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What's the point of this class?

'Scientific Computing describes a family of approaches to obtain
approximate solutions to problems once they've been stated
mathematically.
Name some applications:
» Engineering simulation
» E.g. Drag from flow over airplane wings, behavior of photonic

devices, radar scattering, ...
» — Differential equations (ordinary and partial)

» Machine learning

» — Optimization

» Image and Audio processing
» Enlargement/Filtering
» — Interpolation
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What do we study, and how?

Problems with real numbers (i.e. continuous problems)

» As opposed to discrete problems.

» Including: How can we put a real number into a computer?
(and with what restrictions?)

» Pick a representation (e.g.: a polynomial)

» Existence/uniqueness?



What makes for good numerics?

How good of an answer can we expect to our problem?

- -

» Can't even represent numbers exactly.
» Answers will always be approximate.

» So, it's natural to ask how far off the mark we really are.

_________________________________________________________

» A.k.a. what algorithms do we use?
» What is the cost of those algorithms?

> Are they efficient?
(l.e. do they make good use of available machine time?)



Implementation concerns

How do numerical methods get implemented?

» Like anything in computing: A layer cake of abstractions
(“careful lies")

» What tools/languages are available?
» Are the methods easy to implement?
> If not, how do we make use of existing tools?

» How robust is our implementation? (e.g. for error cases)

_________________________________________________________



Class web page

https://bit.ly/cs450-526

> Assignments

» HW1 (soon!)
» Pre-lecture quizzes
» In-lecture interactive content (bring computer or phone if possible)

Textbook

Exams

Class outline (with links to notes/demos/activities/quizzes)
Discussion forum

Policies

Video
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https://bit.ly/cs450-s26

Programming Language: Python/numpy

vVvVvyVvVvVvVvyyypy

>

Reasonably readable

Reasonably beginner-friendly

Mainstream (top 5 in ‘TIOBE Index’)

Free, open-source

Great tools and libraries (not just) for scientific computing
Python 2/37 3!

numpy: Provides an array datatype
Will use this and matplotlib all the time.

See class web page for learning materials

Demo: Sum the squares of the integers from 0 to 100. First without
numpy, then with numpy.



Supplementary Material

» Numpy (from the SciPy Lectures)

> 100 Numpy Exercises
» Dive into Python3



https://scipy-lectures.github.io/intro/numpy/index.html
https://github.com/rougier/numpy-100
https://diveintopython3.net/

Sources for these Notes

» M.T. Heath, Scientific Computing: An Introductory Survey, Revised
Second Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA. 2018.

» CS 450 Notes by Edgar Solomonik
» Various bits of prior material by Luke Olson

10


https://relate.cs.illinois.edu/course/cs450-f18/

Open Source <3

These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2020 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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https://github.com/inducer/numerics-notes

What problems can we study in the first place?

To be able to compute a solution (through a process that introduces
errors), the problem. ..

» Needs to have a solution
» That solution should be unique

» And depend continuously on the inputs

-_———— -

If it satisfies these criteria, the problem is called well-posed. Otherwise,
ill-posed.

12



Dependency on Inputs

We excluded discontinuous problems—because we don't stand much chance
for those.
... what if the problem’s input dependency is just close to discontinuous?
» We call those problems sensitive to their input data.
Such problems are obviously trickier to deal with than
non-sensitive ones.

» |deally, the computational method will not amplify the
sensitivity

13



Approximation

When does approximation happen?

» Before computation
» modeling
» measurements of input data
» computation of input data
» During computation

» truncation / discretization
» rounding

Demo: Truncation vs Rounding [cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Truncation vs Rounding.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Truncation vs Rounding.ipynb

Example: Surface Area of the Earth

Compute the surface area of the earth.
What parts of your computation are approximate?

All of them.

» What does radius mean if the earth isn't a sphere?

. » Earth isn't really a sphere
' » How do you compute with 77 (By rounding/truncating.)

U UL
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Measuring Error

How do we measure error?
|dea: Consider all error as being added onto the result.

Absolute error = approx value — true value
. Absolute error
Relative error = ——M8MMM—
True value
Problem: True value not known
» Estimate

» ‘How big at worst? — Establish Upper Bounds

16



Recap: Norms

What's a norm?

> f(x):R" — R, returns a ‘magnitude’ of the input vector
» In symbols: Often written || x]].

Define norm.

A function ||x|| : R” — R{ is called a norm if and only if
L ||x]| >0« x #0.
2. ||lyx|| = |v| ||x]| for all scalars ~.
3. Obeys triangle inequality ||x + y|| < ||x|| + ||y

17



Norms: Examples

Examples of norms?

The so-called p-norms:

= ¢/bal?
P

p = 1,2, 00 particularly important

X1

_|_

et al” (p21)

Xn

Demo: Vector Norms [cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Vector Norms.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Vector Norms.ipynb

Norms: Which one?

Does the choice of norm really matter much?

In finitely many dimensions, all norms are equivalent.
l.e. for fixed n and two norms ||-||, |||, there exist a, 3 > 0 so that
for all vectors x € R”

allx| < fIx[I* < Bl

So: No, doesn't matter that much. Will start mattering more for
so-called matrix norms-see later.

In these notes: If we write ||| without any specifics, then the statement is
true for any norm. If a specific norm is needed, the notation will indicate
that.

19



Norms and Errors

If we're computing a vector result, the error is a vector.
That's not a very useful answer to ‘how big is the error’.
What can we do?

Apply a norm!
How? Attempt 1:

Magnitude of error # ||true value|| — ||approximate value||

WRONG! (How does it fail?)
Attempt 2:

= ||true value — approximate value||

20



Forward /Backward Error

Suppose want to compute y = f(x), but approximate y = f(x)

What are the forward error and the backward error?

Forward error: Ay =y —y

Backward error: Imagine all error came from feeding the wrong input
into a fully accurate calculation. Backward error is the difference
between true and ‘wrong’ input. l.e.

~

» Find the X closest to x so that f(X) = y.
> Ax=X—x.

bw. err.

x> é—— X
—+
2
[©]
=
o

21



Forward/Backward Error: Example

Suppose you wanted y = /2 and got j = 1.4.
What's the (magnitude of) the forward error?

Relative forward error:

|Ay|  0.0142...
ly| — 1.41421...

~ 0.01.

|Ay|=[1.4—1.41421.. | ~ 0.0142...

About 1 percent, or two accurate significant digits.
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Forward/Backward Error: Example

Suppose you wanted y = /2 and got y = 1.4.
What's the (magnitude of) the backward error?

Need X so that f(X) = 1.4.
Vv196=14, = X=1.96.

Backward error:
|Ax| = [1.96 — 2| = 0.04.
Relative backward error:

A
M ~ 0.02.

[x]

About 2 percent.




Forward /Backward Error: Observations

What do you observe about the relative magnitude of the relative errors?

» In this case: Got smaller, i.e. variation damped out.

» Typically: Not that lucky: Input error amplified.

result “as good as possible”.

]

1

1

1

. » If backward error is smaller than the input error:

I

1

i This amplification factor seems worth studying in more detail.
[}
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Sensitivity and Conditioning

Consider a more general setting: An input x and its perturbation X.

7

Want: the smallest number &, such that
Iﬂﬂ—fﬁﬂ<ﬁl.h—ﬂ
= re
£ x|
(rel. perturbation in output) < ke - (rel. perturbation in input)

Call this the (relative) condition number. Find it via:

o I = FRI/IFGL
R =R/

» Technically: should use ‘supremum’.

> Must specify set of x, X that are “of interest”.

25



Absolute Condition Number

Can you also define an absolute condition number?

_________________________________________________________

Certainly:
f(x)— f(x
o — e ) = F3)
X,X ’X — X|

But: less commonly used than relative, because we typically care
about relative error.

When not specified: Assume condition number means relative.

26



Interpreting a Condition Number

What does it mean for condition numbers to be small/large?

If the condition number is. . .
» ...small: the problem well-conditioned or insensitive
> . ..large: the problem ill-conditioned or sensitive

Can also talk about condition number for a single input x.

I

27



Example: Condition Number of Evaluating a Function

y = f(x). Assume f differentiable.

A
= max [AY1/ 1Yl

X
x |Ax| / |x]
Forward error:

Ay = f(x + Ax) — f(x) =~ f'(x)Ax

Condition number:

o By Iyl IFCAX] /()] [xF(x)]
~[ax] /x| |Ax| /x| FOl

Demo: Conditioning of Evaluating tan [cleared]

28


https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Conditioning of Evaluating tan.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Conditioning of Evaluating tan.ipynb

Stability and Accuracy

Previously: Considered problems or questions.
Next: Considered methods, i.e. computational approaches to find solutions.
When is a method accurate?
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» “A method is stable if the result it produces is the exact answer
for a nearby input.”

As opposed to: the method's sensitivity to input variation is

]
1
1
1
: » The above is commonly called backward stability.
:
1
! not much worse than the conditioning.

1
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Relevance of Backward Error
What do we gain from a bound on backward error like

It allows a condition number bound of the type

IF(x) = F(X)] [Ix = ]|

S Krel * ————
()l = xll
to do double duty:
» First, it characterizes sensitivity of the ‘true’ problem.

» Second, it characterizes the (forward) stability of the
approximation.

Both use cases were ‘in the air’ when we introduced conditioning.

.

Demo: Backward Stability by Example [cleared]

30


https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Backward Stability by Example.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Backward Stability by Example.ipynb

Getting into Trouble with Accuracy and Stability

How can | produce inaccurate results?

» Apply an inaccurate method

» Apply an unstable method to a well-conditioned problem

-——————— -

» Apply any type of method to an ill-conditioned problem

________________________________________________________

31



Wanted: Real Numbers... in a computer
Computers can represent integers, using bits:

23=1-240-284+1-2241-21 +1.20 = (10111),

How would we represent fractions?

Idea: Keep going down past zero exponent:

23625=1-24+0-2241-224+1-2t4+1.20
+1-27140.27241.273

So: Could store
» a fixed number of bits with exponents > 0
> a fixed number of bits with exponents < 0

This is called fixed-point arithmetic.

32



Fixed-Point Numbers

Suppose we use units of 64 bits, with 32 bits for exponents > 0 and 32 bits
for exponents < 0. What numbers can we represent?

P P[] 27

Smallest: 2732 ~ 10710
Largest: 231 + ... 42732 & 10°

How many ‘digits’ of relative accuracy (think relative rounding error) are
available for the smallest vs. the largest number?

For large numbers: about 19
For small numbers: few or none

Idea: Instead of fixing the location of the 0 exponent, let it float.

33



Floating Point Numbers

Convert 13 = (1101)5 into floating point representation.

13 =23 +22 4 2% = (1.101), - 23

What pieces do you need to store an FP number?

Significand: (1.101)
» Generally: 0 < significand < 2
» Can actually require: 1 < significand < 2 (normalization)

Exponent: 3

34



Floating Point: Implementation, Normalization

Previously: Consider mathematical view of FP. (via example: (1101),)
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?

Idea: Notice that the leading digit (in binary) of the significand is
always one. Call the rest the fraction.

Only store ‘101'. Final storage format:

Fraction: 101 — a fixed number of bits

Exponent: 3 — a (signed!) integer allowing a certain range
Exponent is most often stored as a positive ‘offset’ from a certain
negative number. E.g.

3= -1023 41026
~——— <~

implicit offset  stored

Actually stored: 1026, a positive integer.

35



Implementing Arithmetic

How is floating point addition implemented?
Consider adding a = (1.101), - 2* and b = (1.001), - 271 in a system with
three stored bits (four total) in the significand.

Rough algorithm:
1. Bring both numbers onto a common exponent
2. Do grade-school addition from the front, until you run out of
digits in your system.

3. Round result. :

- e m e — . ————————————————— -

a= 1. o O
b= 0 012t
at+bx~ 1 ol

_________________________________________________________
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Unrepresentable numbers?

Can you think of a somewhat central number that we cannot represent as

Zero. Which is somewhat embarrassing.

Core problem: The implicit 1. It's a great idea, were it not for this
issue.

Have to break the pattern. Idea:

» Declare one exponent ‘special’, and turn off the leading one for
that one.
(say, —1023, a.k.a. stored exponent 0)

» For all larger exponents, the leading one remains in effect.

Bonus Q: With this convention, what is the binary representation of
a zero?

Demo: Picking apart a floating point number [cleared]

37


https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Picking apart a floating point number.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Picking apart a floating point number.ipynb

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored
bits (5 total) in the significand and a stored exponent range of [—7,8]7

First attempt:

» Significand as small as possible — all zeros after the implicit
leading one

» Exponent as small as possible: —7
So:
(1.0000), - 277,

Unfortunately: wrong.

38



Subnormal Numbers, Attempt 2

What is the smallest representable number in an FP system with 4 stored
bits in the significand and a (stored) exponent range of [—7,8]?

_________________________________________________________

» Can go way smaller using the special exponent (turns off the
leading one)

» Assume that the special exponent is —7; interpreted as —6.
» So: (0.0001); - 276 (with four digits after the point stored).

Numbers with the special exponent are called subnormal (or denor-
mal) FP numbers. Technically, zero is also a subnormal.

_________________________________________________________

» Subnormal FP is often slow: not implemented in hardware.

» Many compilers support options to ‘flush subnormals to zero'.

39



Underflow

» FP systems without subnormals will underflow (return 0) as soon as
the exponent range is exhausted.

» This smallest representable normal number is called the underflow
level, or UFL.

» Beyond the underflow level, subnormals provide for gradual underflow
by ‘keeping going’ as long as there are bits in the significand, but it is
important to note that subnormals don’t have as many accurate digits
as normal numbers.

Read a story on the epic battle about gradual underflow

» Analogously (but much more simply—no ‘supernormals’): the overflow
level, OFL.

40


https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

Rounding Modes
Demo: Density of Floating Point Numbers [cleared]

How is rounding performed? (Imagine trying to represent m.)

( 11)

(S —— 2
representable

» “Chop” a.k.a. round-to-zero: ( )2

» Round-to-nearest: ( 1)2 (most accurate)

What is done in case of a tie? 0.5 = (0.1)2 (“Nearest”?)

Up or down? It turns out that picking the same direction every time
introduces bias. Trick: round-to-even.

e e EE——————--
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Density of Floating Point Numbers.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Density of Floating Point Numbers.ipynb

Smallest Numbers Above. . .

» What is smallest FP number > 17 Assume 4 stored bits (5 total) in
the significand.

(1.0001); - 2° = x - (1 + 0.0001);

What's the smallest FP number > 1024 in that same system?

(1.0001); - 2% = x - (1 + 0.0001)

Can we give that number a name?

42



Unit Roundoff

Unit roundoff or machine precision or machine epsilon or €mach is. . .

the smallest (real) number such that float(1+¢) > 1.
» Technically that makes emach depend on the rounding rule.

» Tie-breaking (e.g. round-to-nearest) doesn't matter: any
number € > enach Will push 1 +¢€ > 1.

» For example: Assuming round-to-nearest, in a system with five
bits in the significand, emach = (0.00001)5.

» Another, related, quantity is ULP, or unit in the last place.
For round-to-nearest: (€mach = 0.5 ULP)

43



FP: Relative Rounding Error

What does this say about the relative error incurred in floating point
calculations?

> Since we can't represent any results between x and
x - (14 ULP), half that distance serves as an upper bound on
(absolute) rounding error.

» In terms of relative error: Let X = x(1 + €mach)-

X — X X(1 + emach) — X

X

= = €mach-
X

At least theoretically, emach is the maximum relative error in
any FP operations. (Practical implementations do fall short of
this.)

44



FP:

Machine Epsilon

What's machine epsilon for double-precision floating point with
round-to-nearest? (52 stored bits in the significand, 53 total)

7

2753 ~ 10716
Bonus Q: What does 1 + 2723 do on your computer? Why?

We can expect FP math to consistently introduce little relative errors
of about 10716,
Working in double precision gives you about 16 (decimal) accurate

digits.

.

Demo: Floating point and the Harmonic Series [cleared]

Demo: Floating Point vs Program Logic [cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Floating point and the Harmonic Series.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Floating point and the Harmonic Series.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Floating Point vs Program Logic.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Floating Point vs Program Logic.ipynb

Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude?
As an example, consider a = (1.1011), - 2! and b = (1.1010), - 21.

a= 1. 1011-2!
b= 1. 1010-2!
a— b~ 1?2777 .21

or, once we normalize,
1.72227.273,

There is no data to indicate what the missing digits should be.
— Machine fills them with zero.

