
Numerical Analysis / Scientific Computing
CS450

Andreas Kloeckner

Spring 2019

Outline
Introduction to Scientific Computing

Notes
Notes (unfilled, with empty boxes)
About the Class
Errors, Conditioning, Accuracy, Stability
Floating Point

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What’s the point of this class?
’Scientific Computing’ describes a family of approaches to obtain
approximate solutions to problems once they’ve been stated
mathematically.
Name some applications:

I Engineering simulation
I E.g. Drag from flow over airplane wings, behavior of photonic

devices, radar scattering, . . .
I → Differential equations (ordinary and partial)

I Machine learning
I Statistical models, with unknown parameters
I → Optimization

I Image and Audio processing
I Enlargement/Filtering
I → Interpolation

I Lots more.

What do we study, and how?

Problems with real numbers (i.e. continuous problems)

I As opposed to discrete problems.
I Including: How can we put a real number into a computer?

(and with what restrictions?)

What’s the general approach?

I Pick a representation (e.g.: a polynomial)
I Existence/uniqueness?

What makes for good numerics?

How good of an answer can we expect to our problem?

I Can’t even represent numbers exactly.
I Answers will always be approximate.
I So, it’s natural to ask how far off the mark we really are.

How fast can we expect the computation to complete?

I A.k.a. what algorithms do we use?
I What is the cost of those algorithms?
I Are they efficient?

(I.e. do they make good use of available machine time?)

Implementation concerns

How do numerical methods get implemented?

I Like anything in computing: A layer cake of abstractions
(“careful lies”)

I What tools/languages are available?
I Are the methods easy to implement?
I If not, how do we make use of existing tools?
I How robust is our implementation? (e.g. for error cases)

Class web page

https://bit.ly/cs450-s19

I Assignments
I HW0!
I Pre-lecture quizzes
I In-lecture interactive content (bring computer or phone if possible)

I Textbook
I Exams
I Class outline (with links to notes/demos/activities/quizzes)
I Virtual Machine Image
I Piazza
I Policies
I Video
I Inclusivity Statement

https://bit.ly/cs450-s19

Programming Language: Python/numpy

I Reasonably readable
I Reasonably beginner-friendly
I Mainstream (top 5 in ‘TIOBE Index’)
I Free, open-source
I Great tools and libraries (not just) for scientific computing
I Python 2/3? 3!
I numpy: Provides an array datatype

Will use this and matplotlib all the time.
I See class web page for learning materials

Demo: Sum the squares of the integers from 0 to 100. First without
numpy, then with numpy.

Supplementary Material

I Numpy (from the SciPy Lectures)
I 100 Numpy Exercises
I Dive into Python3

https://scipy-lectures.github.io/intro/numpy/index.html
http://www.loria.fr/~rougier/teaching/numpy.100/index.html
http://www.diveinto.org/python3/

Sources for these Notes

I M.T. Heath, Scientific Computing: An Introductory Survey, Revised
Second Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA. 2018.

I CS 450 Notes by Edgar Solomonik
I Various bits of prior material by Luke Olson

https://relate.cs.illinois.edu/course/cs450-f18/

Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2020 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

https://github.com/inducer/numerics-notes

What problems can we study in the first place?

To be able to compute a solution (through a process that introduces
errors), the problem. . .

I Needs to have a solution
I That solution should be unique
I And depend continuously on the inputs

If it satisfies these criteria, the problem is called well-posed. Otherwise,
ill-posed.

Dependency on Inputs

We excluded discontinuous problems–because we don’t stand much chance
for those.
. . . what if the problem’s input dependency is just close to discontinuous?

I We call those problems sensitive to their input data.
Such problems are obviously trickier to deal with than
non-sensitive ones.

I Ideally, the computational method will not amplify the
sensitivity

Approximation

When does approximation happen?

I Before computation
I modeling
I measurements of input data
I computation of input data

I During computation
I truncation / discretization
I rounding

Demo: Truncation vs Rounding

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Truncation vs Rounding.ipynb

Example: Surface Area of the Earth

Compute the surface area of the earth.
What parts of your computation are approximate?

All of them.
A = 4πr2

I Earth isn’t really a sphere
I What does radius mean if the earth isn’t a sphere?
I How do you compute with π? (By rounding/truncating.)

Measuring Error

How do we measure error?
Idea: Consider all error as being added onto the result.

Absolute error = approx value − true value

Relative error =
Absolute error
True value

Problem: True value not known
I Estimate
I ‘How big at worst?’ → Establish Upper Bounds

Recap: Norms

What’s a norm?

I f (x) : Rn → R+
0 , returns a ‘magnitude’ of the input vector

I In symbols: Often written ‖x‖.

Define norm.

A function ‖x‖ : Rn → R+
0 is called a norm if and only if

1. ‖x‖ > 0⇔ x 6= 0.
2. ‖γx‖ = |γ| ‖x‖ for all scalars γ.
3. Obeys triangle inequality ‖x + y‖ 6 ‖x‖+ ‖y‖

Norms: Examples

Examples of norms?

The so-called p-norms:∥∥∥∥∥∥∥
x1...
xn

∥∥∥∥∥∥∥
p

= p

√
|x1|p + · · ·+ |xn|p (p > 1)

p = 1, 2,∞ particularly important

Demo: Vector Norms

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Vector Norms.ipynb

Norms: Which one?

Does the choice of norm really matter much?

In finitely many dimensions, all norms are equivalent.
I.e. for fixed n and two norms ‖·‖ , ‖·‖∗, there exist α, β > 0 so that
for all vectors x ∈ Rn

α ‖x‖ 6 ‖x‖∗ 6 β ‖x‖ .

So: No, doesn’t matter that much. Will start mattering more for
so-called matrix norms–see later.

Norms and Errors

If we’re computing a vector result, the error is a vector.
That’s not a very useful answer to ‘how big is the error’.
What can we do?

Apply a norm!

How? Attempt 1:

Magnitude of error 6= ‖true value‖ − ‖approximate value‖

WRONG! (How does it fail?)
Attempt 2:

Magnitude of error = ‖true value− approximate value‖

Forward/Backward Error
Suppose want to compute y = f (x), but approximate ŷ = f̂ (x).

What are the forward error and the backward error?

Forward error: ∆y = ŷ − y

Backward error: Imagine all error came from feeding the wrong input
into a fully accurate calculation. Backward error is the difference
between true and ‘wrong’ input. I.e.
I Find an x̂ so that f (x̂) = ŷ .
I ∆x = x̂ − x .

x

x̂ ŷ = f (x̂)

f (x)

bw. err. fw err.

f

f

f̂

Forward/Backward Error: Example

Suppose you wanted y =
√
2 and got ŷ = 1.4.

What’s the (magnitude of) the forward error?

|∆y |= |1.4− 1.41421 . . .| ≈ 0.0142 . . .

Relative forward error:

|∆y |
|y |

=
0.0142 . . .
1.41421 . . .

≈ 0.01.

About 1 percent, or two accurate digits.

Forward/Backward Error: Example
Suppose you wanted y =

√
2 and got ŷ = 1.4.

What’s the (magnitude of) the backward error?

Need x̂ so that f (x̂) = 1.4.
√
1.96 = 1.4, ⇒ x̂ = 1.96.

Backward error:
|∆x | = |1.96− 2| = 0.04.

Relative backward error:

|∆x |
|x |
≈ 0.02.

About 2 percent.

Forward/Backward Error: Observations

What do you observe about the relative manitude of the relative errors?

I In this case: Got smaller, i.e. variation damped out.
I Typically: Not that lucky: Input error amplified.

This amplification factor seems worth studying in more detail.

Sensitivity and Conditioning
What can we say about amplification of error?

Define condition number as smallest number κ so that

|rel. fwd. err.| 6 κ · |rel. bwd. err.|

Or, somewhat sloppily, with x/y notation as in previous example:

cond = max
x

|∆y | / |y |
|∆x | / |x |

.

(Technically: should use ‘supremum’.)

If the condition number is. . .
I . . . small: the problem well-conditioned or insensitive
I . . . large: the problem ill-conditioned or sensitive

Can also talk about condition number for a single input x .

Example: Condition Number of Evaluating a Function

y = f (x). Assume f differentiable.

κ = max
x

|∆y | / |y |
|∆x | / |x |

Forward error:

∆y = f (x + ∆x)− f (x) = f ′(x)∆x

Condition number:

κ >
|∆y | / |y |
|∆x | / |x |

=
|f ′(x)| |∆x | / |f (x)|

|∆x | / |x |
=
|xf ′(x)|
|f (x)|

.

Demo: Conditioning of Evaluating tan

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Conditioning of Evaluating tan.ipynb

Stability and Accuracy
Previously: Considered problems or questions.
Next: Considered methods, i.e. computational approaches to find solutions.
When is a method accurate?

Closeness of method output to true answer for unperturbed input.

When is a method stable?

I “A method is stable if the result it produces is the exact
solution to a nearby problem.”

I The above is commonly called backward stability and is a
stricter requirement than just the temptingly simple:

If the method’s sensitivity to variation in the input is no (or not
much) greater than that of the problem itself.

Note: Necessarily includes insensitivity to variation in intermediate
results.

Getting into Trouble with Accuracy and Stability

How can I produce inaccurate results?

I Apply an inaccurate method
I Apply an unstable method to a well-conditioned problem
I Apply any type of method to an ill-conditioned problem

In-Class Activity: Forward/Backward Error

In-class activity: Forward/Backward Error

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-fwd-bwd-error/start

Wanted: Real Numbers. . . in a computer
Computers can represent integers, using bits:

23 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = (10111)2

How would we represent fractions?

Idea: Keep going down past zero exponent:

23.625 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

+1 · 2−1 + 0 · 2−2 + 1 · 2−3

So: Could store
I a fixed number of bits with exponents > 0
I a fixed number of bits with exponents < 0

This is called fixed-point arithmetic.

Fixed-Point Numbers
Suppose we use units of 64 bits, with 32 bits for exponents > 0 and 32 bits
for exponents < 0. What numbers can we represent?

231 · · · 20 2−1 · · · 2−32

Smallest: 2−32 ≈ 10−10

Largest: 231 + · · ·+ 2−32 ≈ 109

How many ‘digits’ of relative accuracy (think relative rounding error) are
available for the smallest vs. the largest number?

For large numbers: about 19
For small numbers: few or none

Idea: Instead of fixing the location of the 0 exponent, let it float.

Floating Point Numbers

Convert 13 = (1101)2 into floating point representation.

13 = 23 + 22 + 20 = (1.101)2 · 23

What pieces do you need to store an FP number?

Significand: (1.101)2
Exponent: 3

Floating Point: Implementation, Normalization
Previously: Consider mathematical view of FP.
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?

Idea: Notice that the leading digit (in binary) of the significand is
always one.
Only store ‘101’. Final storage format:
Significand: 101 – a fixed number of bits
Exponent: 3 – a (signed!) integer allowing a certain range
Exponent is most often stored as a positive ‘offset’ from a certain
negative number. E.g.

3 = −1023︸ ︷︷ ︸
implicit offset

+ 1026︸︷︷︸
stored

Actually stored: 1026, a positive integer.

Unrepresentable numbers?
Can you think of a somewhat central number that we cannot represent as

x = (1._________)2 · 2
−p?

Zero. Which is somewhat embarrassing.

Core problem: The implicit 1. It’s a great idea, were it not for this
issue.

Have to break the pattern. Idea:
I Declare one exponent ‘special’, and turn off the leading one for

that one.
(say, −1023, a.k.a. stored exponent 0)

I For all larger exponents, the leading one remains in effect.
Bonus Q: With this convention, what is the binary representation of
a zero?

Demo: Picking apart a floating point number

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Picking apart a floating point number.ipynb

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored
bits in the significand and an exponent range of [−7, 7]?

First attempt:
I Significand as small as possible → all zeros after the implicit

leading one
I Exponent as small as possible: −7

So:
(1.0000)2 · 2−7.

Unfortunately: wrong.

Subnormal Numbers II
What is the smallest representable number in an FP system with 4 stored
bits in the significand and an exponent range of [−7, 7]? (Attempt 2)

We can go way smaller by using the special exponent (which turns
off the implicit leading one). We’ll assume that the special exponent
is −8. So: (0.0001)2 · 2−8.
Numbers with the special epxonent are called subnormal (or denor-
mal) FP numbers. Technically, zero is also a subnormal.

Note: It is thus quite natural to ‘park’ the special exponent at the
low end of the exponent range.

Why learn about subnormals?

Because computing with them is often slow, because it is implemented
using ‘FP assist’, i.e. not in actual hardware. Many C compilers
support options to ‘flush subnormals to zero’.

Underflow

I FP systems without subnormals will underflow (return 0) as soon as
the exponent range is exhausted.

I This smallest representable normal number is called the underflow
level, or UFL.

I Beyond the underflow level, subnormals provide for gradual underflow
by ‘keeping going’ as long as there are bits in the significand, but it is
important to note that subnormals don’t have as many accurate digits
as normal numbers.

I Analogously (but much more simply–no ‘supernormals’): the overflow
level, OFL.

Rounding Modes
How is rounding performed? (Imagine trying to represent π.)(

1.1101010︸ ︷︷ ︸
representable

11
)
2

I “Chop” a.k.a. round-to-zero: (1.1101010)2
I Round-to-nearest: (1.1101011)2 (most accurate)

What is done in case of a tie? 0.5 = (0.1)2 (“Nearest”?)

Up or down? It turns out that picking the same direction every time
introduces bias. Trick: round-to-even.

0.5→ 0, 1.5→ 2

Demo: Density of Floating Point Numbers
Demo: Floating Point vs Program Logic

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Density of Floating Point Numbers.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Floating Point vs Program Logic.ipynb

Smallest Numbers Above. . .

I What is smallest FP number > 1? Assume 4 bits in the significand.

(1.0001)2 · 20 = x · (1 + 0.0001)2

What’s the smallest FP number > 1024 in that same system?

(1.0001)2 · 210 = x · (1 + 0.0001)2

Can we give that number a name?

Unit Roundoff

Unit roundoff or machine precision or machine epsilon or εmach is the
smallest number such that

float(1 + ε) > 1.

I Assuming round-to-nearest, in the above system, εmach = (0.00001)2.
I Note the extra zero.
I Another, related, quantity is ULP, or unit in the last place.

(εmach = 0.5ULP)

FP: Relative Rounding Error
What does this say about the relative error incurred in floating point
calculations?

I The factor to get from one FP number to the next larger one is
(mostly) independent of magnitude: 1 + εmach.

I Since we can’t represent any results between
x and x · (1 + εmach), that’s really the minimum error
incurred.

I In terms of relative error:∣∣∣∣ x̃ − x

x

∣∣∣∣ =

∣∣∣∣x(1 + εmach)− x

x

∣∣∣∣ = εmach.

At least theoretically, εmach is the maximum relative error in
any FP operations. (Practical implementations do fall short of
this.)

FP: Machine Epsilon

What’s that same number for double-precision floating point? (52 bits in
the significand)

2−53 ≈ 10−16

Bonus Q: What does 1 + 2−53 do on your computer? Why?

We can expect FP math to consistently introduce little relative errors
of about 10−16.

Working in double precision gives you about 16 (decimal) accurate
digits.

Demo: Floating Point and the Harmonic Series

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Floating Point and the Harmonic Series.ipynb

In-Class Activity: Floating Point

In-class activity: Floating Point

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-floating-point/start

Implementing Arithmetic

How is floating point addition implemented?
Consider adding a = (1.101)2 · 21 and b = (1.001)2 · 2−1 in a system with
three bits in the significand.

