax = r (residual).

Use an iterative procedure (sk is the search direction):

x0 = 〈starting vector〉
xk+1 = xk + αksk ,



CG: Choosing the Step Size

What should we choose for αk (assuming we know sk)?



CG: Choosing the Search Direction

What should we choose for sk?



CG: Further Development

Demo: Conjugate Gradient Method

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Conjugate Gradient Method.ipynb


Introduction
Notation:

∂

∂x
u = ∂xu = ux .

A PDE (partial differential equation) is an equation with multiple partial
derivatives:

uxx + uyy = 0

Here: solution is a function u(x , y) of two variables.

Examples: Wave propagation, fluid flow, heat diffusion
I Typical: Solve on domain with complicated geometry.



Initial and Boundary Conditions
I Sometimes one variable is time-like.

What makes a variable time-like?
I Causality
I No geometry

Have:
I PDE
I Boundary conditions
I Initial conditions (in t)



Time-Dependent PDEs

Time-dependent PDEs give rise to a steady-state PDE:

ut = f (ux , uy , uxx, uyy) → 0 = f (ux , uy , uxx, uyy)

Idea for time-dep problems (Method of Lines):
I Discretize spatial derivatives first
I Obtain large (semidiscrete) system of ODEs
I Use ODE solver from Chapter 9

Demo: Time-dependent PDEs

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Time-dependent PDEs.ipynb


Notation: Laplacian

Laplacian (dimension-independent)

∆u = div grad u = ∇ · (∇u) = uxx + uyy



Classifying PDEs

Three main types of PDEs:
I hyperbolic (wave-like, conserve energy)

I first-order conservation laws: ut + f (u)x = 0
I second-order wave equation: utt = ∆u

I parabolic (heat-like, dissipate energy)
I heat equation: ut = ∆u

I elliptic (steady-state, of heat and wave eq. for example)
I Laplace equation ∆u = 0
I Poisson equation ∆u = f

(Pure BVP, similar to 1D BVPs, same methods apply–FD, Galerkin,
etc.)



Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics



Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics


	Introduction to Scientific Computing
	Notes
	Notes (unfilled, with empty boxes)
	About the Class
	Errors, Conditioning, Accuracy, Stability
	Floating Point

	Systems of Linear Equations
	Theory: Conditioning
	Methods to Solve Systems

	Linear Least Squares
	Introduction
	Sensitivity and Conditioning
	Solving Least Squares

	Eigenvalue Problems
	Properties and Transformations
	Sensitivity
	Computing Eigenvalues
	Krylov Space Methods

	Nonlinear Equations
	Introduction
	Iterative Procedures
	Methods in One Dimension
	Methods in n Dimensions (``Systems of Equations'')

	Optimization
	Introduction
	Methods for unconstrained opt. in one dimension
	Methods for unconstrained opt. in n dimensions
	Nonlinear Least Squares
	Constrained Optimization

	Interpolation
	Introduction
	Methods
	Error Estimation
	Piecewise interpolation, Splines

	Numerical Integration and Differentiation
	Numerical Integration
	Quadrature Methods
	Accuracy and Stability
	Gaussian Quadrature
	Composite Quadrature
	Numerical Differentiation
	Richardson Extrapolation

	Initial Value Problems for ODEs
	Existence, Uniqueness, Conditioning
	Numerical Methods (I)
	Accuracy and Stability
	Stiffness
	Numerical Methods (II)

	Boundary Value Problems for ODEs
	Existence, Uniqueness, Conditioning
	Numerical Methods

	Partial Differential Equations and Sparse Linear Algebra
	Sparse Linear Algebra
	PDEs

	Fast Fourier Transform
	Additional Topics