This phenomenon is called Catastrophic Cancellation.

\.

Demo: Catastrophic Cancellation [cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Catastrophic Cancellation.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Catastrophic Cancellation.ipynb

Supplementary Material

» Josh Haberman, Floating Point Demystified, Part 1

» David Goldberg, What every computer programmer should know

about floating point
» Evan Wallace, Float Toy

» Julia Evans, Examples of Floating Point Problems, 2022

47


http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://evanw.github.io/float-toy/
https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

Outline

Systems of Linear Equations
Theory: Conditioning
Methods to Solve Systems
LU: Application and Implementation
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Solving a Linear System
Given:
> m X n matrix A
» m-vector b

What are we looking for here, and when are we allowed to ask the
question?

Want: n-vector x so that Ax = b.

» Linear combination of columns of A to yield b.

» Even with that: solution may not exist, or may not be unique.

Unique solution exists iff A is nonsingular.

1
1
1
1
E > Restrict to square case (m = n) for now.
:
1
1
1
|

Next: Want to talk about conditioning of this operation. Need to measure

distances of matrices.
49



Matrix Norms

We need norms to interact with matrix multiplication in a defined way.

Define ||A|| relative to its ‘associated’ vector norm ||-|| to obey
IA[| < [[A]l {|x]

| Ax]]
x|

<Al e HA | <Al

|| =1

This motivates the definition of the induced matrix norm as

Al = max [lAx]

For each vector norm, we get a different matrix norm, e.g. for the
vector 2-norm ||x||, we get a matrix 2-norm ||Al|,.

50



ldentifying Matrix Norms
What is ||All;? [|A]l.?

row i

A, = max Y~ Ayl (Al = max Y |A;l.
colj row i

col j

2-norm? Actually fairly difficult to evaluate. See in a bit.

~

How do matrix and vector norms relate for n x 1 matrices?

max ||Ax|| =
lIxlI=1

They agree. Why? For n x 1, the vector x in Ax is just a scalar:

Ax|| = |A[:, 1
max A = AL 1]

This can help to remember 1- and co-norm.

Demo: Matrix norms [cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Matrix norms.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Matrix norms.ipynb

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:
> Al >0< A#O0.
» ||[vAll = || || Al for all scalars .
» Obeys triangle inequality ||A+ B < ||A|| + || B||

But also some more properties that stem from our definition:

> [|Ax]| < [|A]l [|x]]
> ||AB]| < ||A||||B]| (easy consequence)

Both of these are called submultiplicativity of the matrix norm.

In these notes: If we write ||-|| (for matrix norms) without any specifics,
then the statement is true for any induced norm. If a specific norm is
needed, the notation will indicate that.
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Conditioning

What is the condition number of solving a linear system Ax = b?

Input: b with error Ab,
Output: x with error Ax.

Observe A(x + Ax) = (b+ Ab), so AAx = Ab.

rel err. inoutput  ||Ax| /[|x]| _ [|Ax| ||b]
rel err. ininput  ||Ab||/||b||  ||Ab]|x]
_||Atab|| || Ax||
1A [ x]|
1 [Ab| |||
= [A7] 1Al

A dependency on b would be allowed, but does not emerge.
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Conditioning of Linear Systems: Observations

Showed k(Solve Ax = b) < HA‘IH 1Al

l.e. found an upper bound on the condition number. By finding vectors x
and Ab that attain equality in submultiplicativity, equality in the condition
bound can be achieved for all matrices, i.e. it is sharp.

So we've found the condition number of linear system solving, also called
the condition number of the matrix A:

cond(A) = k(A) = [|A]| |A7H]].
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Conditioning of Linear Systems: More properties

» cond is relative to a given norm. So, to be precise, use
cond, or conds .

> If A~ does not exist: cond(A) = oo by convention.
What is x(A~1)?

[ k(A)

What is the condition number of matrix-vector multiplication?

[ k(A) because it is equivalent to solving with A~L.

Demo: Condition number visualized [cleared]
Demo: Conditioning of 2x2 Matrices [cleared]
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Residual Vector

What is the residual vector of solving the linear system

b = Ax?

It's the thing that's ‘left over’. Suppose our approximate solution is
X. Then the residual vector is

r = b — Ax.
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Residual and Error: Relationship

How do the (norms of the) residual vector r and the error Ax = x — x
relate to one another?

[Ax]| =[x — x| = ||[A1(b— A%)|| = [|A" ||
Divide both sides by ||x||:

jaxi _ At _ 4 el

N RN
P ") 5]

A {1x] — bl
» rel err. < cond -rel. resid

» Given small (rel.) residual, (rel.) error is only (guaranteed to
be) small if the condition number is also small.
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Changing the Matrix

So far, only discussed changing the RHS, i.e. Ax=b — Ax= b.
The matrix consists of FP numbers, too—it, too, is approximate. |.e.

Ax=b — Ax=b.

What can we say about the error due to an approximate matrix?

Consider

Ax =% —x = A Y (A% — b) = A }(Ax — AX) = —A"1AAX.

Thus
[Ax]| < [[A7H 1AA] %] -
And we get
[Ax]| [AA]
—— < cond(A)——.
]l 1Al
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Changing Condition Numbers

Once we have a matrix A in a linear system Ax = b, are we stuck with its
condition number? Or could we improve it?

~

Preconditioning
» Left' preconditioning: MAx = Mb
» Right preconditioning: AMXx = b
Different x: Recover x = Mx.

A typical case: use diagonal matrix as the preconditioner. What is the
effect in each case?

» Row-wise scaling: DAx = Db

» Column-wise scaling: ADx = b
Different Xx: Recover x = DX.
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Recap: Orthogonal Matrices

What's an orthogonal (=orthonormal) matrix?

[ One that satisfies QT Q =/ and QQRT = I.

How do orthogonal matrices interact with the 2-norm?

Qv = (Qv)T(Qv) =vT QTQv =v"v =|v|3.
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Singular Value Decomposition (SVD)

What is the Singular Value Decomposition of an m x n matrix?

A=UzVT,

with
» U is m x m and orthogonal
Columns called the left singular vectors.
» ¥ = diag(oj) is m x n and non-negative
Typlca”y 01 Z g2 Z tte 2 o-min(m,n) 2 0
Called the singular values.

» Vis n x n and orthogonal
Columns called the right singular vectors.

Existence, Computation: Not yet, later.
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Computing the 2-Norm

Using the SVD of A, identify the 2-norm.

A=UXVT with U, V orthogonal.

» 2-norm satisfies || QB||, = ||BJ|, = |[|BQ)||, for any matrix B
and orthogonal Q.

> So [|Ally = [[%ll; = omax

Express the matrix condition number cond;(A) in terms of the SVD:

» A~! has singular values 1/0;.
> condz(A) = [|All, [|A7Y||, = Tmax/Tmin
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Not an Induced Norm: Frobenius
The 2-norm is very costly to compute. Can we make something simpler?

m n
2.2 laif?

i=1 j=1

1AllF =

is called the Frobenius norm.

. 7

What about its properties?

Satisfies the mat. norm properties.
» definiteness
> scaling
> triangle inequality
» submultiplicativity (proof via Cauchy-Schwarz)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
|




Frobenius Norm: Properties

Is the Frobenius norm induced by any vector norm?

Can't bel What's ||/||z? What's ||/|| for an induced norm?

How does it relate to the SVD?

IAllF =

(Proof?)
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Solving Systems: Simple cases
Solve Dx = b if D is diagonal. (Computational cost?)

Xj = b,'/D,',' with cost O(n)

Solve @x = b if Q is orthogonal. (Computational cost?)

x = QT b with cost O(n?).

.

Given SVD A= UZ VT, solve Ax = b. (Computational cost?)

» Compute z=UTh
» Solve Yy =z
» Compute x = Vx
Cost: O(n?) to solve, and O(n3) to compute SVD.
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Solving

Solve

Systems: Triangular matrices
a1 a2 d13 di4 X by
ax ax au| |y| _ |b2
a3 amu| |z b3
as| (w by

» Rewrite as individual equations.
» This process is called back-substitution.

» The analogous process for lower triangular matrices is called
forward substitution.

Demo: Coding back-substitution [cleared]

What about non-triangular matrices?

[ Can do Gaussian Elimination, just like in linear algebra class.



https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_systems/Coding back-substitution.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_systems/Coding back-substitution.ipynb

Gaussian Elimination

Demo: Vanilla Gaussian Elimination [cleared]
What do we get by doing Gaussian Elimination?

Row Echelon Form.

How is that different from being upper triangular?

» REF reveals the rank of the matrix.
» REF can take “multiple column-steps” to the right per row.

What if we do not just eliminate downward but also upward?

That's called Gauss-Jordan elimination. Turns out to be computa-
tionally inefficient. We won't look at it.
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LU Factorization

What is the LU factorization?

A factorization A = LU with:
» [ lower triangular, unit diagonal
» U upper triangular

Existence? Good question — will answer later.
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Solving Ax = b

Does LU help solve Ax = b?

Ax =
L Ux =
<~
y
Ly =
Ux =

b
b
b <«
y <+

Now know x that solves Ax = b.

solvable by fwd. subst.
solvable by bwd. subst.
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Determining an LU factorization

Or, written differently:

u11 Usz}

Ux

o ] Lo ]
£ Lo a Ax

» Clear: u11 = a1, U1T2 = 31T2-

> ay; = u1fo1, or €21 = azi/ui1.

a1 aj, _ | n Unn Uiz
ay Ap Lr1 L Up |-

> Axp = loruf, + LaoUn, or LapUxp = Axy — £r1uf,.

Demo: LU Factorization [cleared]
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Computational Cost

What is the computational cost of multiplying two n x n matrices?

o(n®)

T T
> U1 = a1, Uy = ay,.

> fo1 = an/ui1.
> LyUxp = Axp — €nuf,.

What is the computational cost of carrying out LU factorization on an
n X n matrix?

O(n?) for each step, n — 1 of those steps: O(n3).

Demo: Complexity of Mat-Mat multiplication and LU [cleared]
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LU: Failure Cases?
Is LU/Gaussian Elimination bulletproof?

Not bulletproof:
01
!
Q: Is this a problem with the process or with the entire idea of LU?
|:U11 Ulz]
Uz

b 3] -

It turns out to be that A doesn’t have an LU factorization.
LU has exactly one failure mode: the division when u1; = 0.

u11 - b1 +1-0=2
——
0




Saving the LU Factorization
What can be done to get something like an LU factorization?

_________________________________________________________

Idea from linear algebra class: In Gaussian elimination, simply swap
rows, equivalent linear system.

» Good idea: Swap rows if there's a zero in the way

» Even better idea: Find the largest entry (by absolute value),
swap it to the top row.

The entry we divide by is called the pivot.
» Swapping rows to get a bigger pivot is called partial pivoting.

» Swapping rows and columns to get an even bigger pivot is
called complete pivoting. (downside: additional O(n?) cost per
step to find the pivot!)

Demo: LU Factorization with Partial Pivoting [cleared]
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Cholesky: LU for Symmetric Positive Definite
LU can be used for SPD matrices. But can we do better?

Cholesky factorization: A = LLT, ie. like LU, but using LT for U.
[511 } [ﬁn Ele] _ [311 327—1]
b1 L 1L ay Ax|’

6%1 = a1, then (11€51 = ap;, i.e. €o1 = a1 /¢11. Finally,
18]+ Loldy, = Axp, or

Lool)y = A —£€xl];.

» Fails if a11 is negative at any point. (= A not SPSemiD)
> If a1; zero: A is positive semidefinite.

» Cheaper than LU: no pivoting, only one factor to compute!
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More cost concerns
What's the cost of solving Ax = b?

LU: O(n®)
FW/BW Subst: 2 x O(n?) = O(n?)

What's the cost of solving Ax = by, bs, ..., b,?

LU: O(n3)
FW/BW Subst: 2n x O(n?) = O(n%)

What's the cost of finding A=1?

Same as solving
AX =,

so still O(n3).
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Cost: Worrying about the Constant, BLAS
O(n®) really means
a-nm+B-n+y-n+4.
All the non-leading and constants terms swept under the rug. But: at least
the leading constant ultimately matters.

Shrinking the constant: surprisingly hard (even for 'just’ matmul)

|dea: Rely on library implementation: BLAS (Fortran)
Levell z=ax+y vector-vector operations
O(n)
?7axpy
Level 2 z=Ax+y matrix-vector operations
0O(n?)
?gemv
Level 3 C = AB+ 8C matrix-matrix operations
o(n®)
7gemm, 7trsm
Demo: BLAS Level 2 vs Level 3 [cleared]
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LAPACK

LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.

» banded
P sparse
P> symmetric

> triangular

Sample routine names:
» dgesvd, zgesdd
» dgetrf, dgetrs
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LU on Blocks: The Schur Complement

A B |b;
C D|by |’

can we do ‘block Gaussian elimination’ to get a block triangular matrix?

Given a linear system

7

Multiply the top row by —CA™!, add to second row, gives:

{A B

by
0 D—CA'B|b,— CAlb ] ’

» D — CA 1B is called the Schur complement.
» Block pivoting is also possible if needed.
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LU: Special cases

What happens if we feed a non-invertible matrix to LU?

PA=LU

(invertible, not invertible) (Why?)

What happens if we feed LU an m X n non-square matrix?

Think carefully about sizes of factors and columns/rows that do/don’t
matter. Two cases:

» m > n (tall&skinny): L:mxn, U:nxn
» m < n (short&fat): L:mxm, U:mxn

This is called reduced LU factorization.
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Round-off Error in LU without Pivoting

. . e 1
Consider factorization of [ } where € < €mach:

11

_ o 1 0 € 1
> L= -
Without pivoting: L [1/6 ] U [O 1— 1/6:|

> Rounding: fl(U)) = [8 —i/J

» This leads to Lfl(VU)) = [; (ﬂ a backward error of {O

0
01

|
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Round-off Error in LU with Pivoting

Permuting the rows of A in partial pivoting gives PA = [i ﬂ

7

10 1 1
> pr— pr—
We now compute L [e ] U [O 1_ J, so
11
-]
1

» This leads to Lfl(U) = [1 14

b

E], a backward error of




Changing matrices

Seen: LU cheap to re-solve if RHS changes. (Able to keep the expensive
bit, the LU factorization) What if the matrix changes?

Special cases allow something to be done (a so-called rank-one up-
date):

A=A+uv’
The Sherman-Morrison formula gives us
A luvT AL
A Nttt —— &
(A+uv?) 1+viA-1lu

Proof: Multiply the above by A get the identity.
FYI: There is a rank-k analog called the Sherman-Morrison-Woodbury
formula.

Demo: Sherman-Morrison [cleared]
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Outline

Linear Least Squares
Introduction
Sensitivity and Conditioning
Solving Least Squares
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What about non-square systems?

Specifically, what about linear systems with ‘tall and skinny’ matrices? (A:
m x n with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?

[ Not really: more equations than unknowns. ]
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Example: Data Fitting

Have data: (x;, y;) and model:
y(x) = a+ Bx +yx°

Find data that (best) fit model!
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Data Fitting Continued

atBxa+yi = n

a+ Bxn+ Y2 = yn

Not going to happen for n > 3. Instead:
2
lo+ Bxt + x4 — |

2 .
}a + Bxn +7x,3 —y,,‘ —  min!

— Least Squares
This is called linear least squares specifically because the coefficients

x enter linearly into the residual.
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Rewriting Data Fitting

Rewrite in matrix form.

|Ax — b||3 — min!

with
1 x X2 @
A= ] X = /B ) b =
1 x, x2 g

> Easy to generalize to higher polynomial degrees.

Y1

Yn

» Matrices like A are called Vandermonde matrices.
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Least Squares: The Problem In Matrix Form

|Ax — b||3 — min!

is cumbersome to write.
Invent new notation, defined to be equivalent:

Ax = b

NOTE:
» Data Fitting is one example where LSQ problems arise.