Rough algorithm:
1. Bring both numbers onto a common exponent
2. Do grade-school addition from the front, until you run out of

digits in your system.
3. Round result.

a = 1. 101 · 21

b = 0. 01001 · 21

a + b ≈ 1. 111 · 21

Problems with FP Addition
What happens if you subtract two numbers of very similar magnitude?
As an example, consider a = (1.1011)2 · 20 and b = (1.1010)2 · 20.

a = 1. 1011 · 21

b = 1. 1010 · 21

a− b ≈ 0. 0001???? · 21

or, once we normalize,
1.???? · 2−3.

There is no data to indicate what the missing digits should be.
→ Machine fills them with its ‘best guess’, which is not often good.

This phenomenon is called Catastrophic Cancellation.

Demo: Catastrophic Cancellation

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/error_and_fp/Catastrophic Cancellation.ipynb

Supplementary Material

I Josh Haberman, Floating Point Demystified, Part 1
I David Goldberg, What every computer programmer should know

about floating point

http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Outline
Introduction to Scientific Computing

Systems of Linear Equations
Theory: Conditioning
Methods to Solve Systems

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Solving a Linear System
Given:
I m × n matrix A
I m-vector b

What are we looking for here, and when are we allowed to ask the
question?

Want: n-vector x so that
Ax = b.

I Linear combination of columns of A to yield b.
I Restrict to square case (m = n) for now.
I Even with that: solution may not exist, or may not be unique.

Unique solution exists iff A is nonsingular.

Next: Want to talk about conditioning of this operation. Need to measure
distances of matrices.

Matrix Norms
What norms would we apply to matrices?

Easy answer: ‘Flatten’ matrix as vector, use vector norm.
Not very meaningful.
Instead: Choose norms for matrices to interact with an ‘associated’
vector norm ‖·‖ so that ‖A‖ obeys

‖Ax‖ 6 ‖A‖ ‖x‖ .

This can be achieved by choosing, for a given vector norm ‖·‖,

‖A‖ := max
‖x‖=1

‖Ax‖ .

This is called the matrix norm.
For each vector norm, we get a different matrix norm, e.g. for the
vector 2-norm ‖x‖2 we get a matrix 2-norm ‖A‖2.

Matrix Norm Properties
What is ‖A‖1? ‖A‖∞?

‖A‖1 = max
col j

∑
row i

|Ai ,j | ,

‖A‖∞ = max
row i

∑
col j

|Ai ,j | .

The matrix 2-norm? Is actually fairly difficult to evaluate. See later.

How do matrix and vector norms relate for n × 1 matrices?

They agree. Why? For n × 1, the vector x in Ax is just a scalar:

max
‖x‖=1

‖Ax‖ = max
x∈{−1,1}

‖Ax‖ = ‖A[:, 1]‖

This can help to remember 1- and ∞-norm.

Demo: Matrix norms

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Matrix norms.ipynb

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:
I ‖A‖ > 0⇔ A 6= 0.
I ‖γA‖ = |γ| ‖A‖ for all scalars γ.
I Obeys triangle inequality ‖A + B‖ 6 ‖A‖+ ‖B‖

But also some more properties that stem from our definition:

I ‖Ax‖ 6 ‖A‖ ‖x‖
I ‖AB‖ 6 ‖A‖ ‖B‖ (easy consequence)

Both of these are called submultiplicativity of the matrix norm.

Conditioning
What is the condition number of solving a linear system Ax = b?

Input: b with error ∆b,
Output: x with error ∆x.

Observe A(x + ∆x) = (b + ∆b), so A∆x = ∆b.

rel err. in output
rel err. in input

=
‖∆x‖ / ‖x‖
‖∆b‖ / ‖b‖

=
‖∆x‖ ‖b‖
‖∆b‖ ‖x‖

=

∥∥A−1∆b
∥∥ ‖Ax‖

‖∆b‖ ‖x‖

6
∥∥A−1∥∥ ‖A‖ ‖∆b‖ ‖x‖

‖∆b‖ ‖x‖
=

∥∥A−1∥∥ ‖A‖ .

Conditioning of Linear Systems: Observations

Showed κ(Solve Ax = b) ≤
∥∥A−1∥∥ ‖A‖.

I.e. found an upper bound on the condition number. With a little bit of
fiddling, it’s not too hard to find examples that achieve this bound, i.e.
that it is sharp.

So we’ve found the condition number of linear system solving, also called
the condition number of the matrix A:

cond(A) = κ(A) = ‖A‖
∥∥A−1∥∥ .

Conditioning of Linear Systems: More properties

I cond is relative to a given norm. So, to be precise, use

cond2 or cond∞ .

I If A−1 does not exist: cond(A) =∞ by convention.
What is κ(A−1)?

κ(A)

What is the condition number of matrix-vector multiplication?

κ(A) because it is equivalent to solving with A−1.

Demo: Condition number visualized
Demo: Conditioning of 2x2 Matrices

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Condition number visualized.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Conditioning of 2x2 Matrices.ipynb

Residual Vector

What is the residual vector of solving the linear system

b = Ax?

It’s the thing that’s ‘left over’. Suppose our approximate solution is
x̂. Then the residual vector is

r = b− Ax̂.

Residual and Error: Relationship
How do the (norms of the) residual vector r and the error ∆x = x− x̂
relate to one another?

‖∆x‖ = ‖x− x̂‖
=

∥∥A−1(b− Ax̂)
∥∥

=
∥∥A−1r∥∥

Divide both sides by ‖x̂‖:

‖∆x‖
‖x̂‖

=

∥∥A−1r∥∥
‖x̂‖

6

∥∥A−1∥∥ ‖r‖
‖x̂‖

= cond(A)
‖r‖
‖A‖ ‖x̂‖

.

I rel err 6 cond · rel resid

I Given small (rel.) residual, (rel.) error is only (guaranteed to
be) small if the condition number is also small.

Changing the Matrix
So far, all our discussion was based on changing the right-hand side, i.e.

Ax = b → Ax̂ = b̂.

The matrix consists of FP numbers, too–it, too, is approximate. I.e.

Ax = b → Âx̂ = b.

What can we say about the error now?

Consider ∆x = x̂− x = A−1(Ax̂− b) = −A−1∆Ax̂. Thus

‖∆x‖ 6
∥∥A−1∥∥ ‖∆A‖ ‖x̂‖ .

And we get
‖∆x‖
‖x̂‖

6 cond(A)
‖∆A‖
‖A‖

.

Changing Condition Numbers
Once we have a matrix A in a linear system Ax = b, are we stuck with its
condition number? Or could we improve it?

Diagonal scaling is a simple strategy that sometimes helps.
I Row-wise: DAx = Db
I Column-wise: AD x̂ = b

Different x̂: Recover x = D x̂.

What is this called as a general concept?

Preconditioning
I Left’ preconditioning: MAx = Mb
I Right preconditioning: AM x̂ = b

Different x̂: Recover x = M x̂.

In-Class Activity: Matrix Norms and Conditioning

In-class activity: Matrix Norms and Conditioning

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-conditioning/start

Solving Systems: Triangular matrices
Solve

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

x
y
z
w

 =

b1
b2
b3
b4

 .
I Rewrite as individual equations.
I This process is called back-substitution.
I The analogous process for lower triangular matrices is called

forward substitution.

Demo: Coding back-substitution
What about non-triangular matrices?

Can do Gaussian Elimination, just like in linear algebra class.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Coding back-substitution.ipynb

Gaussian Elimination

Demo: Vanilla Gaussian Elimination
What do we get by doing Gaussian Elimination?

Row Echelon Form.

How is that different from being upper triangular?

Zeros allowed on and above the diagonal.

What if we do not just eliminate downward but also upward?

That’s called Gauss-Jordan elimination. Turns out to be computa-
tionally inefficient. We won’t look at it.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Vanilla Gaussian Elimination.ipynb

Elimination Matrices

What does this matrix do?
1

1
−1

2 1
1

1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

I Add (−1/2)× the first row to the third row.
I One elementary step in Gaussian elimination
I Matrices like this are called Elimination Matrices

About Elimination Matrices

Are elimination matrices invertible?

Sure! Inverse of
1

1
−1

2 1
1

1

should be

1
1

+1
2 1

1
1

 .

More on Elimination Matrices

Demo: Elimination matrices I
Idea: With enough elimination matrices, we should be able to get a matrix
into row echelon form.

M`M`−1 · · ·M2M1A = 〈Row Echelon Form U of A〉.

So what do we get from many combined elimination matrices like that?

(a lower triangular matrix)

Demo: Elimination Matrices II

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Elimination matrices I.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Elimination Matrices II.ipynb

Summary on Elimination Matrices

I El.matrices with off-diagonal entries in a single column just “merge”
when multiplied by one another.

I El.matrices with off-diagonal entries in different columns merge when
we multiply (left-column) * (right-column) but not the other way
around.

I Inverse: Flip sign below diagonal

LU Factorization

Can build a factorization from elimination matrices. How?

A =
−1

M−11 M−12 · · ·M
−1
`−1M

−1
`︸ ︷︷ ︸

lower 4 mat L

U = LU.

This is called LU factorization (or LU decomposition).

Solving Ax = b

Does LU help solve Ax = b?

Ax = b
L Ux︸︷︷︸

y

= b

Ly = b ← solvable by fwd. subst.
Ux = y ← solvable by bwd. subst.

Now know x that solves Ax = b.

Demo: LU factorization

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/LU factorization.ipynb

LU: Failure Cases?
Is LU/Gaussian Elimination bulletproof?

No, very much not:

A =

[
0 1
2 1

]
.

Q: Is this a problem with the process or with the entire idea of LU?

[
u11 u12

u22

]
[
1
`21 1

] [
0 1
2 1

]
→ u11 = 0

u11 · `21︸ ︷︷ ︸
0

+1 · 0 = 2

It turns out to be that A doesn’t have an LU factorization.

Saving the LU Factorization

What can be done to get something like an LU factorization?

Idea: In Gaussian elimination: simply swap rows, equivalent linear
system.

Approach:
I Good Idea: Swap rows if there’s a zero in the way
I Even better Idea: Find the largest entry (by absolute value),

swap it to the top row.
The entry we divide by is called the pivot.
Swapping rows to get a bigger pivot is called (partial) pivoting.

Recap: Permuation Matrices

How do we capture ‘row switches’ in a factorization?
1

1
1

1

︸ ︷︷ ︸

P

A A A A
B B B B
C C C C
D D D D

 =

A A A A
C C C C
B B B B
D D D D

 .

P is called a permutation matrix.
Q: What’s P−1?

Fixing nonexistence of LU

What does LU with permutations process look like?

P1A Pivot first column
M1P1A Eliminate first column

P2M1P1A Pivot second column
M2P2M1P1A Eliminate second column

P3M2P2M1P1A Pivot third column
M3P3M2P2M1P1A Eliminate third column

Or
A = P1M

−1
1 P2M

−1
2 P3M

−1
3 U.

Unfortunately, P ’s and M’s don’t commute, so it’s not obvious how
to get a lower-triangular L.

Demo: LU with Partial Pivoting (Part I)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/LU with Partial Pivoting.ipynb

What about the L in LU?
Sort out what LU with pivoting looks like. Have: M3P3M2P2M1P1A = U.

Define: L3 := M3
Define L2 := P3M2P

−1
3

Define L1 := P3P2M1P
−1
2 P−13

(L3L2L1)(P3P2P1)

=M3(P3M2P
−1
3)(P3P2M1P

−1
2 P−13)P3P2P1

=M3P3M2P2M1P1 (!)

P3P2P1︸ ︷︷ ︸
P

A = L−11 L−12 L−13︸ ︷︷ ︸
L

U.

L1, . . . , L3 are still lower triangular!

Q: Outline the solve process with pivoted LU.

Demo: LU with Partial Pivoting (Part II)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/LU with Partial Pivoting.ipynb

Computational Cost
What is the computational cost of multiplying two n × n matrices?

O(n3)

What is the computational cost of carrying out LU factorization on an
n × n matrix?

Recall
M3P3M2P2M1P1A = U . . .

so O(n4)?!!!

Fortunately not: Multiplications with permuation matrices and elim-
ination matrices only cost O(n2).

So overall cost of LU is just O(n3).

Demo: Complexity of Mat-Mat multiplication and LU

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Complexity of Mat-Mat multiplication and LU.ipynb

More cost concerns
What’s the cost of solving Ax = b?

LU: O(n3)
FW/BW Subst: 2× O(n2) = O(n2)

What’s the cost of solving Ax = b1, b2, . . . , bn?

LU: O(n3)
FW/BW Subst: 2n × O(n2) = O(n3)

What’s the cost of finding A−1?

Same as solving
AX = I ,

so still O(n3).

Cost: Worrying about the Constant, BLAS
O(n3) really means

α · n3 + β · n2 + γ · n + δ.

All the non-leading and constants terms swept under the rug. But: at least
the leading constant ultimately matters.

Shrinking the constant: surprisingly hard (even for ’just’ matmul)

Idea: Rely on library implementation: BLAS (Fortran)
Level 1 z = αx + y vector-vector operations

O(n)
?axpy

Level 2 z = Ax + y matrix-vector operations
O(n2)
?gemv

Level 3 C = AB + βC matrix-matrix operations
O(n3)
?gemm, ?trsm

Show (using perf): numpy matmul calls BLAS dgemm

LAPACK

LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.
I banded
I sparse
I symmetric
I triangular

Sample routine names:
I dgesvd, zgesdd
I dgetrf, dgetrs

LU on Blocks: The Schur Complement

Given a matrix [
A B
C D

]
,

can we do ‘block LU’ to get a block triangular matrix?

Multiply the top row by −CA−1, add to second row, gives:[
A B
0 D − CA−1B

]
.

D − CA−1B is called the Schur complement. Block pivoting is also
possible if needed.

LU: Special cases

What happens if we feed a non-invertible matrix to LU?

PA = LU

(invertible, not invertible) (Why?)

What happens if we feed LU an m × n non-square matrices?

Think carefully about sizes of factors and columns/rows that do/don’t
matter. Two cases:
I m > n (tall&skinny): L : m × n, U : n × n

I m < n (short&fat): L : m ×m, U : m × n

This is called reduced LU factorization.

Round-off Error in LU

Consider factorization of
[
ε 1
1 1

]
where ε < εmach:

I Without pivoting: L =

[
1 0
1/ε 1

]
, U =

[
ε 1
0 1− 1/ε

]
I Rounding: fl(U)) =

[
ε 1
0 −1/ε

]
I This leads to L fl(U)) =

[
ε 1
1 0

]
, a backward error of

[
0 0
0 1

]
Permuting the rows of A in partial pivoting gives PA =

[
1 1
ε 1

]
I We now compute L =

[
1 0
ε 1

]
, U =

[
1 1
0 1− ε

]
, so fl(U) =

[
1 1
0 1

]
I This leads to L fl(U) =

[
1 1
ε 1 + ε

]
, a backward error of

[
0 0
0 ε

]
.

Changing matrices
Seen: LU cheap to re-solve if RHS changes. (Able to keep the expensive
bit, the LU factorization) What if the matrix changes?

Special cases allow something to be done (a so-called rank-one up-
date):

Â = A + uvT

The Sherman-Morrison formula gives us

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Proof: Multiply the above by Â get the identity.
FYI: There is a rank-k analog called the Sherman-Morrison-Woodbury
formula.

Demo: Sherman-Morrison

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_systems/Sherman-Morrison.ipynb

In-Class Activity: LU

In-class activity: LU and Cost

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-lu/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares
Introduction
Sensitivity and Conditioning
Solving Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What about non-square systems?

Specifically, what about linear systems with ‘tall and skinny’ matrices? (A:
m × n with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?

Not really: more equations than unknowns.

Example: Data Fitting
Too much data!

Lots of equations, but not many unknowns

f (x) = ax2 + bx + c

Only three parameters to set!
What are the ‘right’ a, b, c?

