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What’s the point of this class?

PDEs describe lots of things in nature:

I Fluid flow (Navier-Stokes equations)
I Electromagnetism (Maxwell’s equations)
I Waves (Elasticity, Acoustics)
I Plasmas (Magnetohydrodynamics)

Idea: Use them to

I Make predictions (and check them, to validate the model:
science!)

I Use predictions (for design of cars, airplanes, reactors, . . . )



Survey

I Home dept
I Degree pursued
I Longest program ever written

I in Python?

I Research area



Class web page

https://bit.ly/numpde-s20

I Book Draft
I Notes, Class Outline
I Assignments (submission and return)
I Piazza
I Grading Policies/Syllabus
I Video
I Scribbles
I Demos (binder)

https://bit.ly/numpde-s20


Sources for these Notes

I Adler, James, Hans De Sterck, Scott MacLachlan, and Luke N. Olson.
Numerical Partial Differential Equations, 2020. (draft)

I Strikwerda, John C. Finite Difference Schemes and Partial Differential
Equations, Second Edition. Other Titles in Applied Mathematics.
Society for Industrial and Applied Mathematics, 2004.

I LeVeque, Randall J. Numerical Methods for Conservation Laws. 2nd
ed. Birkhäuser Basel, 1992.

I Braess, Dietrich. Finite Elements: Theory, Fast Solvers, and
Applications in Solid Mechanics. Cambridge University Press, 2007.

I Shu, Chi-Wang. Lecture Notes for AM257, Brown University, Fall
2006.

I Heuveline, Vincent. Lecture Notes for “Numerik für PDEs”.
Universität Karlsruhe, Summer 2005.

I Various prior bits of material by Luke Olson and Stephen Bond.



Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numpde-notes

Copyright (C) 2020 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

https://github.com/inducer/numpde-notes
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PDEs: Example I

What does this do? ∂tu = ∂xu

I Slope in x and t matches
I Single profile on an x/t diagonal
I Which one? (left-leaning)
I We’ll deal with this a lot.

I Advection equation, one-way wave equation
I General solution: u(x , t) = u0(x + t)



PDEs: Example II

What does this do? ∂2xu + ∂2yu = 0

I Second derivative measures “bendiness” of a function
I “Bendiness” in x and y need to add up to zero
I Can a function like this have a maximum?



Some good questions

I What is a time-like variable? (Variables labeled t?)
I What if there are boundaries?

I In space?
I In time?

I Existence and Uniqueness of Solutions?
I Depends on where we look (the function space)
I In the case of the two examples? (if there are no boundaries?)

Some general takeaways:

I Don’t check common sense at the door.
I Think about what the PDE is “trying” to say.
I Develop physical intuition.



PDEs: An Unhelpfully Broad Problem Statement

Looking for u : Ω→ Rn where Ω ⊆ Rd so that u ∈ V and

F (u, ux , uy , uxx , uxy , uyy , . . . , x , y , . . . ) = 0

Notation
Used as convenient:

ux = ∂xu =
∂u

∂x



Properties of PDEs
What is the order of the PDE?

The highest (total, i.e. summing over axes) order of derivative oc-
curing in F .

When is the PDE linear?

If u and v are solutions, αu + βv are, too.

When is the PDE quasilinear?

The dependency in F on the highest-order partial derivatives is linear
in u.

When is the PDE semilinear?

If it is quasi-linear and if the high-order terms have coefficients that
depend only on x .



Examples: Order, Linearity?

(xu2)uxx + (ux + y)uyy + u3x + yuy = f

Second-order quasilinear

(x + y + z)ux + (z2)uy + (sin x)uz = f

First-order semilinear



Properties of Domains

I smooth
I with corners
I with reentrant corners
I with cusps

May influence existence/uniqueness of solutions!



Function Spaces: Examples

Name some function spaces with their norms.

C (Ω) f continuous, ‖f ‖∞ := supx∈Ω |f (x)|
C k(Ω) f k-times continuously differentiable
C 0,α(Ω) ‖f ‖α := ‖f ‖∞ + supx 6=y

|f (x)−f (y)|
|x−y |α (α ∈ (0, 1))

CL(Ω) |f (x)− (y)| ≤ L ‖x − y‖
Lp(Ω) ‖f ‖p,Ω := p

√∫
D |f (x)|pdx <∞

Why do these only define equivalence classes?
L2 special because. . . ?

W 1
p (Ω) ‖f ‖W p

1 (Ω) := (‖f ‖p,Ω + ‖f ′‖p,Ω) <∞
H1(Ω) equivalent to W 1

2 (Ω), also a Hilbert space

May also influence existence/uniqueness of solutions!



Solving PDEs
Closed-form solutions:
I If separation of variables applies to the domain: good luck with your

ODE
I If not: Good luck! → Numerics

General Idea (that we will follow some of the time)

I Pick Vh ⊆ V finite-dimensional
I h is often a mesh spacing

I Approximate u through uh ∈ Vh

I Show: uh → u (in some sense) as h→ 0

Example

u(x) = sin x where Vh is piecewise constant functions with grid spac-
ing h.



About grand big unifying theories

Is there a grand big unifying theory of PDEs?

No. Frustratingly, studying PDEs is a little bit like stamp collecting.
For instance, there are broad classes of second-order PDEs that be-
have mostly alike.