» Many other application lead to Ax = b, with different matrices.
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Data Fitting: Nonlinearity
Give an example of a nonlinear data fitting problem.
2 2
lexp(a) + Bx1 + Xt — 1|

2 .
lexp(a) + Bxn + X3 — ya|” — min!

But that would be easy to remedy: Do linear least squares with exp(«a) as
the unknown. More difficult:

2
|oz + exp(Bx1 +7x12) — yl‘

‘a—i—exp(ﬁx,,—k’yx,%)—yn‘z —  min!

Demo: Interactive Polynomial Fit [cleared]
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Properties of Least-Squares
Consider LSQ problem Ax =2 b and its associated objective function
o(x)=||b— Ax||§. Assume A has full rank. Does this always have a
solution?

Yes. ¢ >0, ¢ — 00 as ||x|| = oo, ¢ continuous = has a minimum.

Is it always unique?

Yes. (again assuming full rank)

What happens if A does not have full rank?

There's a nullspace, i.e. a n with An = 0. If x is a solution,
b — A(x + nm)||_ [[b — Ax||,.
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Least-Squares: Finding a Solution by Minimization

Examine the objective function, find its minimum.

o(x) = (b-— Ax)T(b — Ax)
b"b—2xTATh+ xT AT Ax
Vo(x) = —2ATbhb+2AT Ax

V(x) = 0 yields AT Ax = AT b. Called the normal equations.
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Least squares: Demos

Demo: Polynomial fitting with the normal equations [cleared]

What's the shape of AT A?

Always square.

Demo: Issues with the normal equations [cleared]
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Least Squares, Viewed Geometrically

b 7 V= - Ax

[:}
Yy~ kx

qm(A)

Why is r L span(A) a good thing to require?

Because then the distance between y = Ax and b is minimal.

Q: Why?

Because of Pythagoras's theorem. Suppose you had another r; claim-
ing to minimize ||ra|l,. Then ||r2]|5 = ||r|l5+ ||z]|5 with z € span(A)
and ||z|[, > 0, i.e. ||r2]|, can’t be minimal.
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Least Squares, Viewed Geometrically (II)

b & V= o Ax
L
Y= hx

grm(A)

Phrase the Pythagoras observation as an equation.

span(A) L b— Ax
ATb—ATAx = 0

Congratulations: Just rediscovered the normal equations.

.

Write that with an orthogonal projection matrix P.

Ax = Pb.




About Orthogonal Projectors

What is a projector?

A matrix satisfying P? = P.

\.

What is an orthogonal projector?

7

A symmetric projector.

\.

How do | make one projecting onto span{qy, q>,. .

q;?

,q,} for orthonormal

First define Q =[q; q» - q,]. Then

QQ"

will project and is obviously symmetric.
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Least Squares and Orthogonal Projection

Check that P = A(ATA)~1AT is an orthogonal projector onto colspan(A).

P2 = AATATTATAATA)TAT = A(ATA) AT = P
Symmetry: also yes.

Onto colspan(A): Last matrix is A — result of Px must be in
colspan(A).

Conclusion: P is the projector from the previous slide!

N\

What assumptions do we need to define the P from the last question?

[ AT A has full rank (i.e. is invertible).
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Pseudoinverse
What is the pseudoinverse of A?

Nonsquare m x n matrix A (with m > n) has no inverse in usual
sense.

If rank(A) = n, pseudoinverse is At = (ATA)"'AT. (colspan-
projector with final A missing)

Define the condition number of a tall-and-skinny matrix.

conda(A) = [|All, | AT},

If not full rank, cond(A) = oo by convention.

What does all this have to do with solving least squares problems?

[ x = AT b solves Ax = b.

),




Sensitivity and Conditioning of Least Squares

= b~ Ax

]
Yy~ hx

gr»n(A)

Relate ||Ax|| and b with 6 via trig functions.

lAxd,
*s0) = g,
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Sensitivity and Conditioning of Least Squares (II)

Derive a conditioning bound for the least squares problem.

||AX||2 HA+H ||Ab||2
TR T
_ FG(A) HAJFH ||b||2 HAsz
NGRS
16, 112b], Ibll, [1Ab],
= k(A <k .
ATaL I 180, = Tax], T8,
~——
1/ cos@

Recall x = ATh. Also Ax = AT Ab. Take norms, divide by ||x||,:

What values of § are bad?

b L colspan(A), i.e. 0 ~ m/2.
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Sensitivity and Conditioning of Least Squares (Ill)

Any comments regarding dependencies?

Unlike for Ax = b, the sensitivity of least squares solution depends
on both A and b.

What about changes in the matrix?

[Ax]; i [AA]],
11 1Al -
Two behaviors:
» If tan(#) ~ 0, condition number is cond(A).
» Otherwise, cond(A)?tan(6).

_________________________________________________________

< [cond(A)?tan(8) 4 cond(A)]



Transforming Least Squares to Upper Triangular

Suppose we have A = QR, with Q square and orthogonal, and R upper
triangular. This is called a QR factorization.

How do we transform the least squares problem Ax =2 b to one with an
upper triangular matrix?

|Ax — b||,
~[ertane o),
e,
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Simpler Problems: Triangular

What do we win from transforming a least-squares system to upper
triangular form?

R x> [ (G2l |

How would we minimize the residual norm?

For the residual vector r, we find

‘ 2
2

Riop is invertible, so we can find x to zero out the first term, leaving

1713 = ||(QT Bep — Reopx| + (@7 B)ooteom

1713 = [[(@7 BYboteom .
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Computing QR

» Gram-Schmidt
» Householder Reflectors
» Givens Rotations

Demo: Gram-Schmidt-The Movie [cleared] (shows modified G-S)
Demo: Gram-Schmidt and Modified Gram-Schmidt [cleared]

Demo: Keeping track of coefficients in Gram-Schmidt [cleared]

Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision
arithmetic because of roundoff.

NOTE: Textbook makes further modification to ‘modified’ Gram-Schmidt:
» Orthogonalize subsequent rather than preceding vectors.
» Numerically: no difference, but sometimes algorithmically helpful.
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Keeping track of coefficients in Gram-Schmidt.ipynb

Economical /Reduced QR

Is QR with square Q for A € R™*" with m > n efficient?

No. Can obtain economical or reduced QR with @ € R™*" and
R € R"™"  Least squares solution process works unmodified with
the economical form, though the equivalence proof relies on the 'full’
form.
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Computing QR: A Better Approach

Propose an alternate construction principle for a QR factorization.

» Suppose an orth. @1 so that Q;A has some nonzeros.
» Suppose an orth. @» so that Q> Q1A has even more nonzeros.
> ..

» Suppose an orth. @, so that @, - @ @1 A = R is upper
triangular.

Then
> A=Q --- QTR is a QR factorization.
» Because k2(Q;) = 1, no undue loss of accuracy can take place.

Next: Look for a way to construct the orthogonal Q;. Geometrically,
orthogonal matricesperform reflections and rotations.




Constructing Reflections

Given a plane represented by its (unit) normal vector n, construct a

reflection about that plane.

7~

n, with ||n|j2=1
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Householder Transformations
Find an orthogonal matrix @ to zero out the lower part of a vector a.

a-lete
! -

AN

Nall g,

Orthogonality in figure: (a — ||a||, e1)-(a + |||, e1) = ||al|3— | a])3.

Let's call v = a — ||a|l,e;. How do we reflect about the plane
orthogonal to v? Project-and-keep-going:

This is called a Householder reflector.




Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):
Ha =+ |a|, e;.

Remarks:

> Q: What if we want to zero out only the i + 1th through nth entry?
A: Use e; above.

> It turns out v/ = a + ||al|, e1 works out, too—just pick whichever one
causes less cancellation.

» H is symmetric
» H is orthogonal

Demo: 3x3 Householder demo [cleared]
Demo: Householder in 3D [cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/Householder in 3D.ipynb

Givens Rotations

If reflections work, can we make rotations work, too?

\

2 4 92
a7+ a;
0

INE

where ¢ = a1/ ||a||, and s = 2,/ ||a||,, with a = [a1, 2] .

Downside? Produces only one zero at a time.

Demo: 3x3 Givens demo [cleared]

109


https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/linear_least_squares/3x3 Givens demo.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/linear_least_squares/3x3 Givens demo.ipynb

Givens Rotations: Elimination Order

Given a matrix
ailr a a3
A= |axn ax ax3]|,

431 d32 4as3

in what order can we apply Givens rotations to eliminate the nonzeros
below the diagonal?

G32G21G31A = R,

where Gj; is the Givens rotation that zeros out the entry at row i,
column j of the matrix preceding it. (NB: not of A, as the entries
change as soon as other Givens rotations are applied.)
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Rank-Deficient Matrices and QR

What happens with QR for rank-deficient matrices?

_________________________________________________________

A = QR, where R has some zero diagonal entries, in undetermined
order.

Practically, it makes sense to ask for all these ‘small’ columns to be
gathered near the ‘right’ of R — Column pivoting.

Q: What does the resulting factorization look like?

* * *
AP = Q@ (small)  (small)
(smaller)
Also used as the basis for rank-revealing QR.

E AP = QR
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Rank-Deficient Matrices and Least-Squares

What happens with Least Squares for rank-deficient matrices?

Ax = b

» QR still finds a solution with minimal residual
But: need to deal with zeros on diagonal in R

» But: No longer unique. x + n for n € N(A) has the same
residual.

» |n other words: Have more freedom
Or: Can demand another condition, for example:
> Minimize ||b — Ax||3, and
0 o g 2 o
> minimize ||x||5, simultaneously.
Unfortunately, QR does not help much with that — Need
better tool, the SVD A= UXVT. Let's learn more about it.




SVD: Reduced and Full

For a matrix of shape m x n with m > n, what are the shapes of the
factors in the SVD?

Again, there is the full version of the factorization:
» U. mxm
> 3. mxn
> V:.nxn
and the economical /reduced version:
> U:. mxn
> Y:nxn
> V:nxn

—— e m o mm————————————-—-
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SVD: What's this thing good for? (1)

Recall: ||All, = o1

Recall: condz(A) = 01/0,

Nullspace N(A) = span({v; : o; = 0}).

rank(A) = #{i : 0; # 0}

Computing rank in the presence of round-off error is laughably
non-robust. More robust:

vvvyyy

» Numerical rank:

rank. = #{i : 0; > ¢}
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SVD: What's this thing good for? (II)

» Low-rank Approximation

Theorem (Eckart-Young-Mirsky)
If k < r =rank(A) and

k
_ T
A = E ojujv; , then
i=1

in [JA=Bl,=[A- A, =

n
in A= Bll; = | A— Adlly = 2,
amin_ A= Bl = A= Al j:;laj

Demo: Image compression [cleared]
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SVD: What's this thing good for? (I1)

» The minimum norm solution to Ax = b:

ULV'x =~ b
sYVix 2 U'h
~——
y
sy ~ U'h
Then define
Y =diag(of,...,00),

where ¥t is n x mif Ais m x n, and

+_ {1/0,- o # 0,

o; -
0 o; = 0.




SVD: Minimum-Norm, Pseudoinverse

What is the minimum 2-norm solution to Ax = b and why?

~

(why?)
x=VItuTh

solves the minimum-norm least-squares problem.

Observe ||x|l, = |lyll,, and recall that ||y||, was already minimal.

Generalize the pseudoinverse to the case of a rank-deficient matrix.

Define At = VETUT and call it the pseudoinverse of A.

Coincides with prior definition in case of full rank.




Comparing the Methods

Methods to solve least squares with A an m x n matrix:

_________________________________________________________

Form: ATA: n?m/2 (symmetric—only need to fill half)
Solve with AT A: n3/6 (Cholesky)

Solve with Householder: mn? — n3/3
If m~ n, about the same

If m > n: Householder QR requires about twice as much work
as normal equations

SVD: mn? + n® (with a large constant)

_________________________________________________________

: Relative cost of matrix factorizations [cleared]
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Eigenvalue Problems: Setup/Math Recap

A is an n X n matrix.

» x # 0 is called an eigenvector of A if there exists a A so that
Ax = Ax.

» In that case, A is called an eigenvalue.
» The set of all eigenvalues A(A) is called the spectrum.

» The spectral radius is the magnitude of the biggest eigenvalue:

p(A) = max {[A] : A(A)}
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Eigenvalue Problems: Motivation from Mechanics
Consider mass-spring systems, e.g. as modeled in (e.g.) myphysicslab.com

What is needed to model?

» Hooke's law: F = a(x — xp): spring force prop. to extension
» x(t): vector of mass position

» Model Hooke's law as F(t) = Ax(t), i.e. spring constants and
position differences computed via matrix
0°x(t)
ot?
Observe these systems ‘wobble’: assume x(t) = sin(wt)xo. Then

F =ma < Ax(t) =m

Axo(t) sin(wt) = m(—w?)xg sin(wt).

Cancel sin(wt): yields an eigenvalue problem for xq and —w?.
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Finding Eigenvalues

How do you find eigenvalues?

~

Ax =X x < (A= X)x =0
<A — M singular < det(A— M) =0

det(A — A/) is called the characteristic polynomial, which has degree
n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel-Ruffini theorem: for n > 5 is
no general formula for roots of polynomial. IOW: no.

» For LU and QR, we obtain exact answers (except rounding).

> For eigenvalue problems: not possible—must iterate.

\.

Demo: Rounding in characteristic polynomial using SymPy [cleared]
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Multiplicity

What is the multiplicity of an eigenvalue?

7

Actually, there are two notions called multiplicity:
» Algebraic Multiplicity: multiplicity of the root of the
characteristic polynomial
» Geometric Multiplicity: #of lin. indep. eigenvectors

In general: AM > GM.
If AM > GM, the matrix is called defective.
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An Example

Give characteristic polynomial, eigenvalues, eigenvectors of
11
nE
CP: (A —1)?

Eigenvalues: 1 (with algebraic multiplicity 2)

= x+y=x=y =0. So only a 1D space of eigenvectors.
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Diagonalizability

When is a matrix called diagonalizable?

If it is not defective, i.e. if it has a n linear independent eigenvectors
(i.e. a full basis of them). Call those (x;)7_;.

In that case, let

X=|x1 - x|

and observe AX = XD or
A= XDX1,

where D is a diagonal matrix with the eigenvalues.
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Similar Matrices

Related definition: Two matrices A and B are called similar if there exists
an invertible matrix X so that A = XBX 1.

In that sense: “Diagonalizable” = “Similar to a diagonal matrix".

Observe: Similar A and B have same eigenvalues. (Why?)

Suppose Ax = Ax. We have B = X“1AX. Let w = X !v. Then

Bw = X 1Av = \w.
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Eigenvalue Transformations (1)
What do the following transformations of the eigenvalue problem Ax = Ax
do?
Shift. A— A—ol

(A—oal)x = (A —o)x

Inversion. A — A~1

A lx = 2 "1x

Power. A — Ak

Akx = \fx




Eigenvalue Transformations (I1)

Polynomial A — aA? + bA + ¢l

(aA? + bA + cl)x = (ar? + bA + ¢)x

Similarity T"YAT with T invertible

Let y := T1x. Then

T ATy = My
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Sensitivity (1)

Assume A not defective. Suppose X "AX = D. Perturb A — A+ E.

What happens to the eigenvalues?

LU R

XY A+E)X=D+F

» A+ E and D + F have same eigenvalues
» D + F is not necessarily diagonal

Suppose v is an eigenvector of D + F.

(D+ F)v =pv

Fv =(ul — D)v

(ul — D) *Fv=v (when is that invertible?)
Il < [|(ut = DYTHIF N v

It = D)7 < |IF
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Sensitivity (II)
XA+ E)X =D+ F. Have ||(ul — D)|| ™" < ||F|.
Demo: Bauer-Fike Eigenvalue Sensitivity Bound [cleared)]

(et = DY = i = A

where Ay is the closest eigenvalue of D to u. (see demo)
Since we made no assumptions on p other than that it doesn’t match
an existing eigenvalue, this bound holds for all eigenvalues of A+ E.

1= e |= llut = DY < 1l = [ X1Ex]| < cond(x) JE].

» ‘Bad’ if X ill-conditioned, i.e. if eigenvectors are nearly lin.dep.
» X orthogonal (e.g. for symmetric A) = condy(X) = 1.