Want ‘best’ solution

Intro Existence/Uniqueness Sensitivity and Conditioning Transformations Orthogonalization SVD

Have data: (xi , yi) and model:

y(x) = α + βx + γx2

Find data that (best) fit model!

Data Fitting Continued

α + βx1 + γx21 = y1
...

α + βxn + γx2n = yn

Not going to happen for n > 3. Instead:∣∣α + βx1 + γx21 − y1
∣∣2

+ · · ·+∣∣α + βxn + γx2n − yn
∣∣2 → min!

→ Least Squares
This is called linear least squares specifically because the coefficients
x enter linearly into the residual.

Rewriting Data Fitting

Rewrite in matrix form.

‖Ax− b‖22 → min!

with

A =

1 x1 x21
...

...
...

1 xn x2n

 , x =

αβ
γ

 , b =

y1...
yn

I Matrices like A are called Vandermonde matrices.
I Easy to generalize to higher polynomial degrees.

Least Squares: The Problem In Matrix Form

‖Ax− b‖22 → min!

is cumbersome to write.
Invent new notation, defined to be equivalent:

Ax ∼= b

NOTE:
I Data Fitting is one example where LSQ problems arise.
I Many other application lead to Ax ∼= b, with different matrices.

Data Fitting: Nonlinearity
Give an example of a nonlinear data fitting problem.

∣∣exp(α) + βx1 + γx21 − y1
∣∣2

+ · · ·+∣∣exp(α) + βxn + γx2n − yn
∣∣2 → min!

But that would be easy to remedy: Do linear least squares with exp(α) as
the unknown. More difficult:

∣∣α + exp(βx1 + γx21)− y1
∣∣2

+ · · ·+∣∣α + exp(βxn + γx2n)− yn
∣∣2 → min!

Demo: Interactive Polynomial Fit

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Interactive Polynomial Fit.ipynb

Properties of Least-Squares
Consider LSQ problem Ax ∼= b and its associated objective function
ϕ(x) = ‖b− Ax‖22. Does this always have a solution?

Yes. ϕ > 0, ϕ→∞ as ‖x‖ → ∞, ϕ continuous ⇒ has a minimum.

Is it always unique?

No, for example if A has a nullspace.

Examine the objective function, find its minimum.

ϕ(x) = (b− Ax)T (b− Ax)

bTb− 2xTATb + xTATAx
∇ϕ(x) = −2ATb + 2ATAx

∇ϕ(x) = 0 yields ATAx = ATb. Called the normal equations.

Least squares: Demos

Demo: Polynomial fitting with the normal equations

What’s the shape of ATA?

Always square.

Demo: Issues with the normal equations

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Polynomial fitting with the normal equations.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Issues with the normal equations.ipynb

Least Squares, Viewed Geometrically

Why is r ⊥ span(A) a good thing to require?

Because then the distance between y = Ax and b is minimal.
Q: Why?
Because of Pythagoras’s theorem–another y would mean additional
distance traveled in span(A).

Least Squares, Viewed Geometrically (II)

Phrase the Pythagoras observation as an equation.

span(A) ⊥ b− Ax
ATb− ATAx = 0

Congratulations: Just rediscovered the normal equations.

Write that with an orthogonal projection matrix P .

Ax = Pb.

About Orthogonal Projectors
What is a projector?

A matrix satisfying
P2 = P.

What is an orthogonal projector?

A symmetric projector.

How do I make one projecting onto span{q1, q2, . . . , q`} for orthogonal qi?

First define
Q =

[
q1 q2 · · · q`

]
.

Then
QQT

will project and is obviously symmetric.

Least Squares and Orthogonal Projection

Check that P = A(ATA)−1AT is an orthogonal projector onto colspan(A).

P2 = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P.

Symmetry: also yes.

Onto colspan(A): Last matrix is A → result of Px must be in
colspan(A).

Conclusion: P is the projector from the previous slide!

What assumptions do we need to define the P from the last question?

ATA has full rank (i.e. is invertible).

Pseudoinverse
What is the pseudoinverse of A?

Nonsquare m × n matrix A has no inverse in usual sense.
If rank(A) = n, pseudoinverse is A+ = (ATA)−1AT . (colspan-
projector with final A missing)

What can we say about the condition number in the case of a
tall-and-skinny, full-rank matrix?

cond2(A) = ‖A‖2
∥∥A+

∥∥
2

If not full rank, cond(A) =∞ by convention.

What does all this have to do with solving least squares problems?

x = A+b solves Ax ∼= b.

In-Class Activity: Least Squares

In-class activity: Least Squares

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-least-squares/start

Sensitivity and Conditioning of Least Squares

Define

cos(θ) =
‖Ax‖2
‖b‖2

,

then
‖∆x‖2
‖x‖2

6 cond(A)
1

cos(θ)
·
‖∆b‖2
‖b‖2

.

What values of θ are bad?

b ⊥ colspan(A), i.e. θ ≈ π/2.

Sensitivity and Conditioning of Least Squares (II)

Any comments regarding dependencies?

Unlike for Ax = b, the sensitivity of least squares solution depends
on both A and b.

What about changes in the matrix?

‖∆x‖2
‖x‖2

6 [cond(A)2 tan(θ) + cond(A)] ·
‖∆A‖2
‖A‖2

.

Two behaviors:
I If tan(θ) ≈ 0, condition number is cond(A).
I Otherwise, cond(A)2.

Recap: Orthogonal Matrices

What’s an orthogonal (=orthonormal) matrix?

One that satisfies QTQ = I and QQT = I .

How do orthogonal matrices interact with the 2-norm?

‖Qv‖22 = (Qv)T (Qv) = vTQTQv = vT v = ‖v‖22 .

Transforming Least Squares to Upper Triangular

Suppose we have A = QR , with Q square and orthogonal, and R upper
triangular. This is called a QR factorization.
How do we transform the least squares problem Ax ∼= b to one with an
upper triangular matrix?

‖Ax− b‖2
=
∥∥∥QT (QRx− b)

∥∥∥
2

=
∥∥∥Rx− QTb

∥∥∥
2

Simpler Problems: Triangular
What do we win from transforming a least-squares system to upper
triangular form?

[
Rtop

]
x ∼=

[
(QTb)top

(QTb)bottom

]

How would we minimize the residual norm?

For the residual vector r, we find

‖r‖22 =
∥∥∥(QTb)top − Rtopx

∥∥∥2
2

+
∥∥∥(QTb)bottom

∥∥∥2
2
.

R is invertible, so we can find x to zero out the first term, leaving

‖r‖22 =
∥∥∥(QTb)bottom

∥∥∥2
2
.

Computing QR

I Gram-Schmidt
I Householder Reflectors
I Givens Rotations

Demo: Gram-Schmidt–The Movie
Demo: Gram-Schmidt and Modified Gram-Schmidt
Demo: Keeping track of coefficients in Gram-Schmidt
Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision
arithmetic because of roundoff.

NOTE: Textbook makes further modification to ‘modified’ Gram-Schmidt:
I Orthogonalize subsequent rather than preceding vectors.
I Numerically: no difference, but sometimes algorithmically helpful.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Gram-Schmidt--The Movie.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Gram-Schmidt and Modified Gram-Schmidt.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Keeping track of coefficients in Gram-Schmidt.ipynb

Economical/Reduced QR

Is QR with square Q for A ∈ Rm×n with m > n efficient?

No. Can obtain economical or reduced QR with Q ∈ Rm×n and
R ∈ Rn×n. Least squares solution process works unmodified with
the economical form, though the equivalence proof relies on the ’full’
form.

In-Class Activity: QR

In-class activity: QR

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-qr/start

Householder Transformations
Find an orthogonal matrix Q to zero out the lower part of a vector a.

Intuition for Householder

Worksheet 10 Problem 1a

Intro Existence/Uniqueness Sensitivity and Conditioning Transformations Orthogonalization SVD

Orthogonality in figure: (a− ‖a‖2 e1) · (a + ‖a‖2 e1) = ‖a‖22 − ‖a‖
2
2.

Let’s call v = a−‖a‖2 e1. How do we reflect about the plane orthog-
onal to v? Project-and-keep-going:

H := I − 2
vvT

vT v
.

This is called a Householder reflector.

Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):

Ha = ±‖a‖2 e1.

Remarks:
I Q: What if we want to zero out only the i + 1th through nth entry?

A: Use ei above.
I A product Hn · · ·H1A = R of Householders makes it easy (and quite

efficient!) to build a QR factorization.
I It turns out v′ = a + ‖a‖2 e1 works out, too–just pick whichever one

causes less cancellation.
I H is symmetric
I H is orthogonal

Demo: 3x3 Householder demo

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/3x3 Householder demo.ipynb

Givens Rotations

If reflections work, can we make rotations work, too?

[
c s
−s c

] [
a1
a2

]
=

[√
a21 + a22
0

]
.

Not hard to sovle for c and s.

Downside? Produces only one zero at a time.

Demo: 3x3 Givens demo

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/3x3 Givens demo.ipynb

Rank-Deficient Matrices and QR

What happens with QR for rank-deficient matrices?

A = Q

∗ ∗ ∗
(small) ∗

∗

(where ∗ represents a generic non-zero)

Practically, it makes sense to ask for all these ‘small’ columns to be
gathered near the ‘right’ of R → Column pivoting.

Q: What does the resulting factorization look like?

AP = QR

Also used as the basis for rank-revealing QR.

Rank-Deficient Matrices and Least-Squares

What happens with Least Squares for rank-deficient matrices?

Ax ∼= b

I QR still finds a solution with minimal residual
I By QR it’s easy to see that least squares with a short-and-fat matrix is

equivalent to a rank-deficient one.
I But: No longer unique. x + n for n ∈ N(A) has the same residual.
I In other words: Have more freedom

Or: Can demand another condition, for example:
I Minimize ‖b− Ax‖22, and
I minimize ‖x‖22, simultaneously.

Unfortunately, QR does not help much with that → Need better tool.

Singular Value Decomposition (SVD)

What is the Singular Value Decomposition of an m × n matrix?

A = UΣV T ,

with
I U is m ×m and orthogonal

Columns called the left singular vectors.
I Σ = diag(σi) is m × n and non-negative

Typically σ1 > σ2 > · · · > σn > 0.
Called the singular values.

I V is n × n and orthogonal
Columns called the right singular vectors.

Existence: Not yet, later.

SVD: What’s this thing good for? (I)

I ‖A‖2 = σ1

I cond2(A) = σ1/σn

I Nullspace N(A) = span({vi : σi = 0}).
I rank(A) = #{i : σi 6= 0}

Computing rank in the presence of round-off error is not
laughably non-robust. More robust:

I Numerical rank:

rankε = #{i : σi > ε}

SVD: What’s this thing good for? (II)

I Low-rank Approximation

Theorem (Eckart-Young-Mirsky)
If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i ,

then
min

rank(B)=k
‖A− B‖2 = ‖A− Ak‖2 = σk+1.

Demo: Image compression

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Image compression.ipynb

SVD: What’s this thing good for? (III)
I The minimum norm solution to Ax ∼= b:

UΣV T x ∼= b
⇔ ΣV T x︸︷︷︸

y

∼= UTb

⇔ Σy ∼= UTb

Then define
Σ+ = diag(σ+

1 , . . . , σ
+
n),

where Σ+ is n ×m if A is m × n, and

σ+
i =

{
1/σi σi 6= 0,
0 σi = 0.

SVD: Minimum-Norm, Pseudoinverse

y = Σ+UTb is the minimum norm-solution to Σy ∼= UTb.
Observe ‖x‖2 = ‖y‖2.

x = VΣ+UTb

solves the minimum-norm least-squares problem.

Define A+ = VΣ+UT and call it the pseudoinverse of A.
Coincides with prior definition in case of full rank.

In-Class Activity: Householder, Givens, SVD

In-class activity: Householder, Givens, SVD

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-svd/start

Comparing the Methods

Methods to solve least squares with A an m × n matrix:
I Form: ATA: n2m/2

Solve with ATA: n3/6
I Solve with Householder: mn2 − n3/3
I If m ≈ n, about the same
I If m� n: Householder QR requires about twice as much work as

normal equations
I SVD: mn2 + n3 (with a large constant)

Demo: Relative cost of matrix factorizations

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/linear_least_squares/Relative cost of matrix factorizations.ipynb

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems
Properties and Transformations
Sensitivity
Computing Eigenvalues
Krylov Space Methods

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Eigenvalue Problems: Setup/Math Recap

A is an n × n matrix.
I x 6= 0 is called an eigenvector of A if there exists a λ so that

Ax = λx.

I In that case, λ is called an eigenvalue.
I The set of all eigenvalues λ(A) is called the spectrum.
I The spectral radius is the magnitude of the biggest eigenvalue:

ρ(A) = max {|λ| : λ(A)}

Finding Eigenvalues

How do you find eigenvalues?

Ax = λx⇔ (A− λI)x = 0
⇔A− λI singular⇔ det(A− λI) = 0

det(A− λI) is called the characteristic polynomial, which has degree
n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel-Ruffini theorem: for n > 5 is
no general formula for roots of polynomial. IOW: no.

I For LU and QR, we obtain exact answers (except rounding).
I For eigenvalue problems: not possible—must approximate.

Demo: Rounding in characteristic polynomial using SymPy

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Rounding in characteristic polynomial using SymPy.ipynb

Multiplicity

What is the multiplicity of an eigenvalue?

Actually, there are two notions called multiplicity:
I Algebraic Multiplicity: multiplicity of the root of the

characteristic polynomial
I Geometric Multiplicity: #of lin. indep. eigenvectors

In general: AM > GM.
If AM > GM, the matrix is called defective.

An Example

Give characteristic polynomial, eigenvalues, eigenvectors of[
1 1

1

]
.

CP: (λ− 1)2

Eigenvalues: 1 (with multiplicity 2)
Eigenvectors: [

1 1
1

] [
x
y

]
=

[
x
y

]
⇒ x + y = x ⇒ y = 0. So only a 1D space of eigenvectors.

Diagonalizability

When is a matrix called diagonalizable?

If it is not defective, i.e. if it has a n linear independent eigenvectors
(i.e. a full basis of them). Call those (xn)ni=1.

In that case, let

X =

 | |
x1 · · · xn
| |

 ,
and observe AX = XD or

A = XDX−1,

where D is a diagonal matrix with the eigenvalues.

Similar Matrices

Related definition: Two matrices A and B are called similar if there exists
an invertible matrix X so that A = XBX−1.

In that sense: “Diagonalizable” = “Similar to a diagonal matrix”.

Observe: Similar A and B have same eigenvalues. (Why?)

Suppose Ax = λx. We have B = X−1AX . Let w = X−1v. Then

Bw = X−1Av = λw.

Eigenvalue Transformations (I)
What do the following transformations of the eigenvalue problem Ax = λx
do?
Shift. A→ A− σI

(A− σI)x = (λ− σ)x

Inversion. A→ A−1

A−1x = λ−1x

Power. A→ Ak

Akx = λkx

Eigenvalue Transformations (II)

Polynomial A→ aA2 + bA + cI

(aA2 + bA + cI)x = (aλ2 + bλ+ c)x

Similarity T−1AT with T invertible

Let y := T−1x. Then
T−1ATy = λy

Sensitivity (I)
Assume A not defective. Suppose X−1AX = D. Perturb A→ A + E .
What happens to the eigenvalues?

X−1(A + E)X = D + F

I A + E and D + F have same eigenvalues
I D + F is not necessarily diagonal

Suppose v is a perturbed eigenvector.