Collect some stamps

a(x , y)uxx+2b(x , y)uxy+c(x , y)uyy+d(x , y)ux+e(x , y)uy+f (x , y)u = g(x , y)

Discriminant value Kind Example
b2 − ac < 0 Elliptic Laplace uxx + uyy = 0
b2 − ac = 0 Parabolic Heat ut = uxx
b2 − ac > 0 Hyperbolic Wave utt = uxx

Where do these names come from?

Quadratic forms: ax2 + 2bxy + cy2 + lower order terms



PDE Classification in Other Cases

Scalar first order PDEs?

Have characteristics, therefore classified as hyperbolic. (See later.)

First order systems of PDEs?

Can be classified into hyperbolic/elliptic/parabolic as well, using
slightly more complicated method, depending on the direction of the
characteristics. See for example Loret ‘08.

http://people.3sr-grenoble.fr/users/bloret/enseee/maths/loret_maths-EEE.html


Classification in higher dimensions

Lu :=
d∑

i=1

d∑
j=1

ai ,j(x)
∂2u

∂xi∂xj
+ lower order terms

Consider the matrix A(x) = (aij(x))i ,j . May assume A symmetric. Why?

Schwarz’s theorem. So: real-valued eigenvalues.

What cases can arise for the eigenvalues?

Case Kind
λj(x) = 0 for some λ parabolic
λj(x) all have the same sign elliptic
λj(x) all but one have the same sign hyperbolic
λj(x) > 1 eigenvalue per sign, nonsingular ultra-hyperbolic



Elliptic PDE: Laplace/Poisson Equation

4u =
d∑

i=1

∂2u

∂x2i
= ∇ · ∇u(x)

2D
= uxx + uyy = f (x) (x ∈ Ω)

Called Laplace equation if f = 0. With Dirichlet boundary condition

u(x) = g(x) (x ∈ ∂Ω).

Demo: Elliptic PDE Illustrating the Maximum Principle

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Elliptic PDE Illustrating the Maximum Principle.ipynb


Elliptic PDEs: Singular Solution

Demo: Elliptic PDE Radially Symmetric Singular Solution

Given G (x) = C log(|x |) as the free-space Green’s function, can we
construct the solution to the PDE with a more general f ?

u(x) = (G ∗ f )(x) =

∫
Rd

G (x − y)f (y)dy

What can we learn from this?

Solutions to the Laplace equation are globally coupled. The value of
f at any point influences the solution everywhere (if only a little)

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Elliptic PDE Radially Symmetric Singular Solution.ipynb


Elliptic PDEs: Justifying the Singular Solution

u(x) = (G ∗ f )(x) =

∫
Rd

G (x − y)f (y)dy

Why?

4u(x) = (4G ∗ f )(x) =

∫
Rd

(4G (x − y))f (y)dy

=

∫
Rd

δ(x − y)f (y)dy = f (x)



Parabolic PDE: Heat Equation · Separation of Variables
ut = uxx ((x , t) ∈ [0, 1]× [0,T ])

u(x , 0) = g(x) (x ∈ [0, 1])

u(0, t) = u(1, t) = 0 (t ∈ [0,T ])

Looking for u(x , t) = v(t) · w(x).
Plug into PDE: v ′(t) · w(x) = v(t) · w ′′(x). Divide:

v ′(t)

v(t)
= C =

w ′′(x)

w(x)
,

where C is constant since it is independent of x and t.
I w ′′ = Cw with BCs yields w(x) = α · sin(mπx) and

C = −m2π2 or any linear combination; Fourier to match g .
I Focus on specific value of m: v ′ = Cv with ICs yields

v(t) = exp(−m2π2t).



Parabolic PDE: Solution Behavior

Demo: Parabolic PDE What can we learn from analytic and numerical
solution?

I Heat equation ‘washes out’ the solution
I Appears to obey a maximum principle
I Appears to smooth the data

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Parabolic PDE.ipynb


Hyperbolic PDE: Wave Equation

utt = c2uxx ((x , t) ∈ R× [0,T ])

u(x , 0) = g(x) (x ∈ R)

with g(x) = sin(πx).

Is this problem well-posed?

No, missing initial condition on ut .

ut(x , 0) = 0 (x ∈ R)

Can be rewritten in conservation law form:

qt(x) +∇ · F (q(x)) = s(x)



Hyperbolic Conservation Laws

qt(x , t) +∇ · F (q(x , t)) = s(x)

Why is this called a conservation law?

I Balance between a conserved quantity q and a flux f .
I Flux prescribes the ‘flow direction’. When is flux divergence
< 0?

I s is a source term.

F :?→?

I q(x , t) ∈ Rn

I F : Rn → Rn × Rd



Wave Equation as a Conservation Law

Rewrite the wave equation in conservation law form:

Introduce a new variable v and let

ut = cvx

vt = cux .

Observe utt = cvxt = c2uuxx . Define q :=
[
u v

]T .