» This bound is in terms of all eigenvalues, so may overestimate
for each individual eigenvalue.
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Power Iteration
Demo: Motivating Power Iteration [cleared]
Let Ac R™"and Av; = \jv; (j € {1,2,...,n}) and
A1l > A2 = -+ = [ Al
Pick some xg, consider x;11; = Ax; (i € {0,...}). Called Power lteration.

Let xg = Zf:l ajvj. Observe that x; = Alxg = Zf:l aj)\ivj.
Define e; = xj/A\] — aqvy.

el = Xitt a1vy|| = = 1aJ>\I+1 a1Vvi
i+ i1 - 1 -
A1 AL
=D« ) Vil S > vl = | leoll.
1 1 =

=

l.e. converges to (a multiple of) vy ‘linearly’ (see later).



https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Motivating Power Iteration.ipynb
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Convergence of Power Iteration: Notation

> Amax(A): biggest eigenvalue by magnitude
» Amax2(A): second-biggest eigenvalue by magnitude.
» Amin2(A): second-smallest eigenvalue by magnitude

» Amin(A): smallest eigenvalue by magnitude

(Not well-defined if there are multiple A with the same magnitudes.

Assume that's not the case.)
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Power lteration: Shift

How does a shift (A — o /) change power iteration?

_________________________________________________________

» Converges to eigenvector for Amax(A — o) with convergence

Amax2(A—a)
factor 7)\[“;(/\70_,) ’
» Can help guide convergence to eigenvalues ‘on boundary’ of
spectrum.
a(A) ImA o(A—oal) ImA

Ama/\ ReA ( LM ey




Power lteration: Inversion
How does inversion (A~1) change power iteration?
» Converges to eigenvector for Amax(A™1) = 1/Amin(A) with
convergence factor

>\max2(A_1) _ ‘1/)\m|n2(A)' _ ‘ )\min(A) ’
)\max(A_l) 1/>\m|n(A) )\min2(A) )
» Guide convergence to smallest eigenvalues.
o(A) ImA o(A) ImA

M/ \ Re) / \ ReA

- m E e EEE e . E e .- E——————————————m =
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Power lteration: Shift and Inversion
How does shift-invert ((A — o/)~1) change power iteration?

» Converges to eigenvector for
Amax((A — 1)) = 1/Amin(A — ol) with convergence factor

‘)\maxg((A—al)l) _ )\min(A—ol)‘
Amax((A— o)=Y | [ Amin2(A—al)|’

» Guide convergence to eigenvalue closest to o.

a(A) ImA o(A—oal) ImA

oy

o e m o Em e EE e . E—————————————————— ===

S e m E e e e e ., .. E .. ————————————————m -



Power Iteration: Issues?

What could go wrong with Power Iteration?

» Starting vector has no component along x;
Not a problem in practice: Rounding will introduce one.
» Overflow in computing A}
— Normalize after each step
> [A1] = [Az]
> If A1 = A\o: multipliclity, defer.
» If Ay # A\p: use shift+invert to separate magnitudes

» Complex eigenvalues
— use complex-valued shift, and invert.

Recall: for real-valued matrices, eigenvalues come in conjugate
pairs A and \*, with |A| = |A*].
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What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to know
eigenvalues?

Estimate them:
xT Ax
xTx
» = )\ if x is an eigenvector w/ eigenvalue A
» Otherwise, an estimate of a ‘nearby’ eigenvalue

This is called the Rayleigh quotient.
Idea: Could use Rayleigh quotient as a shift. Yields Rayleigh quotient
iteration.

Demo: Power Iteration and its Variants [cleared)]



https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/eigenvalue/Power Iteration and its Variants.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/eigenvalue/Power Iteration and its Variants.ipynb

Schur form: Motivation

For finding multiple eigenvalues, want factorization that allows access to all
eigenvalues and eigenvectors.
Suggestions?
» Diagonalization A = XDX ™! cannot provide what we need: it
does not always exist.
» Even if it did exist, computing/applying X ! would be subject
to rounding concerns.
» Idea: use a similarity transform with orthogonal matrices.

o m e mm e —————-
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Schur form

Show: Every matrix is orthonormally similar to an upper triangular matrix,
i,e. A= QUQT. This is called the Schur form or Schur factorization.

Let (A, v) be an eigenpair (at least one always exists), i.e. Av = Av
(v #0). Let V =span{v}. Then

A: vV — V
vt - vevt

Ak *

| 0 * *x * =x
A= |v Basisof V+- ) QlT.
| Dok ok ok %
~ - 0 =x *
Q1

Uy
» Bottom right of U;: Same eigenvalues as A without A.
» Repeat n times to triangular: A= Qy--- Q,,UQ,T . QlT.
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Schur Form: Comments, Eigenvalues, Eigenvectors

A= QUQT. For complex \:
» Either complex matrices, or
> 2 x 2 blocks on diag.
If we had a Schur form of A (no 2 x 2 blocks), can we find the eigenvalues?

The eigenvalues (of U and Al) are on the diagonal of U. ]

And the eigenvectors?

Find eigenvector of U: Suppose A is an eigenvalue.

Ui u U
U=X=|0 0 v’
0 0 Us

x = [Utu; —1;0]7 eigenvector of U, and @x eigenvector of A.
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Computing Multiple Eigenvalues

All Power lteration Methods compute one eigenvalue at a time.
What if | want all eigenvalues?

7

Two ideas:
1. Deflation: similarity transform to

e

i.e. use the argument for the existence of Schur form as a
computational procedure.

2. lterate with multiple vectors simultaneously.
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Simultaneous lteration

What happens if we carry out power iteration on multiple vectors
simultaneously?

Simultaneous Iteration:
1. Start with Xy € R"™P (p < n) with (arbitrary) iteration vectors

in columns
2. Xki1 = AXx
Problems:

> Needs rescaling
» X increasingly ill-conditioned: all columns go towards x;

Fix: orthogonalize!
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Orthogonal lteration

Orthogonal Iteration:

1. Start with Xp € R™P (p < n) with (arbitrary) iteration vectors
in columns

2. QuRi = X (reduced)
3. X1 = AQx

Good: Xj obey convergence theory from power iteration
Bad:

» Slow/linear convergence

> Expensive iteration
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Toward the QR Algorithm

QoRo = Xo
= AQo

QRi=X1 = AQ = QRQ =A
= AQ;

QR=X = AQL = QRQI =A

Once the Q converge (Qn+1 ~ Qp), we have a Schur factorization!

Problem: Qn11 ~ Q works poorly as a convergence test.
Observation 1: Once Q41 ~ @, we also have Q,R,Q ~
Observation 2: X, := QT AQ, ~ R,.

Idea: Use below-diag part of X, for convergence check.
Q: Can we restate the iteration to compute Xj directly?

Demo: Orthogonal lteration [cleared] "
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QR Iteration/QR Algorithm

Orthogonal iteration: QR iteration:

Xo— 2 %= A
Qr R = Xi QuRie = Xi_
Xi+1 = AQx Xi+1 = RiQx

» The X, are all similar to A — have same eigenvalues.

> A% = QoRoQuRo = QoQ1R1 Ry (analogous for AK)
Claim: (see next slide) Orth.it. and QR it. are equivalent, via

> Q= Q0@ Q.

> X = Xiq1.
From orthogonal iteration: Observed Xy = Xj11 converge.
— QR iteration produces Schur form.

> Xer1 = ReQu = QX Qu = Q' Q- Q' AQoy- - Qx.
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Proof sketch: Equivalence of QR iteration/Orth. iteration

Orthogonal Iteration (no bars) QR lIteration (with bars)
> Xp = A > )_<0 =A
> QoRo := Xo, > QRy:=A
> where we may choose
Qo = Q%,
> Xo=QyAQ = > X = RO = X
Ho F O R 1:= RoQo = Xo
Qp QoRoQo = RoQo > QiR = X
> X1 :=AQo
> QR =X,
and because of B > X, =R @
X1 = QQfAQy = Qo X1 = > X, = QHAQ, = X
QiR ? e
we may choose >

Q1= QQ = QQ:.
>
Demo: QR lteration [cleared]
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QR Iteration: Forward and Inverse
QR iteration may be viewed as performing inverse iteration. How?

Take an inverse (conjugate) transpose of the whole method.
> X, 7 =A"
» Recall QxRx = Xk. Invert and transpose both sides:
QkR;H _ X;H
» Recall Xi;1 = RxQx. Invert and transpose both sides:
o H = HA
Xir1 = R " Qx

l.e. exact same iterates as QR iteration (power iteration ‘from the
left') would be produced by “QL iteration” on A~", i.e. inverse iter-
ation ‘from the right’. Therefore: would expect shifts to be effective.




QR lteration: Incorporating a Shift

How can we accelerate convergence of QR iteration using shifts?

QiR = Xk—okl
Xis1 = R Qutoul

Still a similarity transform:
Xiy1 = R Qi + okl = [Q Xk — Ql o] Qk + ol

Q: How should the shifts be chosen?
» |deally: Close to existing eigenvalue

» Heuristics:

» Lower right entry of X B
» Eigenvalues of lower right 2 x 2 of Xj

Demo: QR lteration [cleared] (Shifted)
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QR Iteration: Computational Expense
QR at each iteration costs O(n®)—can we make that cheaper?

Idea: Upper Hessenberg form

A=Q QT

*
* X K X
* X X %

> Attainable by similarity transforms (1) HAHT
with Householders that start 1 entry lower than ‘usual’

» QR factorization of Hessenberg matrices can be achieved in
O(n?) time using Givens rotations.
(And RQ is ‘matrix - Givens', also O(n?).)

\.

Demo: Householder Similarity Transforms [cleared]
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QR/Hessenberg: Overall procedure
Overall procedure:
1. Reduce matrix to Hessenberg form
2. Apply QR iteration using Givens QR to obtain Schur form
Why does QR iteration stay in Hessenberg form?

Asumme Xj is upper Hessenberg (“UH").
> QuRi = Xi: Q= Rk_l)_(k is UH (UH - upper A = UH)
» Xii1 = RiQx is UH (upper A - UH = UH)

What does this process look like for symmetric matrices?

» Use Householders to attain tridiagonal form

> Use QR iteration with Givens to attain diagonal form
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Krylov space methods: Intro

What subspaces can we use to look for eigenvectors?

Orthogonal iteration (and there by QR):

Span{Aeyla A€y27 © oo aAgyk}

Krylov space:
span{_x ,Ax,...,Ak_lx}

X0 Xk—1

Define:

Kklz X0 - Xk—1| - (nxk)
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Krylov for Matrix Factorization

What matrix factorization is obtained through Krylov space methods?

AK, = |x1 - x| =K, |ex - e, K, lx,
| | | | |

Cn

> K 1AK, = C,
» C, is upper Hessenberg

» So Krylov is ‘just’ another way to get a matrix into upper
Hessenberg form.

» But: works well when only matvec is available (searches in
Krylov space, not the space spanned by first columns)




Conditioning in Krylov Space Methods/Arnoldi Iteration (1)

What is a problem with Krylov space methods? How can we fix it?

(x;) converge rapidly to eigenvector for largest eigenvalue
— K become ill-conditioned

Idea: Orthogonalize! (at end... for now)
QnRn=K, = Qn = Kan_l

Then
QT AQ, = R, K 'AK, R, L.
N—_——

Cn

» C, is upper Hessenberg

> Q,TAQn is also UH
(because upper A - UH = UH and UH - upper A = UH).
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Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

\.

We find that Q,TAQ,, is also upper Hessenberg: Q,TA,,Qn =H.
Also readable as AQ, = Q,H, which, read column-by-column, is:

Aqy = h1kqy + -+ bk k Qi
We find: hy = quAqk. Use that to rewrite, letting v = Aq,:
v—(a{v)a; — - — (g v)aqy = his14Ghs1

» Looks just like Gram-Schmidt QR!

» Can compute (k 4 1)st column of H and q,,; from qq,...,q,.

This is called Arnoldi iteration. For symmetric: Lanczos iteration.

Demo: Arnoldi Iteration [cleared] (Part 1)
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Krylov: What about eigenvalues?

How can we use Arnoldi/Lanczos to compute eigenvalues?

Q=[Qx Ui

* ok ok %k X

QT * ok %k %k X
H_QTAQ_[UkT]A[Qk Ud=| = » x
k X ok X

* Xk

Use eigenvalues of top-left matrix as approximate eigenvalues.
(still need to be computed, using QR it.)

Those are called Ritz values.

Green: known (i.e. already computed), red: not yet computed.

Demo: Arnoldi lteration [cleared] (Part 2)
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Computing the SVD (Kiddy Version)

1. Compute (orth.) eigenvectors V and eigenvalues D of AT A,
ATAV=VD = VTATAV =D =:%2

2. Find U from A= UZVT & UZ=AV.
Observe U is orthogonal if ¥~1 exists: (If not, can choose so.)

UTU=x1vTaTavs L = y-1y2y-1

Demo: Computing the SVD [cleared]

“Actual”’/"non-kiddy" computation of the SVD:

B
0

» References: Chan '82 or Golub/van Loan Sec 8.6.

> Bidiagonalize A= U [ } VT, then diagonalize via variant of QR.
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Methods in n Dimensions (“Systems of Equations”)



Solving Nonlinear Equations

What is the goal here?

Solve f(x) =0 for f : R” — R".
If looking for solution to F(X) =y, simply consider f(x) = f(x)—y.

Intuition: Each of the n equations describes a surface. Looking for
intersections.

Demo: Three quadratic functions [cleared]
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Showing Existence

How can we show existence of a root?

» Intermediate value theorem (uses continuity, 1D only)

» Inverse function theorem (relies on invertible Jacobian Jr)
Get local invertibility, i.e. f(x) = y solvable

» Contraction mapping theorem
A function g : R” — R" is called contractive if there exists a
0 <~v<1sothat|g(x)—g(y)l <~vl|x—yl. A fixed point
of g is a point where g(x) = x.
Then: On a closed set S C R" with g(S) C S there exists a
unique fixed point.
Example: (real-world) map

In general, no uniquness results available.
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Sensitivity and Multiplicity
What is the sensitivity/conditioning of root finding?

cond (root finding) = cond (evaluation of the inverse function at 0)
Evaluation (of the inverse) at 0: must use absolute condition num-
bers.

.

What are multiple roots?

0=F(x)=Ff'(x)="-- = FMV(x)

This is called a root of multiplicity m.

How do multiple roots interact with conditioning?

[ The inverse function is steep near one, so conditioning is poor.
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Rates of Convergence

What is linear convergence? quadratic convergence?

e, = ux—u: error in the kth iterate u,. Assume e, — 0 as k — 0.

An iterative method converges with rate r if

o lewall _ [>0,
kroo [lex|” < 0.

» r =1 is called linear convergence.

» r > 1is called superlinear convergence.

» r =2 is called quadratic convergence.
Examples:

» Power iteration is linearly convergent.

» Rayleigh quotient iteration is quadratically convergent.

161



About Convergence Rates
Demo: Rates of Convergence [cleared]
Characterize linear, quadratic convergence in terms of the ‘number of
accurate digits’.

» Linear convergence gains a constant number of digits each step:
lexrall < Cllex]]

(and C < 1 matters!)

» Quadratic convergence
2
lext1ll < Cllex]]

(Only starts making sense once ||ek|| is small. C doesn't
matter much.)
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Stopping Criteria
Comment on the ‘foolproof-ness’ of these stopping criteria:
1. |f(x)| <e (‘residual is small’)
2.0 |1 Xk41 — Xkl < €
30 [xka1 — xkll / [Ixkll <&

1. Can trigger far away from a root in the case of multiple roots
(or a ‘flat’ f)

2. Allows different ‘relative accuracy’ in the root depending on its
magnitude.

3. Enforces a relative accuracy in the root, but does not actually
check that the function value is small.
So if convergence ‘stalls’ away from a root, this may trigger
without being anywhere near the desired solution.

Lesson: No stopping criterion is bulletproof. The ‘right’ one almost
always depends on the application.
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Bisection Method

Demo: Bisection Method [cleared]

What's the rate of convergence? What's the constant?