(D + F)v = µv
⇔ Fv = (µI − D)v
⇔ (µI − D)−1Fv = v (when is that invertible?)
⇒ ‖v‖ 6

∥∥(µI − D)−1
∥∥ ‖F‖ ‖v‖

⇒
∥∥(µI − D)−1

∥∥−1 6 ‖F‖

Sensitivity (II)
X−1(A + E)X = D + F . Have

∥∥(µI − D)−1
∥∥−1 6 ‖F‖.

∥∥(µI − D)−1
∥∥−1 = |µ− λk |

where λk is the closest eigenvalue of D to µ.∣∣∣µ− λk ∣∣∣= ∥∥(µI − D)−1
∥∥−1 6 ‖F‖ =

∥∥X−1EX∥∥ 6 cond(X) ‖E‖ .

I This is ‘bad’ if X is ill-conditioned, i.e. if the eigenvectors are
nearly linearly dependent.

I If X is orthogonal (e.g. for symmetric A), then eigenvalues are
always well-conditioned.

I This bound is in terms of all eigenvalues, so may overestimate
for each individual eigenvalue.

Demo: Bauer-Fike Eigenvalue Sensitivity Bound

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Bauer-Fike Eigenvalue Sensitivity Bound.ipynb

Power Iteration
What are the eigenvalues of A1000?

Assume |λ1| > |λ2| > · · · > |λn| with eigenvectors x1, . . . , xn.
Further assume ‖xi‖ = 1.

Use x = αx1 + βx2.

y = A1000(αx1 + βx2) = αλ10001 x1 + βλ10002 x2

Or

y
λ10001

= αx1 + β

 λ2
λ1︸︷︷︸
<1

1000

︸ ︷︷ ︸
�1

x2.

Idea: Use this as a computational procedure to find x1.
Called Power Iteration.

Power Iteration: Issues?

What could go wrong with Power Iteration?

I Starting vector has no component along x1
Not a problem in practice: Rounding will introduce one.

I Overflow in computing λ10001
→ Normalized Power Iteration

I |λ1| = |λ2|
Real problem.

What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to know
eigenvalues?

Estimate them:
xTAx
xT x

I = λ if x is an eigenvector w/ eigenvalue λ
I Otherwise, an estimate of a ‘nearby’ eigenvalue

This is called the Rayleigh quotient.

Convergence of Power Iteration
What can you say about the convergence of the power method?
Say v(k)

1 is the kth estimate of the eigenvector x1, and

ek =
∥∥∥x1 − v(k)

1

∥∥∥ .
Easy to see:

ek+1 ≈
|λ2|
|λ1|

ek .

We will later learn that this is linear convergence. It’s quite slow.
What does a shift do to this situation?

ek+1 ≈
|λ2 − σ|
|λ1 − σ|

ek .

Picking σ ≈ λ1 does not help. . .
Idea: Invert and shift to bring |λ1 − σ| into numerator.

Rayleigh Quotient Iteration
Describe inverse iteration.

xk+1 := (A− σ)−1xk

I Implemented by storing/solving with LU factorization
I Converges to eigenvector for eigenvalue closest to σ, with

ek+1 ≈
|λclosest − σ|

|λsecond-closest − σ|
ek .

Describe Rayleigh Quotient Iteration.

Compute σk = xTk Axk/x
T
k xk to be the Rayleigh quotient for xk .

xk+1 := (A− σk I)−1xk

Demo: Power Iteration and its Variants

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Power Iteration and its Variants.ipynb

In-Class Activity: Eigenvalues

In-class activity: Eigenvalues

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-eigenvalues/start

Schur form
Show: Every matrix is orthonormally similar to an upper triangular matrix,
i.e. A = QUQT . This is called the Schur form or Schur factorization.

Assume A non-defective for now. Suppose Av = λv (v 6= 0). Let
V = span{v}. Then

A : V → V

V⊥ → V ⊕ V⊥

A =

zv Basis of V⊥

z

︸ ︷︷ ︸

Q1

λ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

QT
1 .

Repeat n times to triangular: Qn · · ·Q1UQ
T
1 · · ·QT

n .

Schur Form: Comments, Eigenvalues, Eigenvectors
A = QUQT . For complex λ:
I Either complex matrices, or
I 2× 2 blocks on diag.

If we had a Schur form of A, how can we find the eigenvalues?

The eigenvalues (of U and A!) are on the diagonal of U.

And the eigenvectors?

It suffices to find eigenvectors of U: can convert to eigenvectors of
A by similarity transform. Suppose λ is an eigenvalue.

U − λI =

U11 u U13
0 0 vT

0 0 U31

Then [U−111 u;−1; 0]T is an eigenvector.

Computing Multiple Eigenvalues

All Power Iteration Methods compute one eigenvalue at a time.
What if I want all eigenvalues?

Two ideas:
1. Deflation: similarity transform to[

λ1 ∗
B

]
,

i.e. one step in Schur form. Now find eigenvalues of B .
2. Iterate with multiple vectors simultaneously.

Simultaneous Iteration

What happens if we carry out power iteration on multiple vectors
simultaneously?

Simultaneous Iteration:
1. Start with X0 ∈ Rn×p (p 6 n) with (arbitrary) iteration vectors

in columns
2. Xk+1 = AXk

Problems:
I Needs rescaling
I X increasingly ill-conditioned: all columns go towards x1

Fix: orthogonalize!

Orthogonal Iteration

Orthogonal Iteration:
1. Start with X0 ∈ Rn×p (p 6 n) with (arbitrary) iteration vectors

in columns
2. QkRk = Xk (reduced)
3. Xk+1 = AQk

Good: Xk converge to X with eigenvectors in columns
Bad:
I Slow/linear convergence
I Expensive iteration

Toward the QR Algorithm

Q0R0 = X0

X1 = AQ0

Q1R1 = X1 = AQ0 ⇒ Q1R1Q
T
0 = A

X2 = AQ1

Q2R2 = X2 = AQ1 ⇒ Q2R2Q
T
1 = A

Once the Qk converge (Qn+1 ≈ Qn), we have a Schur factorization!

Problem: Qn+1 ≈ Qn works poorly as a convergence test.

Observation 1: Once Qn+1 ≈ Qn, we also have Q2R2Q
T
2 ≈ A.

Observation 2: X̂2 := QT
2 AQ2 ≈ R2.

Idea: Use magnitude of below-diag part of X̂2 for convergence check.
Q: Can we compute X̂k directly?

Demo: Orthogonal Iteration

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Orthogonal Iteration.ipynb

QR Iteration/QR Algorithm

Orthogonal iteration: QR iteration:
X0 = A X̄0 = A
QkRk = Xk Q̄k R̄k = X̄k

Xk+1 = AQk X̄k+1 = R̄kQ̄k

Tracing through reveals:
I X̂k = X̄k+1

I Q0 = Q̄0
Q1 = Q̄0Q̄1
Qk = Q̄0Q̄1 · · · Q̄k

Orthogonal iteration showed: X̂k = X̄k+1 converge. Also:

X̄k+1 = R̄kQ̄k = Q̄T
k X̄kQ̄k ,

so the X̄k are all similar → all have the same eigenvalues.
→ QR iteration produces Schur form.

QR Iteration: Incorporating a Shift
How can we accelerate convergence of QR iteration using shifts?

X̄0 = A

Q̄k R̄k = X̄k−σk I
X̄k+1 = R̄kQ̄k+σk I

Still a similarity transform:

X̄k+1 = R̄kQ̄k + σk I = [Q
T

k X̄k − Q̄T
k σk]Q̄k + σk I

Q: How should the shifts be chosen?
I Ideally: Close to existing eigenvalue
I Heuristics:

I Lower right entry of X̄k

I Eigenvalues of lower right 2× 2 of X̄k

QR Iteration: Computational Expense
A full QR factorization at each iteration costs O(n3)–can we make that
cheaper?

Idea: Hessenberg form

A = Q

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

QT

I Attainable by similarity transforms (!) HAHT

with Householders that start 1 entry lower than ‘usual’
I QR factorization of Hessenberg matrices can be achieved in

O(n2) time using Givens rotations.

Demo: Householder Similarity Transforms

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Householder Similarity Transforms.ipynb

QR/Hessenberg: Overall procedure

Overall procedure:
1. Reduce matrix to Hessenberg form
2. Apply QR iteration using Givens QR to obtain Schur form

For symmetric matrices:
I Use Householders to attain tridiagonal form
I Use QR iteration with Givens to attain diagonal form

Krylov space methods: Intro

What subspaces can we use to look for eigenvectors?

QR:
span{A`y1,A`y2, . . . ,A`yk}

Krylov space:
span{ x︸︷︷︸

x0

,Ax, . . . ,Ak−1x︸ ︷︷ ︸
xk−1

}

Define:

Kk :=

 | |
x0 · · · xk−1
| |

 . (n × k)

Krylov for Matrix Factorization

What matrix factorization is obtained through Krylov space methods?

AKn =

 | |
x1 · · · xn
| |

 = Kn

 | | |
e2 · · · en K−1n xn
| | |

︸ ︷︷ ︸

Cn

.

I K−1n AKn = Cn

I Cn is upper Hessenberg
I So Krylov is ‘just’ another way to get a matrix into upper

Hessenberg form. But: built incrementally!

Conditioning in Krylov Space Methods/Arnoldi Iteration (I)

What is a problem with Krylov space methods? How can we fix it?

(xi) converge rapidly to eigenvector for largest eigenvalue
→ Kk become ill-conditioned

Idea: Orthogonalize! (at end. . . for now)

QnRn = Kn ⇒ Qn = KnR
−1
n

Then
QT

n AQn = Rn K
−1
n AKn︸ ︷︷ ︸
Cn

R−1n .

Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

I Cn is upper Hessenberg
I (Left/right) mul. by triangulars preserves upper Hessenberg

We find that QT
n AQn is also upper Hessenberg: QT

n AnQn = H.
Also readable as AQn = QnH, which, read column-by-column, is:

Aqk = h1kq1 + . . . hk+1,kqk+1

We find: hjk = qTj Aqk .

Important consequence: Can compute
I qk+1 from q1, . . . , qk
I (k + 1)st column of H

analogously to Gram-Schmidt QR!

This is called Arnoldi iteration. For symmetric: Lanczos iteration.

Demo: Arnoldi Iteration (Part 1)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Arnoldi Iteration.ipynb

Krylov: What about eigenvalues?
How can we use Arnoldi/Lanczos to compute eigenvalues?

Q =
[
Qk Uk

]
Green: known (i.e. already computed), red: not yet computed.

H = QTAQ =

[
Qk

Uk

]
A
[
Qk Uk

]
=

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

Use eigenvalues of top-left matrix as approximate eigenvalues.
(still need to be computed, using QR it.)

Those are called Ritz values.

Demo: Arnoldi Iteration (Part 2)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Arnoldi Iteration.ipynb

Computing the SVD (Kiddy Version)
How can I compute an SVD of a matrix A?

1. Compute the eigenvalues and eigenvectors of ATA.

ATAv1 = λ1v1 · · · ATAvn = λnvn

2. Matrix V from the vectors vi . (ATA symm.: V orth.)
3. Make a diagonal matrix Σ from the square roots of the

eigenvalues: Σ = diag(
√
λ1, . . . ,

√
λn)

4. Find U from A = UΣV T ⇔ UΣ = AV .
For square matrices: U = AVΣ−1.
Observe U is orthogonal: (Use: V TATAV = Σ2)

UTU = Σ−1 V TATAV︸ ︷︷ ︸
Σ2

Σ−1 = Σ−1Σ2Σ−1 = I .

Demo: Computing the SVD

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/eigenvalue/Computing the SVD.ipynb

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations
Introduction
Iterative Procedures
Methods in One Dimension
Methods in n Dimensions (“Systems of Equations”)

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Solving Nonlinear Equations

What is the goal here?

Solve f(x) = 0 for f : Rn → Rn.

If looking for solution to f̃(x) = y, simply consider f(x) = f̃ (x)− y.

Intuition: Each of the n equations describes a surface. Looking for
intersections.
Demo: Three quadratic functions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Three quadratic functions.ipynb

Showing Existence

How can we show existence of a root?

I Intermediate value theorem (uses continuity, 1D only)
I Inverse function theorem (relies on invertible Jacobian Jf)

Get local invertibility, i.e. f (x) = y solvable
I Contraction mapping theorem

A function g : Rn → Rn is called contractive if there exists a
0 < γ < 1 so that ‖g(x)− g(y)‖ 6 γ ‖x− y‖ . A fixed point of
g is a point where g(x) = x.

Then: On a closed set S ⊆ Rn with g(S) ⊆ S there exists a
unique fixed point.
Example: (real-world) map

In general, no uniquness results available.

Sensitivity and Multiplicity
What is the sensitivity/conditioning of root finding?

cond (root finding) = cond (evaluation of the inverse function)

What are multiple roots?

f (x) = 0
f ′(x) = 0

...
f (m−1)(x) = 0

This would be a root of multiplicity m.

How do multiple roots interact with conditioning?

The inverse function is steep near one, so conditioning is poor.

In-Class Activity: Krylov and Nonlinear Equations

In-class activity: Krylov and Nonlinear Equations

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-krylov-nonlinear/start

Rates of Convergence
What is linear convergence? quadratic convergence?

Let ek = ûk − u be the error in the kth iterate ûk . Assume ek → 0
as k →∞.

An iterative method converges with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

{
> 0,
<∞.

I r = 1 is called linear convergence.
I r > 1 is called superlinear convergence.
I r = 2 is called quadratic convergence.

Examples:
I Power iteration is linearly convergent.
I Rayleigh quotient iteration is quadratically convergent.

About Convergence Rates
Demo: Rates of Convergence
Characterize linear, quadratic convergence in terms of the ‘number of
accurate digits’.

I Linear convergence gains a constant number of digits each step:

‖ek+1‖ 6 C ‖ek‖

(and C < 1 matters!)
I Quadratic convergence

‖ek+1‖ 6 C ‖ek‖2

(Only starts making sense once ‖ek‖ is small. C doesn’t matter
much.)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Rates of Convergence.ipynb

Stopping Criteria
Comment on the ‘foolproof-ness’ of these stopping criteria:
1. |f (x)| < ε (‘residual is small’)
2. ‖xk+1 − xk‖ < ε
3. ‖xk+1 − xk‖ / ‖xk‖ < ε

1. Can trigger far away from a root in the case of multiple roots
(or a ‘flat’ f)

2. Allows different ‘relative accuracy’ in the root depending on its
magnitude.

3. Enforces a relative accuracy in the root, but does not actually
check that the function value is small.
So if convergence ‘stalls’ away from a root, this may trigger
without being anywhere near the desired solution.

Lesson: No stopping criterion is bulletproof. The ‘right’ one almost
always depends on the application.

Bisection Method

Demo: Bisection Method

What’s the rate of convergence? What’s the constant?

Linear with constant 1/2.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Bisection Method.ipynb

Fixed Point Iteration

x0 = 〈starting guess〉
xk+1 = g(xk)

Demo: Fixed point iteration

When does fixed point iteration converge? Assume g is smooth.

Let x∗ be the fixed point with x∗ = g(x∗).
If |g ′(x∗)| < 1 at the fixed point, FPI converges.

Error:
ek+1 = xk+1 − x∗ = g(xk)− g(x∗)

[cont’d.]

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Fixed point iteration.ipynb

Fixed Point Iteration: Convergence cont’d.
Error in FPI: ek+1 = xk+1 − x∗ = g(xk)− g(x∗)

Mean value theorem says: There is a θk between xk and x∗ so that

g(xk)− g(x∗) = g ′(θk)(xk − x∗) = g ′(θk)ek .

So: ek+1 = g ′(θk)ek and if ‖g ′‖ 6 C < 1 near x∗, then we have
linear convergence with constant C .

Q: What if g ′(x∗) = 0?