Solving Conservation Laws
Solve

ut = vx

vt = ux .

qt +

[
0 −c
−c 0

]
qx = Aqx = 0

Diagonalize: Define q̃ := V−1q,

q̃t + V−1AV q̃x =

[
c 0
0 −c

]
q̃x = 0

→ two advection equations

Solution, for some φ`, φr : u(t, x) = φ`(x + ct) + φr (x − ct)

Demo: Hyperbolic PDE

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Hyperbolic PDE.ipynb


Hyperbolic: Solution Properties

Properties of the solution for hyperbolic equations:

I Has conserved quantities
I q, “energy” (→ HW1)
I Maintains smoothness of IC
I Typical trick: Project to one dimension, diagonalize,

understand advection behavior.
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Interpolation and Vandermonde Matrices

Limit the set of functions to a linear combination from an interpola-
tion basis ϕi .

f (x) =

Nfunc∑
j=0

αjϕj(x)

Interpolation becomes solving the linear system:

yi = f (xi ) =

Nfunc∑
j=0

αj ϕj(xi )︸ ︷︷ ︸
Vij

↔ Vα = y .

Want unique answer: Pick Nfunc = N → V square.
V is called the (generalized) Vandermonde matrix.

V (coefficients) = (values at nodes) .



Finite Differences Numerically

Demo: Finite Differences
Demo: Finite Differences vs Noise
Demo: Floating point vs Finite Differences

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Finite Differences.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Finite Differences vs Noise.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Floating point vs Finite Differences.ipynb


Taking Derivatives Numerically
Why shouldn’t you take derivatives numerically?

I ‘Unbounded’
A function with small ‖f ‖∞ can have arbitrarily large ‖f ′‖∞

I Amplifies noise
Imagine a smooth function perturbed by small, high-frequency
wiggles

I Subject to cancellation error
I Inherently less accurate than integration

I Interpolation: hn
I Quadrature: hn+1

I Differentiation: hn−1

(where n is the number of points)

Demo: Taking Derivatives with Vandermonde Matrices

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Taking Derivatives with Vandermonde Matrices.ipynb


Differencing Order of Accuracy Using Taylor

Find the order of accuracy of the finite difference formula
f ′(x) ≈ [f (x + h)− f (x − h)]/2h.

f ′(x)− f (x + h)− f (x − h)

2h

=f ′(x)− 1
2h

[
f (x) + hf ′(x) +

h2

2
f ′′(x) +

h3

6
f ′′′(x) + O(h4)

]
+

1
2h

[
f (x)− hf ′(x) +

h2

2
f ′′(x)− h3

6
f ′′′(x)

]
=

1
2h
· h

3

6
f ′′′(x) as h→ 0.
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Interpolation Error
If f is n times continuously differentiable on a closed interval I and
pn−1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {xi} (i = 1, ..., n) in that interval, then for each x in the
interval there exists ξ in that interval such that

f (x)− pn−1(x) =
f (n)(ξ)

n!
(x − x1)(x − x2) · · · (x − xn).

Set the error term to be R(x) := f (x) − pn−1(x) and set up an
auxiliary function:

Y (t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi ).

Note also the introduction of t as an additional variable, independent
of the point x where we hope to prove the identity.



Interpolation Error: Proof cont’d

Y (t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi )

I Since xi are roots of R(t) and W (t), we have
Y (x) = Y (xi ) = 0, which means Y has at least n + 1 roots.

I From Rolle’s theorem, Y ′(t) has at least n roots, then Y (n)

has at least one root ξ, where ξ ∈ I .
I Since pn−1(x) is a polynomial of degree at most n − 1,

R(n)(t) = f (n)(t). Thus

Y (n)(t) = f (n)(t)− R(x)

W (x)
n!.

I Plugging Y (n)(ξ) = 0 into the above yields the result.



Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev
interpolation?

I The error bound suggests choosing the interpolation nodes
such that the product |

∏n
i=1(x − xi )|, is as small as possible.

The Chebyshev nodes achieve this.
I Error is zero at the nodes
I If nodes scoot closer together near the interval ends, then

(x − x1)(x − x2) · · · (x − xn)

clamps down the (otherwise quickly-growing) error there.



Error Result: Simplified From
Boil the error result down to a simpler form.

Assume x1 < · · · < xn.
I
∣∣f (n)(x)

∣∣ ≤ M for x ∈ [x1,xn],
I Set the interval length h = xn − x1.

Then |x − xi | ≤ h.
Altogether–there is a constant C independent of h so that:

max
x
|f (x)− pn−1(x)| ≤ CMhn.

For the grid spacing h→ 0, we have

E (h) = O(hn).

This is called convergence of order n.

Demo: Interpolation Error

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Interpolation Error.ipynb


Outline

Introduction

Finite Difference Methods for Time-Dependent Problems
1D Advection
Stability and Convergence
Von Neumann Stability
Dispersion and Dissipation
A Glimpse of Parabolic PDEs

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems



Outline

Introduction

Finite Difference Methods for Time-Dependent Problems
1D Advection
Stability and Convergence
Von Neumann Stability
Dispersion and Dissipation
A Glimpse of Parabolic PDEs

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems



1D Advection Equation and Characteristics

ut + aux = 0, u(0, x) = g(x) (x ∈ R)

Solution?

Generalize to 1D conservation law: ut + f (u)x = 0. Find solution.
Characteristic Curve: Define a function x(t) so that u(x(t), t) =
u(x0, 0). { dx(t)

dt = f ′(u(x(t), t)),
x(0) = x0.

du(x(t), t)

dt
= uxx

′(t) + ut = ux f
′(u(x(t), t) + ut = f (u)x + ut = 0.