[ Linear with constant 1/2. ]
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Min

e e E m o EE e EE e E ... ————————————————— - =

I Review: Taylor's Theorem

f//
f(x+ h) = f(x)+ f'(x)h+ 2(IX) h? + ... (requires f analytic)

Taylor with explicit remainder term (8 € [x,x + h], f € Ck*1):

D) ey, £40)

f h)="f

(x+h)=Ffx)+ -+ k—1) ]

Special case k = 1: Equivalent to mean value theorem:
f(x+ h) = f(x)+ f'(O)h (6 € [x,x+ h],f € Ct)

With big-O truncation:

F(x+h)=f M0 o1y oy (h—s 0, €
(X—|- )— (X)+"'+W + ( ) ( — U, 7 € )

N m e mm o E ... —————E——————————————mmm ==
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Fixed Point Ilteration

xg = (starting guess)

X1 = &(xx)

Demo: Fixed point iteration [cleared]

When does fixed point iteration converge? Assume g is smooth.

Let x* be the fixed point with x* = g(x™).

Error:
ek+1 = Xkt1 — X = g(xk) — g(x*)

[cont'd.]

Claim: If |g/(x*)| < 1 at the fixed point, FPI converges locally.
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Fixed Point Iteration: Convergence cont'd.
Error in FPI: ex11 = X1 — x* = g(xx) — g(x*)

Mean value theorem says: There is a ), between x, and x* so that
g(xk) — g(x") = g'(0k) (xk — x7) = g’ (Ok)ex-

So: ex+1 = g'(0k)ex and if ||g’|| < C < 1 near x*, then we have
linear convergence with constant C.
Q: What if g’(x*) = 07
By Taylor:
g(x) — g(x*) = g" (&) (xk — x*)?/2
So we have quadratic convergence in this case!

We would obviously like a systematic way of finding g that produces
quadratic convergence.




Newton's Method

Derive Newton's method.

Idea: Approximate f at xx using Taylor: f(xx+ h) = f(xx)+ f'(xk)h
Now find root of this linear approximation in terms of h:

f(Xk) + f/(Xk)h =0 & h=-

xo = (starting guess)

Xk+1 = Xk — :,(();i)) = g(x«)

Demo: Newton's method [cleared]
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Convergence and Properties of Newton
What's the rate of convergence of Newton's method?

Recall the quotient rule (f/g) = (f'g — g'f)/g>.

2= 1)

So if f(x*) =0 and f'(x*) # 0, we have g’(x*) = 0, i.e. quadratic
convergence toward single roots.

Drawbacks of Newton?

» Convergence (argument) only locally
» Have to know f’!

_________________________________________________________

Demo: Convergence of Newton's Method [cleared]
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Secant Method

What would Newton without the use of the derivative look like?

Approximate

So

~ f(Xk) — f(kal)'

' (xx
£t Xk — Xk—1
Xo = (starting guess)
x; = (another starting guess)
N (O
Xktl = Xk T ) —foua)
Xk —Xk—1
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Convergence of Properties of Secant

Rate of convergence is (1 + v/5) /2 ~ 1.618. (proof)

Drawbacks of Secant?

» Convergence argument only good locally

Will see: convergence only local (near root)
» Slower convergence
> Need two starting guesses

Demo: Secant Method [cleared]
Demo: Convergence of the Secant Method [cleared]

Secant (and similar methods) are called Quasi-Newton Methods.
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/nonlinear/Convergence of the Secant Method.ipynb

Imp

roving on Newton?

How would we do “Newton + 1" (i.e. even faster, even better)?

Easy:
» Use second order Taylor approximation, solve resulting
quadratic
» Get cubic convergence!
» Get a method that's extremely fast and extremely brittle
» Need second derivatives
» What if the quadratic has no solution?
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Root Finding with Interpolants

Secant method uses a linear approximation to f based on points f(x),
f(xk—1), could use more points and higher-order approximation:

» Can fit polynomial to (subset of) (xo, f(x0)),- -, (xk, f(xk))
» Look for a root of that

» Fit a quadratic to the last three: Muller's method

» Also finds complex roots
» Convergence rate r ~ 1.84

What about existence of roots in that case?

» Inverse quadratic interpolation
> Fit/‘interpolate’ quadratic polynomial g so that g(f(x;)) = x;
for i € {k,k—1,k—2}.
> Approximate root by evaluating xx+1 = g(0).
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Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally.
How could we use that?

» Hybrid methods: bisection + Newton
» Stop if Newton leaves bracket

» Fix a region where they're ‘trustworthy’ (trust region methods)
> Limit step size

» Sufficient conditions for convergence of Newton (under strong
assumptions) are available.
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Fixed Point Iteration (n dimensions)

Xo = (starting guess)
Xip1 = 8(xk)

When does this converge?

Converges (locally) if ||Jg(x*)|| < 1 in some norm, where the Jaco-

bian matrix
a><1g1 e ax,,gl

Jg(x*) =]
aXlgn 8xngn

Similarly: If Jg(x*) =0, we have at least quadratic convergence.

Better: For all matrices A and for all € > 0 there exists a norm || - || 4
such that p(A) < [|A]|a < p(A) + €. Thus p(A) < 1 suffices. (proof)
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Newton's Method (n dimensions)

What does Newton's method look like in n dimensions?

Approximate by linear: f(x + s) = f(x) + Jg(x)s.

xo = (starting guess)

Xpp1 = xk— (Jp(xi)) T (x)

Setto 0: Jr(x)s = —F(x) = s=—(Je(x))" f(x).

Downsides of n-dim. Newton?

» Still only locally convergent

» Computing and inverting Jr is expensive.

Demo: Newton's method in n dimensions [cleared)]
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Secant in n dimensions?

What would the secant method look like in n dimensions?

Need an ‘approximate Jacobian' satisfying

J- (Xk+1 — Xk) = f(Xk+1) — f(Xk).
Suppose we have already taken a step to xx.1. Could we ‘reverse
engineer' J from that equation?
» No: n? unknowns in J, but only n equations

» Can only hope to ‘update’ J with information from current
guess.

Some choices, all called Broyden’s method-:
» update J,, minimize ||J, — Jo—1||f
> update J;! (via Sherman-Morrison), minimize ||J;* — J. 7 || -
multiple variants (“good” Broyden and “bad” Broyden)




Numerically Testing Derivatives
Getting derivatives right is important. How can | test/debug them?

Verify convergence of the Taylor remainder by checking that, for a
unit vector s and an input vector x,

H f(x + hi) — f(x)

— Je(x)s|| = O(h) (h—0).

» Same trick can be used to check the Hessian (needed in
optimization): It is the Jacobian of the gradient.

» Norm is not necessarily small. Convergence (i.e. decrease with
h) matters.

» Important to divide by h, so that the norm is O(1).

» Can “bootstrap” the derivatives: do the above one term at a
time.
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Methods for unconstrained opt. in one dimension
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Optimization: Problem Statement

Have: Objective function f : R" — R
Want: Minimizer x* € R" so that

f(x*) =minf(x) subjectto g(x)=0 and h(x)<0.

» g(x) =0 and h(x) <0 are called constraints.
They define the set of feasible points x € S C R".

» If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

» If f, g, h are linear, this is called linear programming.
Otherwise nonlinear programming.
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Optimization: Observations

Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

» What is the fastest/cheapest/shortest... way to do...?

» Solve a system of equations ‘as well as you can’ (if no exact
solution exists)—similar to what least squares does for linear
systems:

——— e ——————-

» In general: Look up Pareto optimality.

» For 450: Make up your mind—decide on one (or build a
combined objective). Then we'll talk.

S ———————— - -
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Existence/Uniqueness
Terminology: global minimum / local minimum
Under what conditions on f can we say something about

existence/uniqueness?
If f: S — R is continuous on a closed and bounded set S C R”, then

a minimum exists.

f:S = Ris called coerciveon S C R" if

f(x) =400

lIx[|—o00

If £ is coercive and continuous and S is closed, ...

[ a global minimum exists (but is possibly non-unique).




Convexity

S CR"is called convex if forall x,y e Sandall 0 < a <1

7~

ax+(1—a)y €S.

f:S—Riscalled convexon SCR"ifforx,yc Sandall0 < a <1

flax+ (1 —a)y) < af(x)+ (1 — a)f(y).

With ‘<': strictly convex.

Q: Give an example of a convex, but not strictly convex function.
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Convexity: Consequences

If fis convex, ...

» then f is continuous at interior points.
(Why? What would happen if it had a jump?)

» a local minimum is a global minimum.

If fis strictly convex, ...

[ » a local minimum is a unique global minimum. ]
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Optimality Conditions

If we have found a candidate x* for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.

» In one dimension:
> Necessary: f/(x*) =0 (i.e. x* is an extremal point)
» Sufficient: f/(x*) =0 and ”(x*) >0
(implies x* is a local minimum)
» In n dimensions:

> Necessary: Vf(x*) =0 (i.e. x* is an extremal point)
» Sufficient: V£ (x*) = 0 and H¢(x*) positive semidefinite
(implies x* is a local minimum)

where the Hessian

92 o
87)(]2_ e Ox10xp
He(x™) = f(x¥).
9 82
noxa ox2

n
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Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

A: Solve Vf = 0.

Q: Is the Hessian symmetric?

A: Yes. (Schwarz's theorem)

Q: How can we practically test for positive definiteness?

A: Attempt a Cholesky factorization. If it succeeds, the matrix is PD.
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Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?

Suppose we still have |f(X) — f(x*)| < tol (where x* is true min.).
Apply Taylor's theorem:

Fx* + ) = F(x") + F(x) b+ PO+ o)
—— 2

0

Ignore higher-order terms, solve for h: | — x*| < \/2tol /f"(x*).
In other words: Can expect half as many digits in X as in f(X).
This is important to keep in mind when setting tolerances.

It's only possible to do better when derivatives are explicitly known
and convergence is not based on function values alone. (then: can
solve Vf =0)




Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?

*

Suppose we still have |f(X) — f(x*)| < tol, where x* is true min.

and x = x* + hs. Assume ||s|| = 1.

h2
f(x* + hs) = f(x*) + hVF(x*)T s + —s" He(x*)s + O(h°)
— 27"
0

After ignoring high-order terms, yields:

‘h|2 < 2t0|
~ Amin(Hr(x*))

In other words: Conditioning of Hy determines sensitivity of x™*.




Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.

f is called unimodal on an open interval if there exists an x* in the
interval such that for all x; < x> in the interval

> o < x* = f(x1) > f(x2)
> x* < x1 = f(x1) < f(x2)
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Golden Section Search
Suppose we have an interval with £ unimodal:

?

Would like to maintain unimodality.

1. Pick X1, X2
2. If f(x1) > f(x2), reduce to (xi, b)
3. If f(x1) < f(x2), reduce to (a, x2)
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Golden Section Search: Efficiency
Where to put x1, x»7

> Want symmetry:
x1=a+(1—-7)b—a)
xo=a+7(b—a)

» Want to reuse function evaluations

t T

0 1—7

4
t
T

4 4 P
t t
T

0 (1 —171) 72
Need: 72 =1— 7. Find: 7 = (v/5—1) /2.
Also known as the golden section. Hence golden section search.

.

Convergence rate?

Linearly convergent. Can we do better?




Newton's Method

Reuse the Taylor approximation idea, but for optimization.

2
f(x + h) = f(x) + f/(x)h + f”(x)% =: f(h)
Solve 0 = f'(h) = f'(x) + " (x)h : h=—f"(x)/f"(x).
1. xo = (some starting guess)
ME)

2. Xp41 = Xk — 7 (x¢)
Q: Notice something? ldentical to Newton for solving f’(x) = 0.
Because of that: locally quadratically convergent.

Good idea: Combine slow-and-safe (bracketing) strategy with fast-
and-risky (Newton).

\

Demo: Newton's Method in 1D [cleared]
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Steepest Descent/Gradient Descent

Given a scalar function f : R” — R at a point x, which way is down?

\

Direction of steepest descent: —Vf
Q: How far along the gradient should we go?

Unclear—do a line search. For example using Golden Section Search.
1.
2.
3.
4.
5.

Observation: (from demo)

Xo = (some starting guess)

Sk = —Vf(xk)

Use line search to choose o to minimize f(xy + aysk)
XK1 = Xi + oSk

Go to 2.

» Linear convergence

Demo: Steepest Descent [cleared] (Part 1)
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Steepest Descent: Convergence
Consider quadratic model problem:

1
f(x)= EXTAX +c'x

where A is SPD. (A good model of f near a minimum.)

_________________________________________________________

Define error ex = xx — x*. Then can show:
A) — omin(A)
_ T A _ Umax( min
lextilla = /ey 1Akt oom(A) T omin(A) lexlla

where ||x||a = VxTAx. — confirms linear convergence.

Convergence constant related to conditioning:

Umax(A) - Umin(A) _ H(A) -1
Umax(A) + Umin(A) H(A) +1

_________________________________________________________




Hacking Steepest Descent for Better Convergence

Extrapolation methods:

Look back a step, maintain 'momentum’.

. X1 = Xk — o VI(xk) + Br(xk — Xk—1)
{

S e m————--

_________________________________________________________

For specific constant ay = « and S8, = 3, can attain:

k(A) —1

e =Y
|lext1lla ST

Demo: Steepest Descent [cleared] (Part 2)
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Optimization in Machine Learning
What is stochastic gradient descent (SGD)?

_________________________________________________________

Common in ML: Objective functions of the form

) = = > i),
i=1

where each f; comes from an observation (“data point”) in a (training)
data set. Then “batch” (i.e. normal) gradient descent is

1

1

1

1

E 1<

! Xpt1 = X — Q— E Vii(xk).
: k+1 k n 2 i(xk)
1 i=1

1

1 Stochastic GD uses one (or few, “minibatch”) observation at a time:
:

1

1

Xpq1 = X — aV 0 (xk).

ADAM optimizer: GD with exp. moving avgs. of V and its square.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

(ak, Bk) = argmin,, 5, [f<xk — axVF(xk) + Br(xk — Xk—l))}

» Will see in more detail later (for solving linear systems)
» Provably optimal first-order method for the quadratic model
problem

» Turns out to be closely related to Lanczos (A-orthogonal search
directions)

Demo: Conjugate Gradient Method [cleared]



https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/optimization/Conjugate Gradient Method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/optimization/Conjugate Gradient Method.ipynb

Nelder-Mead Method

|dea:

Form a n-point polytope in n-dimensional space and adjust worst
point (highest function value) by moving it along a line passing
through the centroid of the remaining points.

Demo: Nelder-Mead Method [cleared]
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Newton's method (n D)

What does Newton's method look like in n dimensions?

Build a Taylor approximation:
f(x+s)~ f(x)+ VF(x)"s+ %STHf(x)s =: f(s)
Then solve V#(s) = 0 for s to find
He(x)s = =V £ (x).

1. xo = (some starting guess)
2. Solve Hf(xx)sk = —Vf(xk) for sy

3. X1 = Xk + Sk
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Newton's method (n D): Observations

Drawbacks?

_________________________________________________________

» Need second (!) derivatives

(addressed by Conjugate Gradients, later in the class)
» local convergence
» Works poorly when Hy is nearly indefinite

Demo: Newton's Method in n dimensions [cleared]
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Quasi-Newton Methods

Secant/Broyden-type ideas carry over to optimization. How?

Come up with a way to update to update the approximate Hessian.

Xk+1 = Xk — akBl:lVf(Xk)

» «y: a line search/damping parameter.

> Sk = Xpp1 — Xk

» yik = Vi(xkt1) — VI(xk)

» Secant condition: Byi1Sk = ¥

» Ansatz for Hessian update: By 1 = Bk + auu’ + bvv’

BFGS: Secant-type method, similar to Broyden:

T T
Yy Bisks Bk

Bit1 = Bk + ka— Sk
Y Sk Sk BkSk
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Nonlinear Least Squares: Setup
What if the f to be minimized is actually a 2-norm?

FO) =lr()ll2,  r(x) =y —a(x)

Define ‘helper function’

and minimize that instead.
o 1 "9 2 9 \
¢ =3 2 1= (55)

or, in matrix form:
Vo = Ji(x)Tr(x).




Gauss-Newton
For brevity: J := J.(x).

Can show similarly:

Ho(x) = JTJ+) " riHy(x).

Newton step s can be found by solving H,(x)s = —V.

Observation: . riHy,(x) is inconvenient to compute and unlikely to

be large (since it's multiplied by components of the residual, which is
supposed to be small) — forget about it.