By Taylor:
g(xk)− g(x∗) = g ′′(ξk)(xk − x∗)2/2

So we have quadratic convergence in this case!

We would obviously like a systematic way of finding g that produces
quadratic convergence.

Newton’s Method

Derive Newton’s method.

Idea: Approximate f at xk using Taylor: f (xk +h) ≈ f (xk) + f ′(xk)h
Now find root of this linear approximation in terms of h:

f (xk) + f ′(xk)h = 0 ⇔ h = − f (xk)

f ′(xk)
.

x0 = 〈starting guess〉

xk+1 = xk −
f (xk)

f ′(xk)
= g(xk)

Convergence and Properties of Newton
What’s the rate of convergence of Newton’s method?

g ′(x) =
f (x)f ′′(x)

f ′(x)2

So if f (x∗) = 0 and f ′(x∗) 6= 0, we have g ′(x∗) = 0, i.e. quadratic
convergence toward single roots.

Drawbacks of Newton?

I Convergence argument only good locally
Will see: convergence only local (near root)

I Have to have derivative!

Demo: Newton’s method
Demo: Convergence of Newton’s Method

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Newton's method.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Convergence of Newton's Method.ipynb

Secant Method

What would Newton without the use of the derivative look like?

Approximate

f ′(xk) ≈ f (xk)− f (xk−1)

xk − xk−1
.

So

x0 = 〈starting guess〉

xk+1 = xk −
f (xk)

f (xk)−f (xk−1)
xk−xk−1

.

Convergence of Properties of Secant

Rate of convergence (not shown) is
(
1 +
√
5
)
/2 ≈ 1.618.

Drawbacks of Secant?

I Convergence argument only good locally
Will see: convergence only local (near root)

I Slower convergence
I Need two starting guesses

Demo: Secant Method
Demo: Convergence of the Secant Method

Secant (and similar methods) are called Quasi-Newton Methods.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Secant Method.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Convergence of the Secant Method.ipynb

Root Finding with Interpolants
Secant method uses a linear interpolant based on points f (xk), f (xk−1),
could use more points and higher-order interpolant:

I Can fit polynomial to (subset of) (x0, f (x0)), . . . , (xk , f (xk))

I Look for a root of that
I Fit a quadratic to the last three: Muller’s method

I Also finds complex roots
I Convergence rate r ≈ 1.84

What about existence of roots in that case?

I Inverse quadratic interpolation
I Interpolate quadratic polynomial q so that q(f (xi)) = xi for

i ∈ {k , k − 1, k − 2}.
I Approximate root by evaluating xk+1 = q(0).

Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally.
How could we use that?

I Hybrid methods: bisection + Newton
I Stop if Newton leaves bracket

I Fix a region where they’re ‘trustworthy’ (trust region methods)
I Limit step size

In-Class Activity: Nonlinear Equations

In-class activity: Nonlinear Equations

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-nonlinear/start

Fixed Point Iteration

x0 = 〈starting guess〉
xk+1 = g(xk)

When does this converge?

Converges (locally) if ‖Jg(x∗)‖ < 1 in some norm, where the Jacobian
matrix

Jg(x∗) =

∂x1g1 · · · ∂xng1
...

∂x1gn · · · ∂xngn

 .
Similarly: If Jg(x∗) = 0, we have at least quadratic convergence.

Better: There exists a norm ‖·‖A such that ρ(A) ≤ ‖A‖A < ρ(A)+ε,
so ρ(A) < 1 suffices.

Newton’s Method
What does Newton’s method look like in n dimensions?

Approximate by linear: f(x + s) = f(x) + Jf(x)s.

Set to 0:

Jf(x)s = −f(x) ⇒ s = −(Jf(x))−1f(x).

x0 = 〈starting guess〉
xk+1 = xk − (Jf(xk))−1f(xk)

Downsides of n-dim. Newton?

I Still only locally convergent
I Computing and inverting Jf is expensive.

Demo: Newton’s method in n dimensions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Newton's method in n dimensions.ipynb

Secant in n dimensions?

What would the secant method look like in n dimensions?

Need an ‘approximate Jacobian’ satisfying

J̃(xk+1 − xk) = f(xk+1)− f(xk).

Suppose we have already taken a step to xk+1. Could we ‘reverse
engineer’ J̃ from that equation?
I No: n2 unknowns in J̃, but only n equations
I Can only hope to ‘update’ J̃ with information from current

guess.
One choice: Broyden’s method (minimizes change to J̃)

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization
Introduction
Methods for unconstrained opt. in one dimension
Methods for unconstrained opt. in n dimensions
Nonlinear Least Squares
Constrained Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Optimization: Problem Statement

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) 6 0.

I g(x) = 0 and h(x) 6 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

I If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

I If f, g, h are linear, this is called linear programming.
Otherwise nonlinear programming.

Optimization: Observations
Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

I What is the fastest/cheapest/shortest. . . way to do. . . ?
I Solve a system of equations ‘as well as you can’ (if no exact

solution exists)–similar to what least squares does for linear
systems:

min ‖F (x)‖

What about multiple objectives?

I In general: Look up Pareto optimality.
I For 450: Make up your mind–decide on one (or build a

combined objective). Then we’ll talk.

Existence/Uniqueness
Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f : S → R is continuous on a closed and bounded set S ⊆ Rn, then

a minimum exists.

f : S → R is called coercive on S ⊆ Rn (which must be unbounded) if

lim
‖x‖→∞

f (x) = +∞

If f is coercive,

a global minimum exists (but is possibly non-unique).

Convexity

S ⊆ Rn is called convex if for all x, y ∈ S and all 0 6 α 6 1

αx + (1− α)y ∈ S .

f : S → R is called convex on S ⊆ Rn if for \ x, y ∈ S and all 0 6 α 6 1

f (αx + (1− α)y ∈ S) 6 αf (x) + (1− α)f (y).

With ‘<’: strictly convex.

Q: Give an example of a convex, but not strictly convex function.

Convexity: Consequences

If f is convex, . . .

I then f is continuous at interior points.
(Why? What would happen if it had a jump?)

I a local minimum is a global minimum.

If f is strictly convex, . . .

I a local minimum is a unique global minimum.

Optimality Conditions
If we have found a candidate x∗ for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.

I In one dimension:
I Necessary: f ′(x∗) = 0 (i.e. x∗ is an extremal point)
I Sufficient: f ′(x∗) = 0 and f ′′(x∗) > 0

(implies x∗ is a local minimum)

I In n dimensions:
I Necessary: ∇f (x∗) = 0 (i.e. x∗ is an extremal point)
I Sufficient: ∇f (x∗) = 0 and Hf (x∗) positive definite

(implies x∗ is a local minimum)

where the Hessian

Hf (x∗) =

∂2

∂x2
1

· · · ∂2

∂x1∂xn
...

...
∂2

∂xn∂x1
· · · ∂2

∂x2
n

 f (x∗).

Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

A: Solve ∇f = 0.

Q: Is the Hessian symmetric?

A: Yes. (Schwarz’s theorem)

Q: How can we practically test for positive definiteness?

A: Attempt a Cholesky factorization. If it succeeds, the matrix is PD.

In-Class Activity: Optimization Theory

In-class activity: Optimization Theory

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-optimization-theory/start

Sensitivity and Conditioning (1D)
How does optimization react to a slight perturbation of the minimum?

Suppose we still have |f (x̃)− f (x∗)| < tol (where x∗ is true min.).
Apply Taylor’s theorem:

f (x∗ + h) = f (x∗) + f ′(x∗)︸ ︷︷ ︸
0

h + f ′′(x∗)
h2

2
+ O(h3)

Solve for h: |x̃ − x∗| 6
√

2 tol /f ′′(x∗).
In other words: Can expect half as many digits in x̃ as in f (x̃).
This is important to keep in mind when setting tolerances.

It’s only possible to do better when derivatives are explicitly known
and convergence is not based on function values alone. (then: can
solve ∇f = 0)

Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?

Assume ‖s‖ = 1.

f (x∗ + hs) = f (x∗) + h∇f (x∗)T︸ ︷︷ ︸
0

s +
h2

2
sTHf (x∗)s + O(h3)

Yields:
|h|2 6 2 tol

λmin(Hf (x∗))
.

In other words: Conditioning of Hf determines sensitivity of x∗.

Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.

f is called unimodal if for all x1 < x2
I x2 < x∗ ⇒ f (x1) > f (x2)

I x∗ < x1 ⇒ f (x1) < f (x2)

Golden Section Search
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.

1. Pick x1, x2

2. If f (x1) > f (x2), reduce to (x1, b)

3. If f (x1) 6 f (x2), reduce to (a, x2)

Golden Section Search: Efficiency

Where to put x1, x2?

I Want symmetry:
x1 = a + (1− τ)(b − a)
x2 = a + τ(b − a)

I Want to reuse function evaluations: τ2 = 1− τ
Find: τ =

(√
5− 1

)
/2. Also known as the golden section.

I Hence golden section search.

Convergence rate?

Linearly convergent. Can we do better?

Demo: Golden Section Proportions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/nonlinear/Golden Section Proportions.ipynb

Newton’s Method
Reuse the Taylor approximation idea, but for optimization.

f (x + h) ≈ f (x) + f ′(x)h + f ′′(x)
h2

2
=: f̂ (h)

Solve
0 = f̂ ′(h) = f ′(x) + f ′′(x)h :

h = −f ′(x)/f ′′(x).
1. x0 = 〈some starting guess〉
2. xk+1 = xk − f ′(xk)

f ′′(xk)

Q: Notice something? Identical to Newton for solving f ′(x) = 0.
Because of that: locally quadratically convergent.

Good idea: Combine slow-and-safe (bracketing) strategy with fast-
and-risky (Newton).

Demo: Newton’s Method in 1D

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Newton's Method in 1D.ipynb

In-Class Activity: Optimization Methods

In-class activity: Optimization Methods

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-optimization-methods/start

Steepest Descent
Given a scalar function f : Rn → R at a point x, which way is down?

Direction of steepest descent: −∇f

Q: How far along the gradient should we go?

Unclear–do a line search. For example using Golden Section Search.
1. x0 = 〈some starting guess〉
2. sk = −∇f (xk)

3. Use line search to choose αk to minimize f (xk + αksk)

4. xk+1 = xk + αksk
5. Go to 2.

Observation: (from demo)
I Linear convergence

Demo: Steepest Descent

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Steepest Descent.ipynb

Steepest Descent: Convergence
Consider quadratic model problem:

f (x) =
1
2
xTAx + cT x

where A is SPD. (A good model of f near a minimum.)

Define error ek = xk − x∗. Then

||ek+1||A =
√

eTk+1Aek+1 =
σmax(A)− σmin(A)

σmax(A) + σmin(A)
||ek ||A

→ confirms linear convergence.

Convergence constant related to conditioning:

σmax(A)− σmin(A)

σmax(A) + σmin(A)
=
κ(A)− 1
κ(A) + 1

.

Hacking Steepest Descent for Better Convergence
Extrapolation methods: Look back a step, maintain ’momentum’.

xk+1 = xk − αk∇f (xk) + βk(xk − xk−1)

Heavy ball method: constant αk = α and βk = β. Gives:

||ek+1||A =

√
κ(A)− 1√
κ(A) + 1

||ek ||A

Conjugate gradient method:

(αk , βk) = argminαk ,βk

[
f
(
xk − αk∇f (xk) + βk(xk − xk−1)

)]
I Will see in more detail later (for solving linear systems)
I Provably optimal first-order method for the quadratic model problem
I Turns out to be closely related to Lanczos (A-orthogonal search

directions)

Nelder-Mead Method

Idea:

Form a n-point polytope in n-dimensional space and adjust worst
point (highest function value) by moving it along a line passing
through the centroid of the remaining points.

Demo: Nelder-Mead Method

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Nelder-Mead Method.ipynb

Newton’s method (n D)

What does Newton’s method look like in n dimensions?

Build a Taylor approximation:

f (x + s) ≈ f (x) +∇f (x)T s +
1
2
sTHf (x)s =: f̂ (s)

Then solve ∇f̂ (s) = 0 for s to find

Hf (x)s = −∇f (x).

1. x0 = 〈some starting guess〉
2. Solve Hf (xk)sk = −∇f (xk) for sk
3. xk+1 = xk + sk

Newton’s method (n D): Observations

Drawbacks?

I Need second (!) derivatives
(addressed by Conjugate Gradients, later in the class)

I local convergence
I Works poorly when Hf is nearly indefinite

Demo: Newton’s method in n dimensions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Newton's method in n dimensions.ipynb

Quasi-Newton Methods
Secant/Broyden-type ideas carry over to optimization. How?

Come up with a way to update to update the approximate Hessian.

xk+1 = xk − αkB
−1
k ∇f (xk)

I αk : a line search/damping parameter.

BFGS: Secant-type method, similar to Broyden:

Bk+1 = Bk +
ykyTk
yTk sk

−
BksksTk Bk

sTk Bksk

where
I sk = xk+1 − xk
I yk = ∇f (xk+1)−∇f (xk)

Nonlinear Least Squares: Setup
What if the f to be minimized is actually a 2-norm?

f (x) = ‖r(x)‖2 , r(x) = y − a(x)

Define ‘helper function’

ϕ(x) =
1
2
r(x)T r(x) =

1
2
f 2(x)

and minimize that instead.

∂

∂xi
ϕ =

1
2

n∑
j=1

∂

∂xi
[rj(x)2] =

∑
j

(
∂

∂xi
rj

)
rj ,

or, in matrix form:
∇ϕ = Jr(x)T r(x).

Gauss-Newton
For brevity: J := Jr(x).

Can show similarly:

Hϕ(x) = JT J +
∑
i

riHri (x).

Newton step s can be found by solving Hϕ(x)s = −∇ϕ.

Observation:
∑

i riHri (x) is inconvenient to compute and unlikely to
be large (since it’s multiplied by components of the residual, which is
supposed to be small) → forget about it.

Gauss-Newton method: Find step s by JT Js = −∇ϕ = −JT r(x).
Does that remind you of the normal equations? Js ∼= −r(x). Solve
that using our existing methods for least-squares problems.

Gauss-Newton: Observations?

Demo: Gauss-Newton

Observations?

I Newton on its own is still only locally convergent
I Gauss-Newton is clearly similar
I It’s worse because the step is only approximate
→ Much depends on the starting guess.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Gauss-Newton.ipynb

Levenberg-Marquardt
If Gauss-Newton on its own is poorly, conditioned, can try
Levenberg-Marquardt:

(Jr(xk)T Jr(xk)+µk I)sk = −Jr(xk)T r(xk)

for a ‘carefully chosen’ µk . This makes the system matrix ‘more
invertible’ but also less accurate/faithful to the problem. Can also be
translated into a least squares problem (see book).

What Levenberg-Marquardt does is generically called regularization:
Make H more positive definite.
Easy to rewrite to least-squares problem:[

Jr(xk)√
µk

]
sk ∼=

[
−r(xk)

0

]
.

Constrained Optimization: Problem Setup
Want x∗ so that

f (x∗) = min
x

f (x) subject to g(x) = 0

No inequality constraints just yet. This is equality-constrained
optimization. Develop a necessary condition for a minimum.

Unconstrained necessary condition:

∇f (x) = 0

Problem: That alone is not helpful. ‘Downhill’ direction has to be
feasible. So just this doesn’t help.

s is a feasible direction at x if

x + αs feasible for α ∈ [0, r] (for some r)

Constrained Optimization: Necessary Condition

I ∇f (x) · s > 0 (“uphill that way”) for any feasible direction s.

If not at boundary of feasible set:
s and −s are feasible directions
⇒ ∇f (x) = 0
⇒ Only the boundary of the feasible set is different from the
unconstrained case (i.e. interesting)

I At boundary: g(x) = 0. Need:

−∇f (x) ∈ rowspan(Jg)

a.k.a. “all descent directions would cause a change
(→violation) of the constraints.”
Q: Why ‘rowspan’? Think about shape of Jg.