So u(x(t), t) = u(x(0), 0) = g(x0).



Solving Advection with Characteristics

ut + aux = 0, u(0, x) = g(x) (x ∈ R)

Find the characteristic curve for advection.

Here x(t) = x0 + at.

Generalize this to a solution formula.

General solution of advection: u(t, x) = g(x − at). a: Advection
speed.

Does the solution formula admit solutions that aren’t obviously allowed by
the PDE?

Solution formula allows nonsmooth profiles. Unclear: Those are not
differentiable.
→ Idea (later): weaken the notion of a derivative

What is upwind, downwind?



Finite Difference for Hyperbolic: Idea

x

t

{(xk , t`) : xk = khx , t` = `ht}

If u(x , t) is the exact solution, want

uk,` ≈ u(xk , t`).

Condition at each grid point?

I Pick a derivative stencil for each
derivative term in the PDE

I Get system of equations
I Solve

What are explicit/implicit schemes?

Implicit require solution of a system of
equations



Designing Stencils
ETCS:

x

t

ITCS:

x

t

ETFS:

x

t

ETBS:

x

t

Terminology?

I E Explicit / I Implicit
I T Time / S Space
I F Forward: right
I B Backward: left
I Upwind: left if a < 0
I Downwind: right if a > 0

Write out ITCS:

uk,`+1 − uk,`
ht

+ a
uk+1,`+1 − uk−1,`+1

2hx
= 0



Crank-Nicolson

x

t

Crank-Nicolson

Write out Crank-Nicolson:

uk,`+1 − uk,`
ht

+
a

2

[
uk+1,`+1 − uk−1,`+1

2hx
+

uk+1,` − uk−1,`
2hx

]
= 0



Lax-Wendroff

x

t

Lax-
Wendroff

What’s the core idea behind Lax-Wendroff?

I Write out a Taylor expansion in time
I Use the PDE to replace time ∂ with space ∂
I Allows two-level schemes of any order of accuracy

Write out Lax-Wendroff.

ut = −aux so also utt = −a(ux)t = −a(ut)x = a2uxx .

uk,`+1 − uk,` ≈ htut(xk , t`) +
h2t
2
utt(xk , t`)

= −htaux(xk , t`) +
h2t
2
a2uxx(xk , t`)

≈ −hta
uk+1,` − uk−1,`

2hx
+

h2t a
2

2
·
uk+1,` − 2uk,` + uk−1,`

h2x



Exploring Advection Schemes

Demo: Methods for 1D Advection

I Which of the schemes “work”?
I Any restrictions worth noting?

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Methods for 1D Advection.ipynb
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A Matrix View of Two-Level Stencil Schemes
Define

v ` =

 u1,`
...

uNx ,`

 , v =

 v1
...

vNt

 .
Define

u` =

 u(x1, t`)
...

u(xNx , t`)

 u =

 u1
...

uNt

 .
Definition (Two-Level Finite Difference Scheme)

A finite difference scheme that can be written as

Phv `+1 = Qhv ` + htb`

is called a two-level linear finite difference scheme.

I Mostly b` = 0, i.e. homogeneous schemes, no source terms.
I Ph and Qh may depend on both hx and ht .
I Ph and Qh and the spatial grid may also be infinite.



Rewriting Schemes in Matrix Form (1/2)

Phv `+1 = Qhv ` + htb`

Find Ph and Qh for ETCS:

ETCS:
uk,`+1 − uk,`

ht
+ a

uk+1,` − uk−1,`
2hx

= 0.

Equivalently:

uk,`+1 = uk,` +
aht
2hx

(−uk+1,` + uk−1,`).

So

Ph = I , Qh = tridiag

(
aht
2hx

, 1,− aht
2hx

)
.



Rewriting Schemes in Matrix Form (2/2)

Find Ph and Qh for Crank-Nicolson:

Ph = tridiag

(
− aht
4hx

, 1,
aht
4hx

)
,

and

Qh = tridiag

(
aht
4hx

, 1,− aht
4hx

)
.



Truncation Error

Definition (Truncation Error)

The local truncation error τk,` is the error that remains when a finite
difference method is applied to a smooth exact solution u at (xk , t`).

Demo: Truncation Error Analysis via sympy

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Truncation Error Analysis via sympy.ipynb


Error and Error Propagation

Express truncation error in our two-level framework:

Phu`+1 = Qhu` + τ `ht .

Define e` = u` − v `. Understand the error as accumulation of truncation
error:

Recall Phv `+1 = Qhv `. Subtract from the truncation error definition
to find:

e0 = 0
Phe`+1 = Qhe` + τ `ht

e`+1 = P−1h Qhe l + P−1h τ `ht .



Discrete and Continuous Norms
To measure properties of numerical solutions we need norms. Define a
discrete L∞ norm.

‖e‖∞ = max
k,`
|ek,`|.

Define a discrete L2 norm.

‖e‖2 =

√∑
k,`

e2k,`hxht .

Important features:

I Value of discrete norm should not change wildly if hx and ht
change (and, along with them, the number of nodes).

I Ideal: approximate a continuous norm.



Consistency and Convergence
Assume u, (∂qxx )u, (∂qtt )u ∈ L2(R× [0, t∗]).