Gauss-Newton method: Find step s by J7Js = -V = —JT r(x).
Does that remind you of the normal equations? Js = —r(x). Solve
that using our existing methods for least-squares problems.
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Gauss-Newton: Observations?

Demo: Gauss-Newton [cleared]

Observations?

» Newton on its own is still only locally convergent

» Gauss-Newton is clearly similar

— Much depends on the starting guess.

1

: , . .

! > |t's worse because the step is only approximate
.

\
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Levenberg-Marquardt

If Gauss-Newton on its own is poorly conditioned, can try
Levenberg-Marquardt:

(Jr(xi) T I (i) 1k sk = —Ir(xic) T (%)
for a ‘carefully chosen' px. This makes the system matrix ‘more

invertible' but also less accurate/faithful to the problem.

What Levenberg-Marquardt does is generically called regularization:
Make H more positive definite.
Easy to rewrite to least-squares problem:

ales[ ]
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Constrained Optimization: Problem Setup
Want x* so that

f(x*) = minf(x) subjectto g(x)=0

No inequality constraints just yet. This is equality-constrained
optimization. Develop a (local) necessary condition for a minimum.

Recall unconstrained necessary condition, “no descent possible™:
Vf(x)=0

Look for feasible descent directions from x. (Necessary cond.: A)

s is a feasible direction at x if

x + as feasible for a € [0,r] (for some r)

Necessary cond.: “no feasible descent possible”. Assume g(x) = 0.
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Constrained Optimization: Necessary Condition

> Not at boundary: s and —s are feasible directions
= Vf(x)=0
= Only the boundary of the feasible set is different from the
unconstrained case (i.e. interesting)

» At boundary: (the common case) g(x) = 0. Need:
—Vf(x) € rowspan(Jg)

a.k.a. “all descent directions would cause a change
(—violation) of the constraints.”
Q: Why ‘rowspan’? Think about shape of Jg.

& —Vf(x) = JgT)\ for some A.

Need: Vf(x)-s > 0 (“uphill that way") for any feasible direction s.




Lagrange Multipliers
=0

- o
Seen: Need —Vf(x) = JgT)\ at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an unconstrained
optimization problem for (x, A). How?

Need a new function £(x,A) to minimize:

L(x,A) = f(x) + A" g(x).
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Lagrange Multipliers: Development

L(x,A) = f(x) + A" g(x).

Then: V£ = 0 at unconstrained minimum, i.e.

0=VL = [g;ﬁ] _ [Vf +gJ(gx()X)T)‘] .

Convenient: This matches our necessary condition!

So we could use any unconstrained method to minimized L.
For example: Using Newton to minimize £ is called Sequential
Quadratic Programming. (‘SQP’)

.

Demo: Sequential Quadratic Programming [cleared]
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Inequality-Constrained Optimization
Want x* so that

f(x*) = minf(x) subjectto g(x)=0 and h(x)<0.

Develop a necessary condition for a minimum.

Again: Assume we're at a feasible point, on the boundary of the
feasible region. Must ensure descent directions are infeasible.

Motivation: g = 0 < two inequality constraints: g < 0A g > 0.

Consider the condition —Vf(x) = J Xa.
» Descent direction must start violating constraint.
But only one direction is dangerous herel!
» —Vf: descent direction of f, Vh;: ascent direction of h;

» If we assume Ay > 0, going towards —Vf would increase h
(and start violating h < 0)
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Lagrangian, Active/Inactive

Put together the overall Lagrangian.

L(x, A1, A2) = (x) + A{ g(x) + A7 h(x)

.

What are active and inactive constraints?

» Active: active < hi(x*) = 0 < at ‘boundary’ of ineq.
constraint
(Equality constrains are always ‘active’)

> Inactive: If h; inactive (hi(x*) < 0), must force Ay ; = 0.
Otherwise: Behavior of h could change location of minimum of
L. Use complementarity condition h;j(x*)A2,; = 0.
& at least one of hj(x*) and Xy ; is zero.

211



Karush-Kuhn-Tucker (KKT) Conditions

Develop a set of necessary conditions for a minimum.

Assuming Jg and Jp active have full rank, this set of conditions is

necessary.
(¥)  VxL(x",A1,A3) 0
(x) g(x*) =0
h(x*) < 0
X > 0
0

() h(x7)- A2

These are called the Karush-Kuhn-Tucker (‘KKT") conditions.

Computational approach: Solve () equations by Newton.
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Methods
Error Estimation
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Interpolation: Setup

Given: (x,), L (y,), 1
Wanted: Function f so that f(x;) = y;

How is this not the same as function fitting? (from least squares)
It's very similar—but the key difference is that we are asking for exact
equality, not just minimization of a residual norm.
— Better error control, error not dominated by residual

Idea: There is an underlying function that we are approximating from
the known point values.

e e E e e E . E——-————-—--

Error here: Distance from that underlying function
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Interpolation: Setup (II)

Given: (x)M, (vi)M,
Wanted: Function f so that f(x;) = y;

Does this problem have a unique answer?

No—there are infinitely many functions that satisfy the problem as
stated:

AY
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Interpolation: Importance

Why is interpolation important?

It brings all of calculus within range of numerical operations.
> Why?
Because calculus works on functions.
> How?

1. Interpolate (go from discrete to continuous)
2. Apply calculus
3. Re-discretize (evaluate at points)

- m e ——————————-

L UG U N gy
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Making the Interpolation Problem Unique

Niunc

pn-1(x) = ) ajpj(x)
j=1
Interpolation becomes solving the linear system:

Niunc

Yi = pa-1(xi) = Y o pj(x) < Va=y.
Jj=1 Vi
ij

» Want unique answer: Pick Nf,ne = N — V square.
» V is called the (generalized) Vandermonde matrix.
» V/(coefficients) = (values at nodes).

> Can prescribe derivatives: Use ¢, ' in a row. (Hermite interp.)

Limit the set of functions to span of an interpolation basis {cp,-},N:F“l”°:




Existence/Sensitivity

Solution to the interpolation problem: Existence? Uniqueness?

Equivalent to existence/uniqueness of the linear system

Sensitivity?

» Shallow answer: Simply consider the condition number of V
> ||coefficients|| does not suffice as measure of stability.
pn—1(x) can be evaluated anywhere. (p,_1 is the interpolant.)
> Want: maxeepap) |f(x)] < Allylloo
» A: Lebesgue constant, depends on n and {x;};
» Technically also depends on {¢;}; (same for all polys)

\

Demo: Lebesgue Constant [cleared]
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Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:
» Monomials 1, x, x2, x3, x*, . ..
» Functions that make V =1 —
‘Lagrange basis'’

» Functions that make V
triangular — ‘Newton basis’
Splines (piecewise polynomials)
Orthogonal polynomials
Sines and cosines
‘Bumps’ (‘Radial Basis
Functions’)

vVvyyvyy

Ideas for points:
» Equispaced

» ‘Edge-Clustered’ (so-called
Chebyshev/Gauss/. .. nodes)

Specific issues:
» Why not monomials on
equispaced points?
Demo: Monomial interpolation

[cleared]

» Why not equispaced?
Demo: Choice of Nodes for
Polynomial Interpolation
[cleared]
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https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/interpolation/Choice of Nodes for Polynomial Interpolation.ipynb

Lagrange Interpolation
Find a basis so that V =1, i.e.

0 otherwise.

Start with simple example. Three nodes: xi, X2, x3

(x — x2)(x — x3)

#1(x) (x1 —x2)(xa — x3)
 (x—=x) (x — x3)

Prx) = (e—x) (—x3)
 (x=x)(x = x2)

Pal) = (x3 — x1)(x3 — x2)

Numerator: Ensures ¢; zero at other nodes.
Denominator: Ensures p;(x;) = 1.




Lagrange Polynomials: General Form

_ Hkmzl,k;éj(x — Xk)
Hkmzl,k;éj(xj — Xk)

pj(x)

Write down the Lagrange interpolant for nodes (x;)/; and values (y;)™ ;.

pm-1(x) =D yjpi(x)
=
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Newton Interpolation
Find a basis so that V is triangular.

Easier to build than Lagrange, but: coefficient finding costs O(n?).

Jj—1

pi0) = [T 0x = x)-
k=1
(At least) two possibilities for coefficient finding:
» Set up V, run forward substitution.
» Divided Differences (Wikipedia link)

Why not Lagrange/Newton?

_________________________________________________________

_________________________________________________________
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https://en.wikipedia.org/wiki/Divided_differences

Better conditioning: Orthogonal polynomials

What caused monomials to have a terribly conditioned Vandermonde?

But polynomials are functions!
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Orthogonality of Functions

How can functions be orthogonal?

Need an inner product. Orthogonal then just means (f, g) = 0.
f-g = Z figi f.g)

1
(F.g) = / F(x)e(x)dx

-1
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Constructing Orthogonal Polynomials
How can we find an orthogonal basis?

[ Apply Gram-Schmidt to the monomials.

Demo: Orthogonal Polynomials [cleared] — Got: Legendre polynomials.
But how can | practically compute the Legendre polynomials?

— DLMF: Chapter on orthogonal polynomials
» Three-term recurrence: (n+ 1)Pp41 = (2n+ 1)xP, — nPp_1,
Po=1, P =x

> A whole zoo of polynomials there, depending on the weight
function w in the (generalized) inner product:

(f,g) Z/W(X)f(x)g(x)dx.
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Chebyshev Polynomials: Definitions

Three equivalent definitions:
» Result of Gram-Schmidt with weight 1/v/1 — x2. What is that weight?

1/ (Half circle), i.e. x2 +y? =1, with y = v/1 — x2

(Like for Legendre, you won't exactly get the standard normalization if
you do this.)

> Ti(x) = cos(k cos™1(x))
» Ti(x) =2xTy_1(x) — Tx—a(x) plus To =1, T1 = x
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Chebyshev Interpolation
What is the Vandermonde matrix for Chebyshev polynomials?

» Need to know the nodes to answer that
» The answer would be very simple if the nodes were cos(x).

» So why not cos(equispaced)? Maybe

x,-:cos<;(7r> (i=0,1,....k)

These are just the extrema (minima/maxima) of Ty.

o i i
e ) )

» Called the Discrete Cosine Transform (DCT)
» Matvec (and inverse!) available with O(N log N) cost (— FFT)




Chebyshev Nodes

Might also consider roots (instead of extrema) of Tj:

2i—1
x,-:cos( I2k 7r> (i=1...,k).

Vandermonde for these (with Ty) can be applied in O(N log N) time, too.

Edge-clustering seemed like a good thing in interpolation nodes. Do these
do that?

[ |

Demo: Chebyshev Interpolation [cleared] (Part I-1V)
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Chebyshev Interpolation: Summary

» Chebyshev interpolation is fast and works extremely well
» http://www.chebfun.org/ and: ATAP

» In 1D, they're a very good answer to the interpolation question

» But sometimes a piecewise approximation (with a specifiable level of
smoothness) is more suited to the application
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Truncation Error in Interpolation

If fis n times continuously differentiable on a closed interval / and
pn—1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {x;} (i = 1,..., n) in that interval, then for each x in the
interval there exists £ in that interval such that

F(E(x))

FX) = proax) = —

(x = x1)(x = x2) -+ (x — xp).

Define the error R(x) := f(x) — pp—1(x) and an auxiliary function:

W(t) where W(t)=]](t—x).

i=1

> Let x € | (where we prove the identity) with x # x; for
i€{l,...,n} (WLOG).
» Note the introduction of the additional variable t.
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Truncation Error in Interpolation: cont'd.

Yi(t) = R(t) — T W) where  W(t) =TIt - )
i=1

» Since x; are roots of R(t) and W(t), we have

Y«(x) = Y«(x;) = 0, which means Y has at least n+ 1 roots.

» From Rolle’s theorem, Y/(t) has at least n roots, then v
has at least one root &, where £ € [.

» Since p,—1(x) is a polynomial of degree at most n — 1,
R(M(t) = f(")(t). Thus

~ R(x)
W (x)

Y (t) = F(¢) !

» Plugging Y)S")(E) = 0 into the above yields the result.
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Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev
interpolation?
» The error bound suggests choosing the interpolation nodes
such that the product |[]/_;(x — x;)| is as small as possible.
The Chebyshev nodes achieve this.

> If nodes are edge-clustered, []7_;(x — x;) clamps down the
(otherwise quickly-growing) error there.

» Confusing: Chebyshev approximating polynomial (or
“polynomial best-approximation”). Not the Chebyshev
interpolant.

» Chebyshev nodes also do not minimize the Lebesgue constant.

Demo: Chebyshev Interpolation [cleared] (Part V)
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Error Result: Simplified Form

Boil the error result down to a simpler form.

Assume x; < -+ < Xp.
>|f x)| £ M for x € [x1,xn],

» Set the interval length h = x, — x1.
Then |x — x;| < h.

max |f(x) — pa—1(x)| < CMh".

convergence of order n.

\.

Altogether—there is a constant C independent of h so that:

For the grid spacing h — 0, we have E(h) = O(h"). This is called

» Demo: Interpolation Error [cleared]
» Demo: Jump with Chebyshev Nodes [cleared]
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Going piecewise: Simplest Case

Construct a piecewise linear interpolant at four points.

X0, Y0 X1, y1 X2, y2 X3, Y3
| fi = aix+ by | f» = axx + by | f3 = azx + b3 |
\ 2 unk. | 2 unk. | 2 unk. |
\ f(x0) = yo | f(x1) = y1 | f3(x2) = y2 |
\ fi(xa) =y | (x2) = y2 | fi(x3) = ys |
| 2 eqn. | 2 eqn. | 2 eqn. |

Why three intervals?

General situation — two end intervals and one middle interval. Can
just add more middle intervals if needed.
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Piecewise Cubic (‘Splines’)

X0, Yo
|
|

X1, Y1 X2, Y2
1 | fa \ fs

a1x3 + byx? + cix + dy | azx3 + bax? + cox + da ‘ a3x® + b3x? + cax + d3

X3,Y3

4 unknowns 4 unknowns 4 unknowns
filo) =y hkx)=yn (k)=
filxa) =y hlke)=y (s)=y
Not enough: need more conditions. Ask for more smoothness.
fila) =£H(a) £e)=Ff(x)
') = 6'(xa) () =1£f(x)
Not enough: need yet more conditions.
fi'(x) =0 £5'(x3) =0
Now: have a square system.
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Piecewise Cubic (‘Splines’): Accounting

X0, Yo

X1, Y1 X2, Y2
1 | fa \ fs

a1x3 + byx? + cix + dy | azx3 + bax? + cox + da ‘ a3x® + b3x? + cax + d3

X3,Y3

Number of conditions: 2Nintervals + 2Nmiddle nodes + 2 Where

Nintervals —-1= Nmiddle nodes

SO
2Nintervals 2 2(Nintervals - 1) 2 2= 4Ninterva|s;

which is exactly the number of unknown coefficients.

These conditions are fairly arbitrary: Can choose different ones basi-
cally at will. The above choice: ‘natural spline’.

Can also come up with a basis of spline functions (with the chosen
smoothness conditions). These are called B-Splines.
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Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)

» Answer exists e.g. if f is integrable in the Riemann or Lebesgue
senses.

» Answer is unique if f is e.g. piecewise continuous and bounded.
(this also implies existence)

- ——m e —m—————
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Conditioning

Derive the (absolute) condition number for numerical integration.

Let f(x) := f(x) + e(x), where e(x) is a perturbation.

/a bf(x)dx — / ’ f(x)dx
/ab e(x)dx

x€|[a,b]

b
g/ le(x)|dx < (b—a) max |e(x)|.
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Interpolatory Quadrature: Examples

Example: Fix (x;). Then f(x) = py—1(x) = >, f(x;)¢i(x), where
?i(x) is the Lagrange polynomial for the node x;. Then

/ab f(x)dx ~ Z f(x;) /abgi(x)dx_
i &

Wi

— a computational recipe (“quadrature rule”) applicable to any f:

b
/ f(x)dx ~ Z f(xi)wi.

x;: quadrature nodes, w;: quadrature weights.
» Equispaced nodes: Newton-Cotes quadrature.

» Chebyshev nodes: Clenshaw-Curtis quadrature.
L J 240




Interpolatory Quadrature: Computing Weights

How do the weights in interpolatory quadrature get computed?