⇔ −∇f (x) = JTg λ for some λ.

Lagrange Multipliers

Seen: Need −∇f (x) = JTg λ at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an unconstrained
optimization problem for (x, λ). How?

Need a new function L(x, λ) to minimize:

L(x, λ) := f (x) + λTg(x).

Lagrange Multipliers: Development

L(x, λ) := f (x) + λTg(x).

Then: ∇L = 0 at unconstrained minimum, i.e.

0 = ∇L =

[
∇xL
∇λL

]
=

[
∇f + Jg(x)Tλ

g(x)

]
.

Convenient: This matches our necessary condition!

So we could use any unconstrained method to minimized L.
For example: Using Newton to minimize L is called Sequential
Quadratic Programming. (‘SQP’)

Demo: Sequential Quadratic Programming

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/optimization/Sequential Quadratic Programming.ipynb

Inequality-Constrained Optimization
Want x∗ so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) 6 0

This is inequality-constrained optimization. Develop a necessary condition
for a minimum.

Define Lagrangian:

L(x, λ1, λ2) := f (x) + λT1 g(x) + λT2 h(x)

I Some inequality constrains may not be “active”
(active ⇔ hi (x∗) = 0⇔at ‘boundary’ of ineq. constraint)
(Equality constrains are always ‘active’)

I If hi inactive (hi (x∗) < 0), must force λ2,i = 0.
Otherwise: Behavior of h could change location of minimum of
L. Use complementarity condition hi (x∗)λ2,i = 0.

Inequality-Constrained Optimization (cont’d)

Develop a set of necessary conditions for a minimum.

Assuming Jg and Jh,active have full rank, this set of conditions is
necessary:

(∗) ∇xL(x∗, λ∗1, λ
∗
2) = 0

(∗) g(x∗) = 0
h(x∗) 6 0
λ2 > 0

(∗) h(x∗) · λ2 = 0

These are called the Karush-Kuhn-Tucker (‘KKT’) conditions.

Computational approach: Solve (∗) equations by Newton.

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation
Introduction
Methods
Error Estimation
Piecewise interpolation, Splines

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Interpolation: Setup

Given: (xi)
N
i=1, (yi)

N
i=1

Wanted: Function f so that f (xi) = yi

How is this not the same as function fitting? (from least squares)

It’s very similar–but the key difference is that we are asking for exact
equality, not just minimization of a residual norm.
→ Better error control, error not dominated by residual

Idea: There is an underlying function that we are approximating from
the known point values.

Error here: Distance from that underlying function

Interpolation: Setup (II)

Given: (xi)
N
i=1, (yi)

N
i=1

Wanted: Function f so that f (xi) = yi

Does this problem have a unique answer?

No–there are infinitely many functions that satisfy the problem as
stated:

Interpolation: Importance

Why is interpolation important?

It brings all of calculus within range of numerical operations.
I Why?

Because calculus works on functions.
I How?

1. Interpolate (go from discrete to continuous)
2. Apply calculus
3. Re-discretize (evaluate at points)

Making the Interpolation Problem Unique

Limit the set of functions to a linear combination from an interpola-
tion basis ϕi .

f (x) =

Nfunc∑
j=0

αjϕj(x)

Interpolation becomes solving the linear system:

yi = f (xi) =

Nfunc∑
j=0

αj ϕj(xi)︸ ︷︷ ︸
Vij

↔ Vα = y.

Want unique answer: Pick Nfunc = N → V square.
V is called the (generalized) Vandermonde matrix.

V (coefficients) = (values at nodes) .

Existence/Sensitivity
Solution to the interpolation problem: Existence? Uniqueness?

Equivalent to existence/uniqueness of the linear system

Sensitivity?

I Shallow answer: Simply consider the condition number of the
linear system

I ‖coefficients‖ does not suffice as measure of stability.
f (x) can be evaluated in many places. (f is interpolant.)

I Want: maxx∈[a,b] |f (x)| ≤ Λ‖y‖∞
I Λ: Lebesgue constant
I Λ depends on n and {xi}i

I Technically also depends on {φi}i
I But: same for all polynomial bases

Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:
I Monomials 1, x , x2, x3, x4, . . .
I Functions that make V = I →

‘Lagrange basis’
I Functions that make V

triangular → ‘Newton basis’
I Splines (piecewise polynomials)
I Orthogonal polynomials
I Sines and cosines
I ‘Bumps’ (‘Radial Basis

Functions’)

Ideas for points:
I Equispaced
I ‘Edge-Clustered’ (so-called

Chebyshev/Gauss/. . . nodes)

Specific issues:
I Why not monomials on

equispaced points?
Demo: Monomial interpolation

I Why not equispaced?
Demo: Choice of Nodes for
Polynomial Interpolation

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Monomial interpolation.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb

Lagrange Interpolation
Find a basis so that V = I , i.e.

ϕj(xi) =

{
1 i = j ,

0 otherwise.

Start with simple example. Three nodes: x1, x2, x3

ϕ1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)

ϕ2(x) =
(x − x1) (x − x3)

(x2 − x1) (x2 − x3)

ϕ3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)

Numerator: Ensures ϕi zero at other nodes.
Denominator: Ensures ϕi (xi) = 1.

Lagrange Polynomials: General Form

ϕj(x) =

∏m
k=1,k 6=j(x − xk)∏m
k=1,k 6=j(xj − xk)

Newton Interpolation
Find a basis so that V is triangular.

Easier to build than Lagrange, but: coefficient finding costs O(n2).

ϕj(x) =

j−1∏
k=1

(x − xk).

(At least) two possibilities for coefficent finding:
1. Set up V , run forward substitution.
2. “Divided Differences” (see, e.g. Wikipedia)

Why not Lagrange/Newton?

Cheap to form, expensive to evaluate, expensive to do calculus on.

Better conditioning: Orthogonal polynomials
What caused monomials to have a terribly conditioned Vandermonde?

Being close to linearly dependent.

What’s a way to make sure two vectors are not like that?

Orthogonality

But polynomials are functions!

f · g =
n∑

i=1

figi = 〈f, g〉

〈f , g〉 =

∫ 1

−1
f (x)g(x)dx

Need an inner product. Orthogonal then just means 〈f , g〉 = 0.

Constructing Orthogonal Polynomials
How can we find an orthogonal basis?

Apply Gram-Schmidt to the monomials.

Demo: Orthogonal Polynomials — Obtained: Legendre polynomials.
But how can I practically compute the Legendre polynomials?

→ DLMF: Chapter on orthogonal polynomials
I There exist three-term recurrences, e.g.: Tn+1 = 2xTn − Tn+1

I There is a whole zoo of polynomials there, depending on the
weight function w in the (generalized) inner product:

〈f , g〉 =

∫
w(x)f (x)g(x)dx .

Some sets of orth. polys. live on intervals 6= (−1, 1).

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Orthogonal Polynomials.ipynb
https://dlmf.nist.gov/18

Chebyshev Polynomials: Definitions

Three equivalent definitions:
I Result of Gram-Schmidt with weight 1/

√
1− x2. What is that weight?

1/ (Half circle), i.e. x2 + y2 = 1, with y =
√
1− x2

(Like for Legendre, you won’t exactly get the standard normalization if
you do this.)

I Tk(x) = cos(k cos−1(x))

I Tk(x) = 2xTk−1(x)− Tk−2(x) plus T0 = 1, T0 = x

Demo: Chebyshev Interpolation (Part 1)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Chebyshev Interpolation .ipynb

Chebyshev Interpolation
What is the Vandermonde matrix for Chebyshev polynomials?

I Need to know the nodes to answer that
I The answer would be very simple if the nodes were cos(∗).
I So why not cos (equispaced)?

Might get

xi = cos

(
i

k
π

)
(i = 0, 1, . . . , k)

These are just the extrema (minima/maxima) of Tk .

Vij = cos

(
j cos−1

(
cos

(
i

k
π

)))
= cos

(
j
i

k
π

)
.

This is called the Discrete Cosine Transform and a matvec with this
matrix (and its inverse!) can be implemented in O(N logN) time
(similar to the Fast Fourier Transform→Chapter 12).

Chebyshev Nodes

Might also consider roots (instead of extrema) of Tk :

xi = cos

(
2i − 1
2k

π

)
(i = 1 . . . , k).

Vandermonde for these (with Tk) can be applied in O(N logN) time, too.
It turns out that we were still looking for a good set of interpolation nodes.
We came up with the criterion that the nodes should bunch towards the
ends. Do these do that?

Yes.

Demo: Chebyshev Interpolation (Part 2)

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Chebyshev Interpolation .ipynb

Chebyshev Interpolation: Summary

I Chebyshev interpolation is fast and works extremely well
I http://www.chebfun.org/ and: ATAP
I In 1D, they’re a very good answer to the interpolation question
I But sometimes a piecewise approximation (with a specifiable level of

smoothness) is more suited to the application

http://www.chebfun.org/
http://www.chebfun.org/ATAP/

In-Class Activity: Interpolation

In-class activity: Interpolation

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-interpolation/start

Interpolation Error
If f is n times continuously differentiable on a closed interval I and
pn−1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {xi} (i = 1, ..., n) in that interval, then for each x in the
interval there exists ξ in that interval such that

f (x)− pn−1(x) =
f (n)(ξ)

n!
(x − x1)(x − x2) · · · (x − xn).

Set the error term to be R(x) := f (x) − pn−1(x) and set up an
auxiliary function:

Y (t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi).

Note also the introduction of t as an additional variable, independent
of the point x where we hope to prove the identity.

Interpolation Error: Proof cont’d

Y (t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi)

I Since xi are roots of R(t) and W (t), we have
Y (x) = Y (xi) = 0, which means Y has at least n + 1 roots.

I From Rolle’s theorem, Y ′(t) has at least n roots, then Y (n)

has at least one root ξ, where ξ ∈ I .
I Since pn−1(x) is a polynomial of degree at most n − 1,

R(n)(t) = f (n)(t). Thus

Y (n)(t) = f (n)(t)− R(x)

W (x)
n!.

I Plugging Y (n)(ξ) = 0 into the above yields the result.

Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev
interpolation?

I The error bound suggests choosing the interpolation nodes
such that the product |

∏n
i=1(x − xi)|, is as small as possible.

The Chebyshev nodes achieve this.
I Error is zero at the nodes
I If nodes scoot closer together near the interval ends, then

(x − x1)(x − x2) · · · (x − xn)

clamps down the (otherwise quickly-growing) error there.

Error Result: Simplified From
Boil the error result down to a simpler form.

Assume x1 < · · · < xn.
I
∣∣f (n)(x)

∣∣ 6 M for x ∈ [x1,xn],
I Set the interval length h = xn − x1.

Then |x − xi | 6 h.
Altogether–there is a constant C independent of h so that:

max
x
|f (x)− pn−1(x)| 6 CMhn.

For the grid spacing h→ 0, we have

E (h) = O(hn).

This is called convergence of order n.

Demo: Interpolation Error

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/interpolation/Interpolation Error.ipynb

Going piecewise: Simplest Case

Construct a piecweise linear interpolant at four points.

x0, y0 x1, y1 x2, y2 x3, y3

f1 = a1x + b1	f2 = a2x + b2	f3 = a3x + b3
2 unk.	2 unk.	2 unk.
f1(x0) = y0	f2(x1) = y1	f3(x2) = y2
f1(x1) = y1	f2(x2) = y2	f3(x3) = y3
2 eqn.	2 eqn.	2 eqn.

Why three intervals?

General situation → two end intervals and one middle interval. Can
just add more middle intervals if needed.

Piecewise Cubic (‘Splines’)
x0, y0 x1, y1 x2, y2 x3, y3

| f1 | f2 | f3 |
| a1x

3 + b1x
2 + c1x + d1 | a2x

3 + b2x
2 + c2x + d2 | a3x

3 + b3x
2 + c3x + d3 |

4 unknowns 4 unknowns 4 unknowns
f1(x0) = y0 f2(x1) = y1 f3(x2) = y2
f1(x1) = y1 f2(x2) = y2 f3(x3) = y3

Not enough: need more conditions. Ask for more smoothness.
f ′1(x1) = f ′2(x1) f ′2(x2) = f ′3(x2)
f ′′1 (x1) = f ′′2 (x1) f ′′2 (x2) = f ′′3 (x2)

Not enough: need yet more conditions.
f ′′1 (x0) = 0 f ′′3 (x3) = 0

Now: have a square system.

Piecewise Cubic (‘Splines’): Accounting
x0, y0 x1, y1 x2, y2 x3, y3

| f1 | f2 | f3 |
| a1x

3 + b1x
2 + c1x + d1 | a2x

3 + b2x
2 + c2x + d2 | a3x

3 + b3x
2 + c3x + d3 |

Number of conditions: 2Nintervals + 2Nmiddle nodes + 2 where

Nintervals − 1 = Nmiddle nodes

so
2Nintervals + 2(Nintervals − 1) + 2 = 4Nintervals,

which is exactly the number of unknown coefficients.

These conditions are fairly arbitrary: Can choose different ones basi-
cally at will. The above choice: ‘natural spline’.

Can also come up with a basis of spline functions (with the chosen
smoothness conditions). These are called B-Splines.

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation
Numerical Integration
Quadrature Methods
Accuracy and Stability
Gaussian Quadrature
Composite Quadrature
Numerical Differentiation
Richardson Extrapolation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)

Given a, b, f , compute ∫ b

a
f (x)dx .

What about existence and uniqueness?

I Answer exists e.g. if f is integrable in the Riemann or Lebesgue
senses.

I Answer is unique if f is e.g. piecewise continuous and bounded.
(this also implies existence)

Conditioning

Derive the (absolute) condition number for numerical integration.

Let f̂ (x) := f (x) + e(x), where e(x) is a perturbation.

∣∣∣∣∫ b

a
f (x)dx −

∫ b

a
f̂ (x)dx

∣∣∣∣
=

∣∣∣∣∫ b

a
e(x)dx

∣∣∣∣ 6 ∫ b

a
|e(x)| dx 6 (b − a) max

x∈[a,b]
|e(x)| .

Interpolatory Quadrature

Design a quadrature method based on interpolation.

Idea: The result ought to be a linear (Q: why linear?) combination
of a few function values.∫ b

a
f (x)dx ≈

n∑
i=1

ωi f (xi)

Then: nodes (xi) and weights (ωi) together make a quadrature rule.

Idea: Any interpolation method (nodes+basis) gives rise to an inter-
polatory quadrature method.

Interpolatory Quadrature: Examples

Example: Fix (xi). Then

f (x) ≈
∑
i

f (xi)`i (x),

where `i (x) is the Lagrange polynomial for the node xi . Then∫ b

a
f (x)dx ≈

∑
i

f (xi)

∫ b

a
`i (x)dx︸ ︷︷ ︸
ωi

.

I With polynomials and (often) equispaced nodes, this is called
Newton-Cotes quadrature.

I With Chebyshev nodes and Chebyshev weights, this is called
Clenshaw-Curtis quadrature.

Interpolatory Quadrature: Computing Weights
How do the weights in interpolatory quadrature get computed?

Done by solving linear system.
Know: This quadrature should at least integrate monomials exactly.

b − a =

∫ b

a
1dx = ω1 · 1 + · · ·+ ωn · 1

...
1

k + 1
(bk+1 − ak+1) =

∫ b

a
xkdx = ω1 · xk1 + · · ·+ ωn · xkn

Write down n equations for n unknowns, solve linear system, done.

This is called the method of undetermined coefficients.