Definition (Consistency)

A two-level scheme is consistent in the L2-norm with order qt in time and
qx in space if

max
`,`ht≤t∗

‖τ `‖ = O(hqxx + hqtt ) as (hx , ht)→ (0, 0).

Definition (Convergence)

A two-level scheme is convergent in the L2-norm with order qt in time and
qx in space if

max
`,`ht≤t∗

‖e`‖ = O(hqxx + hqtt ) as (hx , ht)→ (0, 0).

Is consistency sufficient for convergence?



Analyzing ETFS

uk,`+1 − uk,`
ht

+ a
uk+1,` − uk,`

hx
= 0

Let’s understand more precisely what happens for this scheme.

Rewrite as

uk,`+1 = uk,` −
aht
hx

(uk+1,` − uk,`) = (1 + λ)uk,` − λuk+1,`

for λ = aht/hx .



ETFS Part 2

uk,`+1 = (1 + λ)uk,` − λuk+1,`

Consider u(x , 0) = 1[−1,0](x). Predict solution behavior.

u0,0 = 1 u1...,0 = 0
u0,1 = (1 + λ) u1...,1 = 0
u0,2 = (1 + λ)2 u1...,2 = 0

So the right half never “sees” the traveling bump; this can’t be con-
vergent. Meanwhile,

u(0, t) ≈ u0,t/ht =

(
1 +

aht
hx

)t/ht

=

(
1 +

a/hx
1/ht

)t/ht

= exp

(
at

hx

)

Demo: Methods for 1D Advection (Revisit ETFS)

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Methods for 1D Advection.ipynb


Stability

Phv `+1 = Qhv `

Write down a matrix product to bring v0 to v `:

v ` = (P−1h Qh)`v0

Definition (Stability)

A two-level scheme is stable in the L2-norm if there exists a constant c > 0
independent of ht and hx so that∥∥∥(P−1h Qh)`P−1h

∥∥∥ ≤ c

for all ` and ht such that `ht ≤ t∗.



Lax Convergence Theorem
Theorem (Lax Convergence)

If a two-level FD scheme is
I consistent in the L2-norm with order qt in time and qx in space, and
I stable in the L2-norm, then

it is convergent in the L2-norm with order qt in time and qx in space.

A stronger result holds: The above is actually “if and only if”.
(called the Lax Equivalence Theorem or Lax-Richtmyer Theorem)
Think of this as an important ‘meta-theorem’ of numerical analysis
(or “fundamental theorem of NA“):

Consistent + Stable⇒ Convergent

A related result holds for ODEs, due to Dahlquist.



Lax Convergence: Proof (1/2)

Recall error propagation:

Phe`+1 = Qhe` + τ `ht

So:
e`+1 = P−1h Qhe l + P−1h τ `ht .

Since e0 = 0,

e1 = htP
−1
h τ 0,

e2 = ht(P
−1
h Qh)P−1h τ 0 + htP

−1
h τ 1.

By induction,

e` = ht
∑̀
m=1

(P−1h Qh)`−mP−1h τm−1.



Lax Convergence: Proof (2/2)

e` = ht
∑̀
m=1

(P−1h Qh)`−mP−1h τm−1.

Let `ht ≤ t∗. Taking the norm of both sides,

‖e`‖ ≤ ht
∑̀
m=1

∥∥∥(P−1h Qh)`−mP−1h τm−1

∥∥∥
≤ ht

∑̀
m=1

∥∥∥(P−1h Qh)`−mP−1h

∥∥∥︸ ︷︷ ︸
≤c (stab.)

‖τm−1‖

≤ ht`c · max
`:`ht≤t∗

‖τm−1‖ ≤ ct∗ max
`:`ht≤t∗

‖τm−1‖
cons.
= O(hqxx + hqtt ).



Conditions for Stability ∥∥∥(P−1h Qh)`P−1h

∥∥∥ ≤ c

Give a simpler, sufficient condition:

∥∥∥(P−1h Qh)`‖ ≤ 1, P−1h

∥∥∥ ≤ c .

Also called Lax-Richtmyer stability.

How can we show bounds on these matrix norms?

I Observe: bounds have to hold for all ht and hx .
I Generally: cumbersome.
I Possibly easiest: approach via singular values.
I Bound singular values: For example using Gershgorin.



Stability of ETBS (1/3)

Theorem (Gershgorin)

For a matrix A ∈ CN×N = (ai ,j),

σ(A) ⊂
N⋃
j=1

B̄

aj ,j ,
∑
k 6=j

|aj ,k |

 .

ETBS:
uk,`+1 − uk,l

ht
+ a

uk,` − uk−1,`
hx

= 0

Analyze stability of ETBS:

Let λ = aht/hx . Then uk,`+1 = λuk−1,` + (1− λ)uk,`.
So Ph = I and Qh = tridiag(λ, 1− λ, 0).

∥∥P−1h

∥∥ ≤ 1 trivially.



Stability of ETBS (2/3)
Ph = I and Qh = tridiag(λ, 1− λ, 0).

‖Qh‖ =
√
ρ(QT

h Qh),

where QT
h Qh = tridiag(λ(1−λ), (1−λ)2+λ2, λ(1−λ)). If 0 ≤ λ ≤ 1,

then λ(1− λ) ≥ 0.