Done by solving linear system.
Know: This quadrature should at least integrate monomials exactly.

b
b—a = /1dx=w1-1+---+wn-1
a

1

b
(bk—|—1_ak+1) _ / XkdX:LU1'Xk+"'+W . xk
kK+1 ] ' n

Write down n equations for n unknowns, solve linear system, done.

This is called the method of undetermined coefficients.

Demo: Newton-Cotes weight finder [cleared] a1



https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/quadrature_and_diff/Newton-Cotes weight finder.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/quadrature_and_diff/Newton-Cotes weight finder.ipynb

Examples and Exactness

To what polynomial degree are the following rules exact?

Midpoint rule (b—a)f (a+b)

b—a \

22(f(a) + (b))

Trapezoidal rule

- parabola

RN

Simpson'’s rule bga (f(a) + 4f ("erb) +f(b)) = 5

Midpoint: technically 0 (constants), actually 1 (linears)
Trapezoidal: 1 (linears)

Simpson's: technically 2 (parabolas), actually 3 (cubics)

» Cancellation of odd-order error requires symmetric nodes.

» (trapz. — midpt.) usable as (“a-posteriori”) error estimate.
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Interpolatory Quadrature: Accuracy
Let p,—1 be an interpolant of f at nodes xi, ..., x, (of degree n — 1)

Recall .
Zw;f(x,-) = / Pn—1(x)dx
i a

What can you say about the accuracy of the method?

Notation: [|f|| ., = max,¢[a s |f(X)]

/b f(x)dx — /ab Pn—1(x)dx

< / 1£(x) = po_1(x)] dx
< (b=-a)|lf = po-1ll
(using interp. error) < C(b —a)h" |[F(M]| < cptl Hf(")
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Quadrature: Overview of Rules

» n: number of points

>
>

vy

result above: O(h™™!)

v

“Deg.”: Degree of polynomial used in interpolation (= n— 1)

n | Deg. | Ex.Int.Deg. | Intp.Ord. | Quad.Ord. | Quad.Ord.
(w/odd) (regular) (w/odd)
n—1 (n—l)—i—lodd n n+1 (n—|—1)+10dd
Midp. |10 1 1 2 3
Trapz. |2 |1 1 2 3 3
Simps. | 3|2 3 3 4 5
S.3/814 |3 3 4 5 5

“Ex.Int.Deg.": Polynomials of up to (and including) this degree actually get
integrated exactly. (including the odd-order bump)

“Intp.Ord.”: Order of Accuracy of Interpolation: O(h")
“Quad.Ord. (regular)”: Order of accuracy for quadrature predicted by the error

“Quad.Ord. (w/odd):" Actual order of accuracy for quadrature given ‘bonus’
degrees for rules with odd point count

Observation: Quadrature gets (at least) ‘one order higher' than interpolation—even more
for odd-order rules. (i e. more accurate)
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Interpolatory Quadrature: Stability

Let p,—1 be an interpolant of f at nodes xi, ..., x, (of degree n — 1)

Recall .
Zw;f(x,-) = / Pn—1(x)dx
i a

What can you say about the stability of this method?

Again consider 7(x) = f(x) + e(x).

Zwif(xi) - Zwif(xi) < leie(Xi)l < <Z |Wi’> llelloo

So, what quadrature weights make for bad stability bounds?

Quadratures with large negative weights. (Recall: ", wj is fixed.) ]

245



About Newton-Cotes

What's not to like about Newton-Cotes quadrature?
Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)

In fact, Newton-Cotes must have at least one negative weight as soon
as n > 11.
More drawbacks:

» All the fun of high-order interpolation with monomials and
equispaced nodes (i.e. convergence not guaranteed)

» Weights possibly non-negative (—stability issues)

» Coefficients determined by (possibly ill-conditioned)
Vandermonde matrix

» Thus hard to extend to arbitrary number of points.
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Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes,
too? Hope: More design freedom — Exact to higher degree.

|dea: method of undetermined coefficients
But: Resulting system would be nonlinear.

Can use orthogonal polynomials to get a leg up.
Gaussian quadrature with n points: Exactly integrates polynomials
up to degree 2n — 1.

Demo: Gaussian quadrature weight finder [cleared]
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Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness

of the function.
|dea: Stitch together multiple lower-order quadrature rules to alleviate

smoothness requirement.

e.g. trapezoidal

J——y f —
aa % az N Q m
a b
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Error in Composite Quadrature

What can we say about the error in the case of composite quadrature?

m

/ dx—Zij, 5% ) <CHf

j=1 i=1

a- —dj-1

- CHf(”)

. Z (aj —aj-1)"(aj —aj-1) < C Hf(”)

<hn

where h is the length of a single panel.

Error for one panel of length h: | [(f — po—1)| < C- A"+ ||F(M]|

)n—l—l

h"(b — a),
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Composite Quadrature: Notes

Observation: Composite quadrature loses an order compared to
non-composite.

|dea: If we can estimate errors on each subinterval, we can shrink (e.g. by
splitting in half) only those contributing the most to the error.
(adaptivity)
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Taking Derivatives Numerically

Why shouldn’t you take derivatives numerically?

» ‘Unbounded’
A function with small ||f||_, can have arbitrarily large |||
» Amplifies noise
Imagine a smooth function perturbed by small, high-frequency
wiggles
» Subject to cancellation error

» Inherently less accurate than integration
» Interpolation: A"
» Quadrature: h"t!
» Differentiation: h"~1
(where n is the number of points)
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Numerical Differentiation: How?
How can we take derivatives numerically?

Let x = (x;)"_; be nodes and (¢;)?_; an interpolation basis.
Find interpolation coefficients & = (;)"_; = V~1f(x). Then

F(€) ~ po-1(§) = D cipi(€).
i=1
Then, simply take a derivative:
F1(&) ~ ph_1(8) = ) cig(£).
i=1

! are known because the interpolation basis ¢; is known!

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Basics)
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Numerical Differentiation: Accuracy

Interpolation error: If x = (x;)"_; and f(x) = p,—1(x), then

(n
F(x) = Prt(x) = - H( x = ).

(n
F1(x) = Py () ~ ) (H(x—x,>.

(ignoring dependency of £ on x) Note that the derivative of [ [(x—x;)
has n — 1 roots (extrema of [[(x — x;)), interspersed between (x;),
so can be bounded by A"~

|F'(x) = pn—1(x)| < C Hf(”)

hn—l
(oS

Demo: Taklng Derivatives with Vandermonde Matrices [cleared)]

{f N
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Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?

7

Let
e10a) - @)
©1(xn) -+ ©p(xn)
Then altogether:
f'(x) = pp_1(x) = Vo = V'V (x).

So D = V'V~ acts as a differentiation matrix.

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)
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Properties of Differentiation Matrices

How do | find second derivatives?

D?.

Does D have a nullspace?

> Yes, constant vectors.
(At least for polynomial interpolation bases.)

> l.e. rows of differentiation matrices always sum to 0.

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Shifting
and scaling the nodes)
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Numerical Differentiation: Shift and Scale
Does D change if we shift the nodes (x;)/_; — (x; + ¢)7_,7

Let f(x) = f(x —c). Define pp_1 via pp_1(x+¢) = f(x—i— ¢). Then
Pn—1(x) = pn—1(x — ¢) for all x because polynomial bases of degree
< n—1 are closed under translation, i.e. a shifted basis again consists
of polynomials of degree < n— 1. Thus g/, ;(x + ¢) = p,,_,(x).

In other words, Dy = Dy c.

Does D change if we scale the nodes (x;)7_; — (ax;)f_,7

7~

Let f(x) = f(x/a). Define p,_1 via pp_1(ax) = f(ax). Then
Pn—1(x) = pn—1(x/a) for all x because polynomial bases of degree
< n—1 are closed under dilation, i.e. a dilated basis again consists
of polynomials of degree < n— 1. Thus p|,_;(ax) = p},_;(x)/ca. In
other words, D,x = Dy/a.
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Finite Difference Formulas from Diff. Matrices

How do the rows of a differentiation matrix relate to FD formulas?

Let D = (d;;)7;—;. Then f'(x;) Zd,df x;).

For example, if D is 3 x 3, then ...
> first row: f/(Xl) ~ d1’1 f(Xl) + d]_’zf(Xg) -+ d1’3f(X3),
» second row: f/(Xg) ~ d2,1 f(Xl) + d2,2 f(Xg) + d2,3f(X3), -

- 7

Assume a large equispaced grid and 3 nodes w/same spacing. How to use?

~

» First-row formula for left boundary,

» second-row formula for interior grid points,

» third-row formula for right boundary.




Finite Differences: via Taylor

Idea: Start from definition of derivative. Called a forward difference.

F(x) ~ f(x+ h/)7— f(x)

Q: What accuracy does this achieve?
Using Taylor:

f(x+h)=Ff(x)+f(x)h+ f//(x)h22 +--

Plug in:

F(x) + )+ F/ ()2 + - — F(x)
h

= f/(x) + O(h)

— first order accurate.
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More Finite Difference Rules

Similarly:
d ;o f(x+h)—f(x—h) )
f'(x) = T + O(h?)

(Centered differences)

Can also take higher order derivatives:

F1(x) = f(x+ h) —21;7(2X)+ f(x —h) o)

Can find these by trying to match Taylor terms.

Alternative: Use linear algebra with interpolate-then-differentiate to find
FD formulas.

Demo: Finite Differences vs Noise [cleared]

Demo: Floating point vs Finite Differences [cleared]
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Richardson Extrapolation

Deriving high-order methods is hard work. Can | just do multiple low-order
approximations (with different h and get a high-order one out?

Suppose we have F = F(h) 4+ O(hP) and F(hy) and F(hy).

Grab one more term of the Taylor series: F = F(h) + ah? + O(h9)
Typically: ¢ = p+ 1 (but not necessarily). Do not know a.

Idea: Construct new approximation with the goal of O(h9) accuracy:

F = aF(h) + BF(hy) + O(h9)

> Need aahl + Bah =0

» Need o+ =1 (< f=1—a) (maintain low-order terms!)
__—h

o -h

a(l — M) +1 =0 < a
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Richardson Extrapolation: Observations,

What are « and 3 for a first-order (e.g. finite-difference) method if we
choose hy = hy /27

p=1

=3
“wog-i1_1- b fsl-a=2

a

Demo: Richardson with Finite Differences [cleared]
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Romberg Integration

Can this be used to get even higher order accuracy?

e.g. 1lst 2nd  3rd  4th

order accurate

Carrying out this process for quadrature is called Romberg integration.
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Outline

Initial Value Problems for ODEs
Setup
Existence, Uniqueness, Conditioning
Numerical Methods (I
Accuracy and Stability
Stiffness
Numerical Methods (I1)
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What can we solve already?

» Linear Systems: yes
» Nonlinear systems: yes

» Systems with derivatives: no
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Some Applications

IVPs

BVPs

>

>
>

Population dynamics

y1 = y1(a1 — Biy2) (prey)
¥y = yao(—ao + Boyi)
(predator)

chemical reactions

equations of motion

> bridge load

» pollutant concentration
(steady state)

> temperature
(steady state)

> waves
(time-harmonic)

Demo: Predator-Prey System [cleared]
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Initial Value Problems: Problem Statement
Want: Function y : [0, T] — R" so that
> y(t)=F(t,y,y'y",...,y* ) (explicit), or
> f(t,y,y.y",....,y) =0 (implicit)
are called explicit/implicit kth-order ordinary differential equations (ODEs).
Give a simple example.

y'(t) =ay

Not uniquely solvable on its own. What else is needed?

Initial conditions. (Q: How many?)

y(0) =g, Y(O0)=g1,... y*1(0)=gi.

Boundary Value Problems (BVPs) trade some derivatives for condi-
tions at the ‘other end’.
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Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this
example:

In first-order form:
0= [

y1(t) = (r1(1)) = ya(t) = F(ya(t)).

So we can design our methods to only handle first-order problems.

Because:




Properties of ODEs

What is a linear ODE?

f(t,x) = A(t)x + b(t)

What is a linear and homogeneous ODE?

f(t,x)=A(t)x

What is a constant-coefficient ODE?

f(t,x)=Ax+b
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Properties of ODEs (lI)

What is an autonomous ODE?

One in which the function f does not depend on time t.

yo(t)=1,  y(0)=0.

— Without loss of generality: Get rid of explicit t dependency.

An ODE can made autonomous by introducing an extra variable:
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Existence and Uniqueness
Consider the perturbed problem
{ y'(t) = f(y) { y'(t)=f(y)
y(to) = ¥o y(to) = ¥o
Then if f is Lipschitz continuous (has ‘bounded slope'), i.e.

1F(y) = FWII < Llly =¥l

» there exists a solution y in a neighborhood of ty, and. ..

> Jly(t) = y(£)|| < eHt=) ||y, — ol
» This is the Picard-Lindelof theorem.

What does this mean for uniqueness?

It implies uniqueness. If there were two separate solutions with iden-
tical initial values, they are not allowed to be different.
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Conditioning
Unfortunate terminology accident: “Stability” in ODE-speak
To adapt to conventional terminology, we will use ‘Stability’ for
» the conditioning of the IVP, and
» the stability of the methods we cook up.
Some terminology:

An IVP is stable if and only if. ..

The solution is continuously dependent on the initial condition, i.e.
For all € > 0 there exists a 6 > 0 so that

1Yo =yoll <o = ly(t)—y(t)ll <e forall t>to.

An IVP is asymptotically stable if and only if

Iy(8) —y(@)l =0 (t = o0).
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Example |: Scalar, Constant-Coefficient

Iy
{y(t))\y where A=a+ib
y(0) = yo

Solution?

y(t) = yoe™* = yo(e™* - &™)

When is this stable?

Re(\) > 0: Re(\) = 0: Re()\) < 0:
ly(t)] |y (t)]

4+ St
Unstable Stable, not asympt. Asymptotically
stable stable
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Example II: Constant-Coefficient System

{ y'(t) = Ay(t)

Assume V™LAV = D = diag(\1, ..., \,) diagonal. Find a solution.

Define w(t) := V~ly(t). Then

Find y(t) = Vw(t).

w'(t) = V7 iy/(t) = V7 1Ay(t) = VLAV w(t) = Dw(t).

Now: n decoupled IVPs (with wo = V~ly,) — Solve as scalar.

When is this stable?

[ When Re \; < 0 for all eigenvalues \;.
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Euler's Method

Discretize the IVP

» Discrete times: ti, tp,..., with t;y1 =t + h
» Discrete function values: y, ~ y(tx).

Idea: Rewrite the IVP in integral form:
t
y())=yo+ [ Flylr))dr,
to

then throw a simple quadrature rule at that. With the rectangle rule,
we obtain Euler's method.
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Euler's method: Forward and Backward

0 =yo+ [ Fly(r))dr,

Use ‘left rectangle rule’ on integral:

~

Yii1 =Yk + hf(yy)

Requires evaluating the RHS. Called an explicit method. Forward
Euler.

Use ‘right rectangle rule’ on integral:

Yir1 =Yk + hf(yii1)

Requires solving a system of equations. Called an implicit method.
Backward Euler.

Demo: Forward Euler stability [cleared]
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Global and Local Error

local error global error

Let ug(t) be the function that solves the ODE with the initial condition
uk(tx) = yk. Define the local error at step k as. ..

U = yk — uk—1(tk)

Define the global error at step k as. ..

gk = y(tk) — v«
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About Local and Global Error

Is global error = > local errors?

No.

Consider an analogy with interest rates—at any given moment, you
receive 5% interest (~ incur 5%error) on your current balance.

But your current balance includes prior interest (error from prior
steps), which yields more interest (in turn contributes to the error).

This contribution to the error is called propagated error.
The local error is much easier to estimate — will focus on that.

A time integrator is said to be accurate of order p if. ..

lx = O(hPTY)




ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if £, = O(hPT1)

This requirement is one order higher than one might expect—why?

A: To get to time 1, at least 1/h steps need to be taken, so that the
global error is roughly

[y

m -O(hPT) = O(hP).
~~
#£steps

(Note that this ignores ‘accrual’ of propagated error.)
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Stability of a Method

Find out when forward Euler is stable when applied to y'(t) = Ay(t).