Demo: Newton-Cotes weight finder

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Newton-Cotes weight finder.ipynb

Examples and Exactness
To what polynomial degree are the following rules exact?

Midpoint rule (b − a)f
(
a+b
2

)
Trapezoidal rule b−a

2 (f (a) + f (b))

Simpson’s rule b−a
6

(
f (a) + 4f

(
a+b
2

)
+ f (b)

) parabola

Answers:
I Midpoint: technically 0 (constants), actually 1 (linears)
I Trapezoidal: 1 (linears)
I Simpson’s: technically 2 (parabolas), actually 3 (cubics)

Idea: Could use difference between trapezoidal and midpoint rule as
an error estimate.

Interpolatory Quadrature: Accuracy
Let pn−1 be an interpolant of f at nodes x1, . . . , xn (of degree n − 1)
Recall ∑

i

ωi f (xi) =

∫ b

a
pn−1(x)dx .

What can you say about the accuracy of the method?∣∣∣∣∫ b

a
f (x)dx −

∫ b

a
pn−1(x)dx

∣∣∣∣
6

∫ b

a
|f (x)− pn−1(x)| dx

6 (b − a) ‖f − pn−1‖∞
(using interpolation error) 6 C (b − a)hn

∥∥∥f (n)
∥∥∥
∞

6 Chn+1
∥∥∥f (n)

∥∥∥
∞

Quadrature: Overview of Rules
n Deg. Ex.Int.Deg.

(w/odd)
Intp.Ord. Quad.Ord.

(regular)
Quad.Ord.
(w/odd)

n − 1 (n−1)+1odd n n + 1 (n+1)+1odd

Midp. 1 0 1 1 2 3
Trapz. 2 1 1 2 3 3
Simps. 3 2 3 3 4 5
— 4 3 3 4 5 5
I n: number of points
I “Deg.”: Degree of polynomial used in interpolation (= n − 1)
I “Ex.Int.Deg.”: Polynomials of up to (and including) this degree actually get

integrated exactly. (including the odd-order bump)
I “Intp.Ord.”: Order of Accuracy of Interpolation: O(hn)

I “Quad.Ord. (regular)”: Order of accuracy for quadrature predicted by the error
result above: O(hn+1)

I “Quad.Ord. (w/odd):” Actual order of accuracy for quadrature given ‘bonus’
degrees for rules with odd point count

Observation: Quadrature gets (at least) ‘one order higher’ than interpolation–even more
for odd-order rules. (i.e. more accurate)
Demo: Accuracy of Newton-Cotes

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Accuracy of Newton-Cotes.ipynb

Interpolatory Quadrature: Stability
Let pn be an interpolant of f at nodes x1, . . . , xn (of degree n − 1)
Recall ∑

i

ωi f (xi) =

∫ b

a
pn(x)dx

What can you say about the stability of this method?

Again consider f̂ (x) = f (x) + e(x).∣∣∣∣∣∑
i

ωi f (xi)−
∑
i

ωi f̂ (xi)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

ωie(xi)

∣∣∣∣∣ 6∑
i

|ωie(xi)|

6

(∑
i

|ωi |

)
‖e‖∞

Q: So, what quadrature weights make for bad stability bounds?
A: Quadratures with large negative weights. (Recall:

∑
i ωi is fixed.)

About Newton-Cotes

What’s not to like about Newton-Cotes quadrature?

Demo: Newton-Cotes weight finder (again, with many nodes)
In fact, Newton-Cotes must have at least one negative weight as soon
as n > 11.

More drawbacks:
I All the fun of high-order interpolation with monomials and

equispaced nodes (i.e. convergence not guaranteed)
I Weights possibly non-negative (→stability issues)
I Coefficients determined by (possibly ill-conditioned)

Vandermonde matrix
I Thus hard to extend to arbitrary number of points.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Newton-Cotes weight finder.ipynb

Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes,
too? Hope: More design freedom → Exact to higher degree.

Idea: method of undetermined coefficients
But: Resulting system would be nonlinear.

Can use orthogonal polynomials to get a leg up. (→ hw)
Gaussian quadrature with n points: Exactly integrates polynomials
up to degree 2n − 1.

Demo: Gaussian quadrature weight finder

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Gaussian quadrature weight finder.ipynb

Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness
of the function.
Idea: Stitch together multiple lower-order quadrature rules to alleviate
smoothness requirement.

e.g. trapezoidal

Error in Composite Quadrature
What can we say about the error in the case of composite quadrature?

Error for one panel of length h:
∣∣∫ f − pn−1

∣∣ 6 C · hn+1
∥∥f (n)

∥∥
∞∣∣∣∣∣∣

∫ b

a
f (x)dx −

m∑
j=1

n∑
i=1

ωj ,i f (xj ,i)

∣∣∣∣∣∣
6 C

∥∥∥f (n)
∥∥∥
∞

m∑
j=1

(aj+1 − aj)
n+1

= C
∥∥∥f (n)

∥∥∥
∞

(aj+1 − aj)
n

m∑
j=1

(aj+1 − aj)

= C
∥∥∥f (n)

∥∥∥
∞
hn(b − a),

where h is now the length of a single panel.

Composite Quadrature: Notes

Observation: Composite quadrature loses an order compared to
non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by
splitting in half) only those contributing the most to the error.
(adaptivity, → hw)

Taking Derivatives Numerically
Why shouldn’t you take derivatives numerically?

I ‘Unbounded’
A function with small ‖f ‖∞ can have arbitrarily large ‖f ′‖∞

I Amplifies noise
Imagine a smooth function perturbed by small, high-frequency
wiggles

I Subject to cancellation error
I Inherently less accurate than integration

I Interpolation: hn
I Quadrature: hn+1

I Differentiation: hn−1

(where n is the number of points)

Demo: Taking Derivatives with Vandermonde Matrices

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Taking Derivatives with Vandermonde Matrices.ipynb

Finite Differences

Idea: Start from definition of derivative. Called a forward difference.

f ′(x) ≈ f (x + h)− f (x)

h

Q: What accuracy does this achieve?
Using Taylor:

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2
+ · · ·

Plug in:

f (x) + f ′(x)h + f ′′(x)h
2

2 + · · · − f (x)

h
= f ′(x) + O(h)

→ first order accurate.

More Finite Difference Rules

Similarly:

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2)

(Centered differences)

Can also take higher order derivatives:

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+ O(h2)

Can find these by trying to match Taylor terms.
Alternative: Use linear algebra with interpolate-then-differentiate to find
FD formulas.
Demo: Finite Differences vs Noise
Demo: Floating point vs Finite Differences

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Finite Differences vs Noise.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Floating point vs Finite Differences.ipynb

Richardson Extrapolation
If we have two estimates of something, can we get a third that’s more
accurate? Suppose we have an approximation F = F̃ (h) + O(hp) and we
know F̃ (h1) and F̃ (h2).

Grab one more term of the Taylor series: F = F̃ (h) + ahp + O(hq)
Typically: q = p + 1 (but not necessarily).

Idea: Construct new approximation with the goal of O(hq) accuracy:

F = αF̃ (h1) + βF̃ (h2) + O(hq)

To get this, must have αahp1 + βahp2 = 0. Also require α + β = 1.

α(hp1 − hp2) + 1hp2 = 0

α =
−hp2

hp1 − hp2

Richardson Extrapolation: Observations, Romberg Integration

Important observation: Never needed to know a.

Idea: Can repeat this for even higher accuracy.

e.g. 1st 2nd 3rd 4th

order accurate

Carrying out this process for quadrature is called Romberg integration.
Demo: Richardson with Finite Differences

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/quadrature_and_diff/Richardson with Finite Differences.ipynb

In-Class Activity: Differentiation and Quadrature

In-class activity: Differentiation and Quadrature

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-quadrature/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods (I)
Accuracy and Stability
Stiffness
Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What can we solve already?

I Linear Systems: yes
I Nonlinear systems: yes
I Systems with derivatives: no

Some Applications

IVPs BVPs

I Population dynamics
y ′1 = y1(α1 − β1y2) (prey)
y ′2 = y2(−α2 + β2y1)
(predator)

I chemical reactions
I equations of motion

I bridge load
I pollutant concentration

(steady state)
I temperature

(steady state)

Initial Value Problems: Problem Statement
Want: Function y : [0,T]→ Rn so that
I y(k)(t) = f(t, y, y′, y′′, . . . , y(k−1)) (explicit)

or
I f(t, y, y′, y′′, . . . , y(k)) = 0 (implicit)

are called explicit/implicit kth-order ordinary differential equations (ODEs).
Give a simple example.

y ′(t) = αy

Not uniquely solvable on its own. What else is needed?

Initial conditions. (Q: How many?)

y(0) = g0, y′(0) = g1, . . . y(k−1)(0) = gk−1.

Boundary Value Problems (BVPs) trade some derivatives for condi-
tions at the ‘other end’.

Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this
example:

y ′′(t) = f (y)

In first-order form: [
y1
y2

]′
(t) =

[
y2(t)

f (y1(t))

]
Because:

y ′′1 (t) = (y ′1(t))′ = y ′2(t) = f (y1(t)).

Properties of ODEs

What is a linear ODE?

f(t, x) = A(t)x + b

What is a linear and homogeneous ODE?

f(t, x) = A(t)x

What is a constant-coefficient ODE?

f(t, x) = Ax

Properties of ODEs (II)

What is an autonomous ODE?

One in which the function f does not depend on time t.
An ODE can made autonomous by introducing an extra variable:

y ′0(t) = 1, y0(0) = 0.

→ Without loss of generality: Get rid of explicit t dependency.

Existence and Uniqueness
Consider the perturbed problem{

y′(t) = f(y)
y(t0) = y0

{
ŷ′(t) = f(ŷ)
ŷ(t0) = ŷ0

Then if f is Lipschitz continuous (has ‘bounded slope’), i.e.

‖f(y)− f(ŷ)‖ 6 L ‖y − ŷ‖
(where L is called the Lipschitz constant), then. . .

I there exists a solution y in a neighborhood of t0, and. . .
I ‖y(t)− ŷ(t)‖ 6 eL(t−t0) ‖y0 − ŷ0‖

What does this mean for uniqueness?

It implies uniqueness. If there were two separate solutions with iden-
tical initial values, they are not allowed to be different.

Conditioning
Unfortunate terminology accident: “Stability” in ODE-speak
To adapt to conventional terminology, we will use ‘Stability’ for
I the conditioning of the IVP, and
I the stability of the methods we cook up.

Some terminology:

An ODE is stable if and only if. . .

The solution is continously dependent on the initial condition, i.e.
For all ε > 0 there exists a δ > 0 so that

‖ŷ0 − y0‖ < δ ⇒ ‖ŷ(t)− y(t)‖ < ε for all t > t0.

An ODE is asymptotically stable if and only if

‖ŷ(t)− y(t)‖ → 0 (t →∞).

Example I: Scalar, Constant-Coefficient{
y ′(t) = λy
y(0) = y0

where λ = a + ib

Solution?

y(t) = y0e
λt = y0(eat · e ibt)

When is this stable?

When a = Reλ > 0: When a = Reλ 6 0:

Example II: Constant-Coefficient System{
y′(t) = Ay(t)
y(t0) = y0

Assume V−1 AV = D = diag(λ1, . . . , λn) diagonal.

How do we find a solution?

Define w(t) := V−1y(t). Then

w′(t) = V−1y′(t) = V−1Ay(t) = V−1 AVw(t) = Dw(t).

Now: n decoupled IVPs (with w0 = V−1y0) → Solve as in scalar
case.
Find y(t) = Vw(t).

When is this stable?

When Reλi 6 0 for all eigenvalues λi .

Euler’s Method

Discretize the IVP {
y′(t) = f(y)
y(t0) = y0

I Discrete times: t1, t2, . . ., with ti+1 = ti + h

I Discrete function values: yk ≈ y(tk).

Idea: Rewrite the IVP in integral form:

y(t) = y0 +

∫ t

t0

f(y(τ))dτ,

then throw a simple quadrature rule at that. With the rectangle rule,
we obtain Euler’s method.

Euler’s method: Forward and Backward

y(t) = y0 +

∫ t

t0

f(y(τ))dτ,

Use ‘left rectangle rule’ on integral:

yk+1 = yk + hf(yk)

Time advancement requires evaluating the RHS. A method like that
is called explicit. This method is called Forward Euler.

Use ‘right rectangle rule’ on integral:

yk+1 = yk + hf(yk+1)

Time advancement requires solving a system of equations. A method
like that is called implicit. This method is called Backward Euler.

Demo: Forward Euler stability

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Forward Euler stability.ipynb

Global and Local Error

local error global error

Let uk(t) be the function that solves the ODE with the initial condition
uk(tk) = yk .

Define the local error at step k as. . .

`k = yk − uk−1(tk)

Define the global error at step k as. . .

gk = y(tk)− yk

About Local and Global Error

Is global error =
∑

local errors?

No.
Consider an analogy with interest rates–at any given moment, you
receive 5% interest (∼ incur 5%error) on your current balance.
But your current balance includes prior interest (error from prior
steps), which yields more interest (in turn contributes to the error).

This contribution to the error is called propagated error.
The local error is much easier to estimate → will focus on that.

A time integrator is said to be accurate of order p if. . .

`k = O(hp+1)

ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if `k = O(hp+1)

This requirement is one order higher than one might expect–why?

A: To get to time 1, at least 1/h steps need to be taken, so that the
global error is roughly

1
h︸︷︷︸

#steps

·O(hp+1) = O(hp).

(Note that this ignores ‘accrual’ of propagated error.)

Stability of a Method
Find out when forward Euler is stable when applied to y ′(t) = λy(t).

yk = yk−1 + hλyk−1

= (1 + hλ)yk−1

= (1 + hλ)ky0

So: stable ⇔ |1 + hλ| 6 1.
|1 + hλ| is also called the amplification factor.
Gives rise to the stability region in the complex plane:

Stability: Systems

What about stability for systems, i.e.

y′(t) = Ay(t)?

1. Diagonalize system as before
2. Notice that same V also diagonalizes the time stepper
3. apply scalar analysis to components.
→ Stable if |1 + hλi | 6 1 for all eigenvalues λi .

Stability: Nonlinear ODEs

What about stability for nonlinear systems, i.e.

y′(t) = f(y(t))?

Consider perturbation e(t) = y(t)− ŷ(t). Linearize:

e′(t) = f(y(t))− f(ŷ(t)) ≈ Jf(y(t))e(t)

I.e. can (at least locally) apply analysis for linear systems to the
nonlinear case.

Stability for Backward Euler
Find out when backward Euler is stable when applied to y ′(t) = λy(t).

yk = yk−1 + hλyk

yk(1− hλ) = yk−1

yk =
1

1− hλ
yk−1 =

(
1

1− hλ

)k

y0.

So: stable ⇔ |1− hλ| > 1.

In particular: stable for any h if <λ ≤ 0 (“unconditionally stable”).

BE can be stable even when ODE is unstable. (Reλ > 0). Accuracy?
I Explicit methods: main concern in choosing h is stability (but

also accuracy).
I Implicit methods: main concern in chosing h is accuracy.

Demo: Backward Euler stability

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Backward Euler stability.ipynb

Stiff ODEs: Demo

Demo: Stiffness

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Stiffness.ipynb

‘Stiff’ ODEs

I Stiff problems have multiple time scales.
(In the example above: Fast decay, slow evolution.)

I In the case of a stable ODE system

y′(t) = f(y(t)),

stiffness can arise if Jf has eigenvalues of very different magnitude.

Stiffness: Observations

Why not just ‘small’ or ‘large’ magnitude?

Because the discrepancy between time scales is the root of the prob-
lem. If all time scales are similar, then time integration must simply
‘deal with’ that one time scale.
If there are two, then some (usually the fast ones) may be considered
uninteresting.