2λ2 − 2λ ≤ Λ− (1− λ)2 − λ2 ≤ 2λ− 2λ2,
1− 4λ+ 4λ2 ≤ Λ ≤ 1,
0 ≤ (1− 2λ)2 ≤ Λ ≤ 1.

So |Λ| ≤ 1, which implies
∥∥QT

h Qh

∥∥ ≤ 1, which means ‖Qh‖ ≤ 1.
If λ > 1, analogously:
|Λ| ≥ 1, which implies

∥∥QT
h Qh

∥∥ ≥ 1, which means ‖Qh‖ ≥ 1.



Stability of ETBS (3/3)

Summarize ETBS stability:

We learn that ETBS is stable if 0 ≤ λ ≤ 1. Rewriting, we obtain

aht
hx

< 1 ⇔ ht ≤
hx
a
.

This type of stability is called conditional stability, and the condition
we found a Courant-Friedrichs-Lewy (CFL) condition.

Comments?

Way cumbersome to prove. Is there something easier that gives nec-
essary/sufficient conditions?
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Discrete Time Fourier Transform

Assume x infinitely long. Define:

x̂(θ) =
∑
k

xke
−iθk

When is this well-defined?

|x̂(θ)| =

∣∣∣∣∣∑
k

xke
−iθk

∣∣∣∣∣ ≤∑
k

|xk | ,

Well-defined if
∑
|xk | is absolutely convergent.



Inverting the Fourier Transform

To recover x :
xk =

1
2π

∫ π

−π
x̂(θ)e iθkdθ.

Proof?

xk =
1
2π

∫ π

−π

∑
j

xje
−iθje iθkdθ =

1
2π

∑
j

xj

∫ π

−π
e iθ(k−j)dθ =

∑
j

xjδj ,k .



Getting to L2

I Fourier Transform well defined for x ∈ `1.
I Problem: We care about L2, not `1.

Theorem (Parseval)

If ‖x‖2 <∞, then

‖x‖22 =
1
2π

∫ π

−π
|x̂(θ)|2 dθ <∞.

Impact?

Can extend definition of Fourier transform to L2.



Toeplitz Operators

Definition (Toeplitz Operator)

An operator T is a Toeplitz operator if (Tx)j =
∑

k xkpj−k . In this case,
p is called the Toeplitz vector.

Example: ETCS

Let λ = aht/2hx . Then

uk,`+1 = λuk−1,` + uk,l − λuk+1,`.

Is ETCS Toeplitz?



Is ETCS Toeplitz?
(Phu`+1)j = uj ,`+1

!
=
∑

k uk,`+1pj−k

pj−k =

{
1 k = j ,

0 otherwise.
p` = δ0,`.

(Qhu`)j = λuk−1,` + uk,l − λuk+1,`
!

=
∑

k uk,`qj−k

qj−k =


λ k = j − 1,
1 k = j ,

−λ k = j + 1,
0 otherwise.

q` =


λ ` = 1,
1 ` = 0,
−λ ` = −1,
0 otherwise.

Both Ph and Qh are Toeplitz.



Fourier Transforms of Toeplitz Operators (1/3)

yj =
∑
k

xkpj−k

ŷ(θ) =
∑
j

∑
k

xkpj−ke
−iθj

=
∑
j

∑
k

(
1
2π

∫ π

−π
x̂(θ)e iϕkdϕ

)
pj−ke

−iθj

=
1
2π

∫ π

−π
x̂(θ)

∑
j

∑
k

e iϕkpj−ke
−iθjdθ

=
1
2π

∫ π

−π
x̂(θ)

∑
j

(∑
k

e iϕ(k−j)pj−k

)
e i(ϕ−θ)jdθ.



Fourier Transforms of Toeplitz Operators (2/3)

ŷ(θ) =
1
2π

∫ π

−π
x̂(θ)

∑
j

(∑
k

e iϕ(k−j)pj−k

)
e i(ϕ−θ)jdθ.

Consider ∑
k

e iϕ(k−j)pj−k =
∑
k

e−iϕ(j−k)pj−k
`=j−k

= p̂(ϕ).

So
ŷ(θ) =

∫ π

−π
x̂(θ)p̂(ϕ)

1
2π

∑
j

e i(ϕ−θ)jdθ.



Fourier Transforms of Toeplitz Operators (3/3)

ŷ(θ) =

∫ π

−π
x̂(θ)p̂(ϕ)

1
2π

∑
j

e i(ϕ−θ)jdθ.

Define wj = (1/2π)e iϕj . Then ŵ(θ) = 1
2π
∑

k e
i(ϕ−θ)k . So

ŷ(θ) =

∫ π

−π
x̂(θ)p̂(ϕ)ŵ(θ)dθ.

To determine ŵ(θ), consider

(1/2π)e iϕj = wj =
1
2π

∫ π

−π
ŵ(θ)e iθjdθ.

Observe that ŵ(θ) = δ(ϕ− θ) would do the trick.
Therefore ŷ(θ) = x̂(θ)p̂(θ).



Fourier Transforms of Inverse Toeplitz Operators

Fourier transform P−1h Qhy?

q̂(θ)

p̂(θ)
ŷ(θ).