Yk = Yk—1+ hAyk_1
= (1 + h>‘))/k—1
= (]. + h)\)kyo

So: stable < |1+ hA| < 1.
|1 4+ h)| is also called the amplification factor.
Gives rise to the stability region in the complex plane:

(k)
//
m R ()

Ui
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Stability: Systems

What about stability for systems, i.e.

y(£) = Ay(t)?

1. Diagonalize system as before
2. Notice that same V also diagonalizes the time stepper
3. apply scalar analysis to components.

— Stable if |14 h);| <1 for all eigenvalues A;.
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Stability: Nonlinear ODEs

What about stability for nonlinear systems, i.e.

y'(t) = f(y(1))?

Consider perturbation e(t) = y(t) — y(t). Linearize:

e'(t) = Fy(t)) — F(¥(1)) = Je(y(t))e(t)

l.e. can (at least locally) apply analysis for linear systems to the
nonlinear case.
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Stability for Backward Euler
Find out when backward Euler is stable when applied to y'(t) = Ay(t).

Yk = Yk-1+1 hAyk
(1 —=hA\) = yk1
1 1 \*
Ve = 7kt T <1—h)\> Yo-

So: stable < |1 — hA| > 1.
In particular: stable for any h if RA < 0 (“unconditionally stable™).

BE can be stable even when ODE is unstable. (Re A > 0). Accuracy?

» Explicit methods: main concern in choosing h is stability (but
also accuracy).

» Implicit methods: main concern in choosing h is accuracy.

Demo: Backward Euler stability [cleared]
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Stiff ODEs: Demo

Demo: Stiffness [cleared]
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‘Stiff” ODEs

» Stiff problems have multiple time scales.
(In the example above: Fast decay, slow evolution.)

» In the case of a stable ODE system

stiffness can arise if Jr has eigenvalues of very different magnitude.
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Stiffness: Observations

Why not just ‘small” or ‘large’ magnitude?

Because the discrepancy between time scales is the root of the prob-
lem. If all time scales are similar, then time integration must simply
‘deal with' that one time scale.

If there are two, then some (usually the fast ones) may be considered
uninteresting.

What is the problem with applying explicit methods to stiff problems?

Fastest time scale governs time step — tiny time step — inefficient.
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Stiffness vs. Methods

Phrase this as a conflict between accuracy and stability.

» Accuracy (here: capturing the slow time scale) could be
achieved with large time steps.

> Stability (in explicit methods) demands a small time step.

Can an implicit method take arbitrarily large time steps?

In terms of stability: sure.
In terms of accuracy: no.
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Predictor-Corrector Methods

|dea: Obtain intermediate result, improve it (with same or different
method).

For example:
1. Predict with forward Euler: ¥y 11 = yx + hf (yx)

2. Correct with the trapezoidal rule:
Y1 = Y + 2(F(vk) + F(Phs1))-
This is called Heun's method.




Runge-Kutta/'Single-step’/*Multi-Stage' Methods

Idea: Compute intermediate ‘stage values’, compute new state from those:

n = f(tk+chyc+(ar-n+---+ais-rs)h)

rs = f(tk+csh,yk+(asi-n—+---+ass-rs)h)

Yigr =Yk +(br-r+ -+ bs-rs)h

Can summarize in a Butcher tableau:

€1 | am -+ dis

Cs | ds1 -+ dss
‘bl oo o




Runge-Kutta: Properties
When is an RK method explicit?

If the diagonal entries in the Butcher tableau and everything above
it are zero.

When is it implicit?

(Otherwise)

When is it diagonally implicit? (And what does that mean?)

If the everything above the diagonal entries in the Butcher tableau is
zero.
This means that one can solve for one stage value at a time (and not

multiple).
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Runge-Kutta: Embedded Pairs

How can error in RK integration be controlled?

Most of the cost is in computing stage values rq, . ..
second (order p* accurate) state estimate:

Yir1 = Y& + (by

Ye+1 =Yk +(b1-ri+---+ bs-rs)h
.r1+...+bs*.rs)h

|Yk+1 — Yiy1| can serve as an estimate of local error /x4, e.g. for
time step control. Called an embedded pair.

C1 | 911 dis
Cs | asi dss
p b bs
* * *
p* | b] b;

, rs. Reuse for a
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Heun and Butcher

Stuff Heun's method into a Butcher tableau:

L. Jky1 = yu + hf(yk)
2. Yier1 = Yk + 2(F(vi) + F(Fies1))-
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RK4

What is RK47
0 kl - f(tnayn)7
1|1
2|2 h k
2 |2 1
ko = f — h—=
fo 2 2= (343 ),
110 0 1 h P
2
I I I 1 — b 2
5 3 3 & ks f<fn+2=yn+h2>,
Note similarity to ks = f(tn+ h,yn+ hks)
Simpson's rulel 1
yn—l-l:}/n—|—éh(kl—|—2k2—|—2/(3—|—/(4,)7

Demo: Dissipation in Runge-Kutta Methods [cleared]
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Multi-step/Single-stage/Adams Methods/Backward Differencing
Formulas (BDFs)

|dea: Instead of computing stage values, use history (of either values of f
or y—or both):

M N
Yir1 = D iyip1-i T h > Bif (Veey1-i)
i=1 i=1

Extensions to implicit possible.

Method relies on existence of history. What if there isn't any? (Such as at
the start of time integration?)

These methods are not self-starting.
Need another method to produce enough history.
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Stability Regions

Why does the idea of stability regions still apply to more complex time
integrators (e.g. RK?)

As long as the method doesn't “treat individual vector entries spe-
cially”, a matrix that diagonalizes the ODE also diagonalizes the time
integrator.

= Can consider stability one eigenvalue at a time.

Demo: Stability regions [cleared]
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More Advanced Methods

Discuss:

>

vVvyYVvyVvyy

What is a good cost
metric for time
integrators?

AB3 vs RK4
Runge-Kutta-Chebyshev
LSERK and AB34

IMEX and multi-rate

Parallel-in-time
(“Parareal”)

Im Ah

ab3
ab34
Iserk
- rk4
-4 -2
Re Ah
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Outline

Boundary Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods
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BVP Problem Setup: Second Order

Example: Second-order linear ODE

" (x) + PO (x) + q(x)u(x) = r(x)

with boundary conditions (‘BCs’) at a:
» Dirichlet u(a) = u,
» or Neumann u'(a) = v,
» or Robin awu(a) + Bu'(a) = w,
and the same choices for the BC at b.

Note: BVPs in time are rare in applications, hence x (not t) is typically
used for the independent variable.



BVP Problem Setup: General Case
ODE:
y() = Fly(x)) f:R" R
BCs:
g(y(a),y(b)) =0 g :R* >R
(Recall the rewriting procedure to first-order for any-order ODEs.)

Does a first-order, scalar BVP make sense?

No—need second order (or n > 2) to allow two boundary conditions.

Example: Linear BCs B,y(a) + Bpy(b) = c.
Is this Dirichlet/Neumann/...7

Could be any—we're in the system case, and B, and B}, are matrices—
so conditions could be only any component.
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Do solutions even exist? How sensitive are they?

General case is harder than root finding, and we couldn’t say much there.

— Only consider linear BVP.
(x y'(x) = A(x)y(x) + b(x)
Bay(a) + By (b) = ¢

Exploit linearity: split into multiple problems.

Split into boundary (B) and volume (V) parts.
yp(x) = A(X)ys(x)

(B) {BayB(a) + Boyg(b) = ¢

V) {y'v(x) = A()yv(x) + b(x)

Bayv(a) + Bpyy(b) =0

Theny =yg+yy.
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Solving the “Boundary” BVP

(8) {y'B(x> = AX)ys(x)
Ba.yg(a) + Bryp(b) = ¢

y,B,i(X) = A(X).VB,:'(X)’ yB,i(a) = €. (i=1,...,n)

e; is the ith unit vector. Define fundamental sol. matrix:

| |
Y(x) = |:yB,1 yB,n]

Let Q := B,Y(a) + BpY(b). (*) has a unique solution & Q is
invertible. Solve Qa = ¢ to find coefficients: Y (x)a solves (B).
Define ®(x) := Y(x)Q@ L. ®(x)c also solves (B).
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Solving the “Volume™ BVP

v {y@(x) = Ay v(x) + b(x)
Bayv(a) + Bpyy(b) =0

Define Green's function

G(x,z) = d(x)B,d(a)d1(2) z<x,
| -e()Be@(b)eH(2) 2> x.

Then .
yy(x) = / G(x,y)b(z)dz

solves (V).
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ODE Systems: Conditioning

Altogether:

b
y() =y +yy = d(x)e + / G(x,y)b(y)dy.

For perturbed problem with b(x) + Ab(x) and ¢ + Ac, derive a bound on
1A [l

1Ay [lo < max([[®]lo 1 Gllo) <IIACII1 + / 1Ab(y)l; dy) :

» Conditioning bound implies uniqueness.

> Also get continuous dependence on data.

s N
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Shooting Method
|dea: Want to make use of the fact that we can already solve IVPs.
Problem: Don't know all left BCs.

Demo: Shooting method [cleared)]

What about systems?

No problem—cannons are aimed in 2D as well. :)

\.

What are some downsides of this method?

» Can fail
» Can be unstable even if ODE is stable

What's an alternative approach?

Set up a big linear system.

303


https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/bvp_odes/Shooting method.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/bvp_odes/Shooting method.ipynb

Finite Difference Method

Idea: Replace v’ and u” with finite differences.
For example: second-order centered

U,(X) — U(X + h)2_hu(x — h) + O(hZ)
J(x) = u(x + h) — 2L;7(2X) + u(x — h) N O(h2)

Demo: Finite differences [cleared]

What happens for a nonlinear ODE?

Get a nonlinear system—Use Newton. ]

Demo: Sparse matrices [cleared]
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Collocation Method

oY) =1fyx),
) { £(v(a). y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)
yx) =D a;Ti(x)
i=1

Want y to be close to solution y. So: plug into (x).

Problem: § won't satisfy the ODE at all points at least.
We do not have enough unknowns for that.

— Get a big (non-)linear system
3. Solve that (LU/Newton)— done.

2. ldea: Pick n points where we would like (*) to be satisfied.
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Galerkin/Finite Element Method

u"(x) = f(x), u(a) = u(b) = 0.
Problem with collocation: Big dense matrix.
Idea: Use piecewise basis. Maybe it'll be sparse.

\/ .
NN o "hat functions"
><><\ ]

o % e b >

' L X X

\ ) ? “

one "finite element"

What's the problem with that?

u’ does not exist. (at least at a few points where it's discontinuous)
u” really does not exist.
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Weak solutions/Weighted Residual Method

Idea: Enforce a ‘weaker’ version of the ODE.

Compute ‘moments’:

b b
/ U (x)(x)dx :/ f(x)(x)dx
Require that this holds for some test functions 1) from some set W.

Now possible to get rid of (undefined) second derivative using inte-
gration by parts:

b b
L () (x)dx = [/ ()8 — / o () (x)dx.

> Also called weighted residual methods.
» Can view collocation as a WR method with 1;(x) = d(x — x;)




Galerkin: Choices in Weak Solutions

Make some choices:
» Solve for u € span {hat functions ¢;}

» Choose ¢ € W = span {hat functions ¢;} with (a) = ¢)(b) = 0.
— Kills boundary term [u/(x)(x)]5.

These choices are called the Galerkin method. Also works with other bases.
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Discrete Galerkin
Assemble a matrix for the Galerkin method.

— S = / e
| b {i% ]wx — [ reouax
—Zaj/ Pi(x)pi(x)dx = /bf(X)sOi(X)dX

2.9, \

S,‘j ri
Saa = r.

Now: Compute S, solve sparse (!) linear system.
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Outline

Partial Differential Equations and Sparse Linear Algebra
Sparse Linear Algebra
PDEs
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Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?

» (CS555 — Numerical Methods for PDEs
» (CS556 — lterative and Multigrid Methods
» (CS554 — Parallel Numerical Algorithms

We would love to see you there! :)
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Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don't factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In" [cleared]
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‘Stationary’ lterative Methods

Idea: Invert only part of the matrix in each iteration. Split
A=M-—-N,

where M is the part that we are actually inverting. Convergence?

Ax = b
Mx = Nx+b
Mxii1 = Nxk+ b
Xk+1 = M_I(ka + b)

» These methods are called stationary because they do the same
thing in every iteration.

» They carry out fixed point iteration.
— Converge if contractive, i.e. p(M~IN) < 1.

» Choose M so that it's easy to invert.
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Choices in Stationary Iterative Methods

What could we choose for M (so that it's easy to invert)?

Name ‘ M N
Jacobi D —(L+U)
Gauss-Seidel | D + L -U
SOR 1p+r (-1)D-vU
where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods [cleared]
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Conjugate Gradient Method

Assume A is symmetric positive definite.

|dea: View solving Ax = b as an optimization problem.

1
Minimize ¢(x) = EXTAX —x"b &  Solve Ax=b.

Observe —Vy(x) = b — Ax = r (residual).

Use an iterative procedure (s is the search direction):

xo = (starting vector)

Xk+1 = Xk + Sk,
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CG: Choosing the Step Size

What should we choose for ayx (assuming we know sy )?

0
0 = a—ago(xk—i-aksk)

= Vo(Xkq1) - Sk = —Fks1 - Sk

Learned: Choose « so that next residual is L to current search direc-

tion.
rey1 = e — aAsg
|
0= skTrkH = skTrk — akskTAsk
Solve:
slri s/ Aey
oy = T = ——7 9 (*)
s, Asi S, Ask

where e, = x, — x* and r, = —Ae.




CG: Choosing the Search Direction

What should we choose for s,?

ldea: sk = rx = —V(xk), i.e. steepest descent. No-still a bad
idea.

x, y are called A-orthogonal or conjugate if and only if xT Ay = 0.
Better Idea: Require s] As; = 0 if i # j.

View error as linear combination of search directions, with some (thus
far unknown) coefficients:

€ep = Xg — x* = Z(S,'S;.
i

» We run out of A-orthogonal directions after n iterations.

» |s the error going to be zero then? If 6, = —ay, then yes.




CG: Further Development

skTAeo = Z 5,-5,Z—As,- = 5ks,Z—Ask.

I

Solve for ¢, and expand:

T k=1 .
; sl Aey Sk A (eO + 2 0‘151) s/ Aex
KT sTAs. s/ As  sTA
k Sk Kk Sk Sy ASk

How do we generate the s, 7
» Pick a random one to start with. Perhaps rg?

> Generate next one by orthogonalizing from Krylov space
procedure z, Az, A%z
Insight: Use three-term Lanczos it. to generate. — cheap!

= — 0.
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Introduction

Notation:

0

au = OUu = Uy
A PDE (partial differential equation) is an equation with multiple partial
derivatives:

Uxx + Uy, =0
Here: solution is a function u(x,y) of two variables.

Examples: Wave propagation, fluid flow, heat diffusion
» Typical: Solve on domain with complicated geometry.

| oy

o

|
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Initial and Boundary Conditions

» Sometimes one variable is time-like.
What makes a variable time-like?

» Causality
» No geometry

Have:
» PDE
» Boundary conditions
» Initial conditions (in t)

éq\

/ /,
“ ////

Be
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Time-Dependent PDEs

Time-dependent PDEs give rise to a steady-state PDE:
ur = fux, Uy, e, tyy) = 0= F(uy, Uy, U, tyy)

Idea for time-dep problems (Method of Lines):
» Discretize spatial derivatives first
» Obtain large (semidiscrete) system of ODEs
» Use ODE solver from Chapter 9

Demo: Time-dependent PDEs [cleared)]
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Notation: Laplacian

Laplacian (dimension-independent)

Au=divgradu =V - (Vu) = ux + uyy
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Classifying PDEs

Three main types of PDEs:
» hyperbolic (wave-like, conserve energy)
> first-order conservation laws: uy + f(u)x =0
» second-order wave equation: uy = Au
» parabolic (heat-like, dissipate energy)
» heat equation: u; = Au
» elliptic (steady-state, of heat and wave eq. for example)

» Laplace equation Au=10

» Poisson equation Au=f
(Pure BVP, similar to 1D BVPs, same methods apply—FD, Galerkin,
etc.)
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Outline

Fast Fourier Transform
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Outline

Additional Topics
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Outline

Wrap-up
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The End

Thanks for your interest in CS450!
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