What is the problem with applying explicit methods to stiff problems?

Fastest time scale governs time step → tiny time step → inefficient.

Stiffness vs. Methods

Phrase this as a conflict between accuracy and stability.

I Accuracy (here: capturing the slow time scale) could be
achieved with large time steps.

I Stability (in explicit methods) demands a small time step.

Can an implicit method take arbitrarily large time steps?

In terms of stability: sure.
In terms of accuracy: no.

Predictor-Corrector Methods

Idea: Obtain intermediate result, improve it (with same or different
method).

For example:
1. Predict with forward Euler: ỹk+1 = yk + hf (yk)

2. Correct with the trapezoidal rule: yk+1 = yk + h
2 (f (yk) + f (ỹk+1)).

This is called Heun’s method.

Runge-Kutta/‘Single-step’/‘Multi-Stage’ Methods
Idea: Compute intermediate ‘stage values’:

r1 = f (tk + c1h, yk + (a11 · r1 + · · ·+ a1s · rs)h)
...

...
rs = f (tk + csh, yk + (as1 · r1 + · · ·+ ass · rs)h)

Then compute the new state from those:

yk+1 = yk + (b1 · r1 + · · ·+ bs · rs)h

Can summarize in a Butcher tableau:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

Runge-Kutta: Properties
When is an RK method explicit?

If the diagonal entries in the Butcher tableau and everything above
it are zero.

When is it implicit?

(Otherwise)

When is it diagonally implicit? (And what does that mean?)

If the everything above the diagonal entries in the Butcher tableau is
zero.
This means that one can solve for one stage value at a time (and not
multiple).

Heun and Butcher

Stuff Heun’s method into a Butcher tableau:
1. ỹk+1 = yk + hf (yk)

2. yk+1 = yk + h
2 (f (yk) + f (ỹk+1)).

0
1 1

1
2

1
2

What is RK4?

(See Wikipedia page, note similarity to Simpson’s rule.)

Demo: Dissipation in Runge-Kutta Methods

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Dissipation in Runge-Kutta Methods.ipynb

Multi-step/Single-stage/Adams Methods/Backward Differencing
Formulas (BDFs)

Idea: Instead of computing stage values, use history (of either values of f
or y–or both):

yk+1 =
M∑
i=1

αiyk+1−i + h
N∑
i=1

βi f (yk+1−i)

Extensions to implicit possible.
Method relies on existence of history. What if there isn’t any? (Such as at
the start of time integration?)

These methods are not self-starting.
Need another method to produce enough history.

Stability Regions

Why does the idea of stability regions still apply to more complex time
integrators (e.g. RK?)

As long as the method doesn’t “treat individual vector entries spe-
cially”, a matrix that diagonalizes the ODE also diagonalizes the time
integrator.
⇒ Can consider stability one eigenvalue at a time.

Demo: Stability regions

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/ivp_odes/Stability regions.ipynb

More Advanced Methods

Discuss:
I What is a good cost

metric for time
integrators?

I AB3 vs RK4
I Runge-Kutta-Chebyshev
I LSERK and AB34
I IMEX and multi-rate
I Parallel-in-time

(“Parareal”) 4 2 0
Re h

2

0

2

Im

h

ab3
ab34
lserk
rk4

https://doi.org/10.1016/S0168-9274(99)00141-5
https://arxiv.org/abs/1805.06607
https://doi.org/10.1007/978-3-642-56118-4_12

In-Class Activity: Initial Value Problems

In-class activity: Initial Value Problems

https://relate.cs.illinois.edu/course/cs450-s19//flow/inclass-ivp/start

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

BVP Problem Setup: Second Order

Example: Second-order linear ODE

u′′(x) + p(x)u′(x) + q(x)u(x) = r(x)

with boundary conditions (‘BCs’) at a:
I Dirichlet u(a) = ua
I or Neumann u′(a) = va
I or Robin αu(a) + βu′(a) = wa

and the same choices for the BC at b.

Note: BVPs in time are rare in applications, hence x (not t) is typically
used for the independent variable.

BVP Problem Setup: General Case
ODE:

y′(x) = f(y(x)) f : Rn → Rn

BCs:
g(y(a), y(b)) = 0 g : R2n → Rn

(Recall the rewriting procedure to first-order for any-order ODEs.)

Does a first-order, scalar BVP make sense?

No–need second order (or n > 2) to allow two boundary conditions.

Example: Linear BCs
Bay(a) + Bby(b) = c

Is this Dirichlet/Neumann/. . . ?

Could be any–we’re in the system case, and Ba and Bb are matrices–
so conditions could be ony any component.

Does a solution even exist? How sensitive are they?
General case is harder than root finding, and we couldn’t say much there.
→ Only consider linear BVP.

(∗)
{

y′(x) = A(x)y(x) + b(x)
Bay(a) + Bby(b) = c

To solve that, consider homogeneous IVP

y′i (x) = A(x)yi (x)

with initial condition
yi (a) = ei .

Note: y 6= yi. ei is the ith unit vector. With that, build the fundamental
solution matrix

Y (x) =

 | |
y1 · · · yn
| |

ODE Systems: Existence
Let

Q := BaY (a) + BbY (b)

Then (∗) has a unique solution if and only if Q is invertible. Solve to find
coefficients:

Qα = c

Then Y (x)α solves (∗) with b(x) = 0.

Define Φ(x) := Y (x)Q−1. So Φ(x)c solves (∗) with b(x) = 0.
Define Green’s function

G (x , y) :=

{
Φ(x)BaΦ(a)Φ−1(y) y 6 x ,

−Φ(x)BbΦ(b)Φ−1(y) y > x .

Then

y(x) = Φ(x)c +

∫ b

a
G (x , y)b(y)dy .

Can verify that this solves (∗) by plug’n’chug.

ODE Systems: Conditioning

For perturbed problem with b(x) + ∆b(x) and c + ∆c:

‖∆y‖∞ 6 max (‖Φ‖∞ , ‖G‖∞)

(
‖∆c‖1 +

∫
‖∆b(y)‖1 dy

)
.

I Did not prove uniqueness. (But true.)
I Also get continuous dependence on data.

Shooting Method
Idea: Want to make use of the fact that we can already solve IVPs.
Problem: Don’t know all left BCs.

Demo: Shooting method

What about systems?

No problem–cannons are aimed in 2D as well. :)

What are some downsides of this method?

I Can fail
I Can be unstable even if ODE is stable

What’s an alternative approach?

Set up a big linear system.

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/bvp_odes/Shooting method.ipynb

Finite Difference Method

Idea: Replace u′ and u′′ with finite differences.
For example: second-order centered

u′(x) =
u(x + h)− u(x − h)

2h
+ O(h2)

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+ O(h2)

Demo: Finite differences

What happens for a nonlinear ODE?

Get a nonlinear system→Use Newton.

Demo: Sparse matrices

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/bvp_odes/Finite differences.ipynb
https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/bvp_odes/Sparse matrices.ipynb

Collocation Method

(∗)
{

y ′(x) = f (y(x),
g(y(a), y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)

ŷ(x) =
n∑

i=1

αiTi (x)

Want ŷ to be close to solution y . So: plug into (∗).

Problem: ŷ won’t satisfy the ODE at all points at least.
We do not have enough unknowns for that.

2. Idea: Pick n points where we would like (∗) to be satisfied.
→ Get a big (non-)linear system

3. Solve that (LU/Newton)→ done.

Galerkin/Finite Element Method

u′′(x) = f (x), u(a) = u(b) = 0.

Problem with collocation: Big dense matrix.
Idea: Use piecewise basis. Maybe it’ll be sparse.

"hat functions"

one "finite element"

What’s the problem with that?

u′ does not exist. (at least at a few points where it’s discontinuous)
u′′ really does not exist.

Weak solutions/Weighted Residual Method
Idea: Enforce a ‘weaker’ version of the ODE.

Compute ‘moments’:∫ b

a
u′′(x)ψ(x)dx =

∫ b

a
f (x)ψ(x)dx

Require that this holds for some test functions ψ from some set W .
Now possible to get rid of (undefined) second derivative using inte-
gration by parts:∫ b

a
u′′(x)ψ(x)dx = [u′(x)ψ(x)]ba −

∫ b

a
u′(x)ψ′(x)dx .

I Also called weighted residual methods.
I Can view collocation as a type of WR method with
ψj(x) = δ(x − xj)

Galerkin: Choices in Weak Solutions

Make some choices:
I Solve for u ∈ span {hat functions ϕi}
I Choose ψ ∈W = span {hat functions ϕi} with ψ(a) = ψ(b) = 0.
→ Kills boundary term [u′(x)ψ(x)]ba .

These choices are called the Galerkin method. Also works with other bases.

Discrete Galerkin
Assemble a matrix for the Galerkin method.

−
∫ b

a
u′(x)ψ′(x)dx =

∫ b

a
f (x)ψ(x)dx

−
∫ b

a

 n∑
j=1

αjϕ
′
j(x)

ψ′(x)dx =

∫ b

a
f (x)ψ(x)dx

−
n∑

j=1

αj

∫ b

a
ϕ′j(x)ϕ′i (x)dx︸ ︷︷ ︸

Sij

=

∫ b

a
f (x)ϕi (x)dx︸ ︷︷ ︸

ri

Sα = r.

Now: Compute S , solve sparse (!) linear system.

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra
Sparse Linear Algebra
PDEs

Fast Fourier Transform

Additional Topics

Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?
I CS555 → Numerical Methods for PDEs
I CS556 → Iterative and Multigrid Methods
I CS554 → Parallel Numerical Algorithms

We would love to see you there! :)

Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don’t factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In”

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Sparse Matrix Factorizations and ``Fill-In''.ipynb

‘Stationary’ Iterative Methods
Idea: Invert only part of the matrix in each iteration. Split

A = M − N,

where M is the part that we are actually inverting. Convergence?

Ax = b
Mx = Nx + b

Mxk+1 = Nxk + b
xk+1 = M−1(Nxk + b)

I These methods are called stationary because they do the same
thing in every iteration.

I They carry out fixed point iteration.
→ Converge if contractive, i.e. ρ(M−1N) < 1.

I Choose M so that it’s easy to invert.

Choices in Stationary Iterative Methods

What could we choose for M (so that it’s easy to invert)?

Name M N

Jacobi D −(L + U)
Gauss-Seidel D + L −U
SOR 1

ωD + L
(1
ω − 1

)
D − U

where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Stationary Methods.ipynb

Conjugate Gradient Method

Assume A is symmetric positive definite.
Idea: View solving Ax = b as an optimization problem.

Minimize ϕ(x) =
1
2
xTAx− xTb ⇔ Solve Ax = b.

Observe −∇ϕ(x) = b− Ax = r (residual).

Use an iterative procedure (sk is the search direction):

x0 = 〈starting vector〉
xk+1 = xk + αksk ,

CG: Choosing the Step Size
What should we choose for αk (assuming we know sk)?

0 !
=

∂

∂α
ϕ(xk + αksk)

= ∇ϕ(xk+1) · sk = rk+1 · sk .

Learned: Choose α so that next residual is ⊥ to current search direc-
tion.

rk+1 = rk + αkAsk

0 !
= sTk rk+1 = sTk rk + αksTk Ask

Solve:

αk =
sTk rk
sTk Ask

= −
sTk Aek
sTk Ask

, (∗)

where ek = xk − x∗ and rk = −Aek .

CG: Choosing the Search Direction
What should we choose for sk?

Idea: sk = rk = −∇ϕ(xk), i.e. steepest descent. No–still a bad idea.

x, y are called A-orthogonal or conjugate if and only if xTAy = 0.

Better Idea: Require sTi Asj = 0 if i 6= j .

View error as linear combination of search directions, with some (thus
far unknown) coefficients:

e0 = x0 − x∗ =
∑
i

δi si .

I We run out of A-orthogonal directions after n iterations.
I Is the error going to be zero then? If δk = −αk , then yes.

CG: Further Development

sTk Ae0 =
∑
i

δi sTk Asi = δksTk Ask .

Then

δk =
sTk Ae0
sTk Ask

=
skA

(
e0 +

∑k−1
i=1 αi si

)
sTk Ask

=
sTk Aek
sTk Ask

= −αk .

How do we generate the sk?
I Pick a random one to start with. Perhaps r0?
I Generate next one by orthogonalizing from Krylov space

procedure z,Az,A2z
Insight: Use three-term Lanczos iteration to generate. →
cheap!

Demo: Conjugate Gradient Method

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Conjugate Gradient Method.ipynb

Introduction
Notation:

∂

∂x
u = ∂xu = ux .

A PDE (partial differential equation) is an equation with multiple partial
derivatives:

uxx + uyy = 0

Here: solution is a function u(x , y) of two variables.

Examples: Wave propagation, fluid flow, heat diffusion
I Typical: Solve on domain with complicated geometry.

Initial and Boundary Conditions
I Sometimes one variable is time-like.

What makes a variable time-like?
I Causality
I No geometry

Have:
I PDE
I Boundary conditions
I Initial conditions (in t)

Time-Dependent PDEs

Time-dependent PDEs give rise to a steady-state PDE:

ut = f (ux , uy , uxx, uyy) → 0 = f (ux , uy , uxx, uyy)

Idea for time-dep problems (Method of Lines):
I Discretize spatial derivatives first
I Obtain large (semidiscrete) system of ODEs
I Use ODE solver from Chapter 9

Demo: Time-dependent PDEs

https://mybinder.org/v2/gh/inducer/numerics-notes/main?filepath=demos/pdes/Time-dependent PDEs.ipynb

Notation: Laplacian

Laplacian (dimension-independent)

∆u = div grad u = ∇ · (∇u) = uxx + uyy

Classifying PDEs

Three main types of PDEs:
I hyperbolic (wave-like, conserve energy)

I first-order conservation laws: ut + f (u)x = 0
I second-order wave equation: utt = ∆u

I parabolic (heat-like, dissipate energy)
I heat equation: ut = ∆u

I elliptic (steady-state, of heat and wave eq. for example)
I Laplace equation ∆u = 0
I Poisson equation ∆u = f

(Pure BVP, similar to 1D BVPs, same methods apply–FD, Galerkin,
etc.)

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Outline
Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

	Introduction to Scientific Computing
	Notes
	Notes (unfilled, with empty boxes)
	About the Class
	Errors, Conditioning, Accuracy, Stability
	Floating Point

	Systems of Linear Equations
	Theory: Conditioning
	Methods to Solve Systems

	Linear Least Squares
	Introduction
	Sensitivity and Conditioning
	Solving Least Squares

	Eigenvalue Problems
	Properties and Transformations
	Sensitivity
	Computing Eigenvalues
	Krylov Space Methods

	Nonlinear Equations
	Introduction
	Iterative Procedures
	Methods in One Dimension
	Methods in n Dimensions (``Systems of Equations'')

	Optimization
	Introduction
	Methods for unconstrained opt. in one dimension
	Methods for unconstrained opt. in n dimensions
	Nonlinear Least Squares
	Constrained Optimization

	Interpolation
	Introduction
	Methods
	Error Estimation
	Piecewise interpolation, Splines

	Numerical Integration and Differentiation
	Numerical Integration
	Quadrature Methods
	Accuracy and Stability
	Gaussian Quadrature
	Composite Quadrature
	Numerical Differentiation
	Richardson Extrapolation

	Initial Value Problems for ODEs
	Existence, Uniqueness, Conditioning
	Numerical Methods (I)
	Accuracy and Stability
	Stiffness
	Numerical Methods (II)

	Boundary Value Problems for ODEs
	Existence, Uniqueness, Conditioning
	Numerical Methods

	Partial Differential Equations and Sparse Linear Algebra
	Sparse Linear Algebra
	PDEs

	Fast Fourier Transform
	Additional Topics