Bounding the Operator Norm
Bound

∥∥P−1h Qh

∥∥2
2 using Fourier:

∥∥P−1h Qh

∥∥2
2 = sup

x 6=0

∥∥P−1h Qhx
∥∥2
2

‖x‖22
= sup

x 6=0

hx
2π

∫ π
−π

∣∣∣ q̂(θ)
p̂(θ) x̂(θ)

∣∣∣2 dθ
hx
2π

∫ π
−π |x̂(θ)|2 dθ

≤ sup
x 6=0

maxϕ∈[−π,π]

∣∣∣ q̂(ϕ)
p̂(ϕ)

∣∣∣ ∫ π−π |x̂(θ)|2 dθ∫ π
−π |x̂(θ)|2 dθ

= max
ϕ∈[−π,π]

∣∣∣∣ q̂(ϕ)

p̂(ϕ)

∣∣∣∣ .
Similarly, ∥∥P−1h

∥∥2
2 ≤ max

ϕ∈[−π,π]
|p̂(ϕ)| .

Is the upper bound attained?

If x̂(θ) = δ(θ−ϕ∗), where ϕ∗ maximizes |q̂(θ)/p̂(θ)|, then yes. (So
xk = (1/2π)e iϕ

∗k .)



von Neumann Stability
Two-level finite difference scheme

Phv `+1 = Qhv ` + htb`,

where Ph and Qh are Toeplitz operators with vectors p and q.

Definition (Symbol of a Two-Level Finite Difference Scheme)

Let
p̂(θ) =

∑
k

pke
−iϕk , q̂(θ) =

∑
k

qke
−iϕk .

Then the symbol of the two-level FD method is s(ϕ) = q̂(ϕ)/p̂(θ).

Definition (Von Neumann Stability)

If

max
ϕ
|s(ϕ)| ≤ 1, max

ϕ

∣∣∣∣ 1
p̂(ϕ)

∣∣∣∣ ≤ c

for some constant c > 0, we say the scheme is von Neumann stable.



Comparison with Lax-Richtmyer Stability

Need
∥∥(P−1h Qh)`P−1h

∥∥ ≤ c .

Implied by von Neumann stability.

Why is bounding the symbol the most salient part?

If there doesn’t exist a c so that
∥∥P−1h

∥∥ ≤ c , then
∥∥P−1h Qh

∥∥ often
also encounters problems.

Main restriction of von Neumann stability?

I Only works on infinite/periodic grids.
I Have BCs? Analysis gets more difficult.



von Neumann Stability: ETBS (1/2)
ETBS: Let λ = aht/hx . uk,`+1 = λuk−1,` + (1− λ)uk,`.

Ph = I , Qh = tridiag(λ, 1− λ, 0).

Auxiliary result: Fourier transform of rk = δk,j .

r̂(ϕ) =
∑
k

rke
−iϕk =

∑
k

δk,je
−iϕk = e−iϕj .

Recall: r Toeplitz vector indices are ‘flipped’ compared to matrix
entries → index sign flip

p̂(ϕ) = 1, q̂(ϕ) = λe−iϕ + (1− λ) = 1− λ(1− e−iϕ).

|s(ϕ)|2 =

∣∣∣∣ q̂(ϕ)

p̂(ϕ)

∣∣∣∣2 = (1− λ(1− e−iϕ))(1− λ(1− e iϕ))

= 1 + 2(λ− λ2)(cosϕ− 1).



von Neumann Stability: ETBS (2/2)
Found: |s(ϕ)|2 = 1 + 2(λ− λ2)(cosϕ− 1).

Maximize: take derivative w.r.t. ϕ, set to 0:

d

dϕ

(
1 + 2(λ− λ2)(cosϕ− 1)

)
= −2(λ− λ2) sinϕ = 0

if and only if ϕ ∈ Zπ.
For m ∈ Z, s(mπ) = 1 + 2(λ − λ2)((−1)m − 1). For m even,
s(mπ) = 1.
For m odd, s(mπ) = 1− 4(λ− λ2) = (1− 2λ)2.
Thus |s(ϕ)|2 ≤ 1 if and only if

|1− 2λ| ≤ 1 ⇔ 0 ≤ λ ≤ 1 ⇔ 0 ≤ ht ≤
hx
a
.

Found: conditionally von Neumann stable with CFL as before.



von Neumann Stability: ETCS
Let λ = aht/hx . Then

uk,`+1 =
λ

2
uk−1,` + uk,` −

λ

2
uk+1,`.

Ph = I , Qh = tridiag(λ/2, 1,−λ/2).

So p̂(ϕ) = 1, and

q̂(ϕ) =
λ

2
e−iϕ + 1− λ

2
e−iϕ(−1) = 1− λ sin(ϕ)i .

So

max
ϕ
|s(ϕ)|2 = max

ϕ

∣∣∣∣ q̂(ϕ)

p̂(ϕ)

∣∣∣∣2 = 1 + λ2 sin(ϕ) ≥ 1.

Not von Neumann stable ⇒ not Lax-Richtmyer stable.



von Neumann Stability: Crank-Nicolson

Let λ = aht/(4hx)

−λuk−1,`+1 + uk,`+1 + λuk+1,`+1 = λuk−1,` + uk,` − λuk+1,`.

Ph = tridiag(−λ, 1, λ), Qh = tridiag(λ, 1,−λ).

p̂(ϕ) = −λe−iϕ + 1 + λe iϕ = 1 + 2λi sin(ϕ),

q̂(ϕ) = λe−iϕ + 1− λe iϕ = 1− 2λi sin(ϕ).

|s(ϕ)|2 =
1 + 4 sin2(ϕ)

1 + 4 sin2(ϕ)
= 1.

Crank-Nicolson is unconditionally von Neumann stable.
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Studying Solutions of the PDE

Saw numerically: interesting dispersion/dissipation behavior.
Want: theoretical understanding.

Consider linear, continuous (not yet discrete) differential operators

L1u = ut + aux ,

L2u = ut − Duxx + aux (D>0)
L3u = ut + aux − µuxxx .

What could we use as a prototype solution?



A Prototype Solution of the PDE

Observation: all these operators are diagonalized by complex exponentials.
Come up with a ‘prototype complex exponetial solution’.

Let z(x , t) = z0e
i(kx−ωt).

What type of function is this?

I For k , ω real: traveling wave with speed c = ω/k .
z(x − ct, 0) = z0e

i(k(x−ct)) = z(x , t).
I For k imaginary: an evanescent wave in x .
I For Imω < 0: a wave decaying in time.



Wave-like Solutions of the PDE

z(x , t) = z0e
i(kx−ωt)

Observations in connection with L?

I Lz = λ(ω, k)z .
I z(x , t) is a solution iff Lz = 0 iff λ(ω, k) = 0.

What is the dispersion relation?

The equation λ(ω, k) = 0 is called the dispersion relation for the
PDE L.



Picking Apart the Dispersion Relation
Consider ω(k) = α(k) + iβ(k). Rewrite the wave solution with this.

z(x , t) = z0e
i(kx−ωt)

= z0e
i(kx−α(k)t−iβ(k)t)

= z0e
β(k)te i(kx−α(k)t).

How can we recognize dissipation?

If β(k) < 0, we call the PDE dissipative.

What is the phase speed? How can we recognize dispersion?

I The phase speed of z(x , t) is vph = α(k)/k .
I If vph is a constant (⇔ α(k) is linear in k), all waves move at

the same speed.
I If that’s not the case, we call the PDE dispersive.



Dispersion Relation: Examples
In each case, find the dispersion relation and identify properties.
L1u = ut + aux

I λ(ω, k) = i(ak − ω) = 0, i.e. ω = ak .
I Neither dissipative nor dispersive.

L2u = ut − Duxx + aux (D > 0)

I λ(ω, k) = −iω + iak + Dk2, i.e. ω = ak − iDk2.
I Dissipative, but not dispersive.

L3u = ut + aux − µuxxx

I λ(ω, k) = −iω + iak + iµk3, i.e. ω = ak + µk3.
I Dispersive, but not dissipative.



Numerical Dissipation/Dispersion Analysis

Goal: Want discrete finite difference scheme to match
dissipation/dispersion behavior of continuous PDE.

Define a discrete wave-like function:

zj ,` = z0e
i(kjhx−ω`ht)

We want z to solve Phz`+1 = Qhz`. How can we connect the operators to
the wave solution?

Ph and Qh consist of Toeplitz operators.



Toeplitz and Waves

zj ,` = z0e
i(kjhx−ω`ht).

Theorem (Waves Diagonalize Toeplitz Operators)

Let T be a Toeplitz operator. Then Tz` = λ(k)z` = t̂(khx)z`.

(Tz`)j =
∑
m

zm,`tj−m =
∑
m

z0e
i(kmhx−ω`ht)tj−m

=
∑
m

z0e
i(k(m−j)hx )e i(kjhx−ω`ht)tj−m

=

(∑
m′

e−ikm
′hx tm′

)
z0e

i(kjhx−ω`ht).

⇒ λ(k) =
∑
m

e−ikmhx tm = t̂(khx).



Waves and Two-Level Schemes
Since Ph and Qh are Toeplitz, we must have

Phz`+1 = λP(k)z`+1, Qhz` = λQ(k)z`.

What does that mean?

λP(k)z`+1 = λQ(k)z`
λP(k)z0e

i(kjhx−ω(`+1)ht) = λQ(k)z0e
i(kjhx−ω`ht)

e−iωht =
λQ(k)

λP(k)
=

q̂(khx)

p̂(khx)
= s(khx),

which is the symbol of of the finite difference method.

Seen before?

Used in von Neumann stability analysis.



Discrete Dispersion Relation (1/2)

So z` is a solution of the finite difference scheme if ω = ω(khx) satisfies

e−iω(κ)ht = s(κ),

where we let κ = khx . Interpret κ.

A number proportional to the number of wavelengths per point.

Let s(κ) = |s(κ)| e iϕ(κ) = e log|s(κ)|+iϕ(κ). ω(κ)?

ω(κ) =
−ϕ(κ) + i log |s(κ)|

ht
.



Discrete Dispersion Relation (2/2)

ω(κ) =
−ϕ(κ) + i log |s(κ)|

ht
.

Plug that into the wave-like solution:

zj ,` = z0e
i(kjhx−ω`ht)

= z0e
i
(
kjhx−−ϕ(κ)+i log|s(κ)|

ht
`ht

)
= z0e

log|s(κ)|`e
ik
(
jhx−−ϕ(κ)

kht
`ht

)

Criterion for stability?

|s(κ)| ≤ 1 (as before)



Numerical Dispersion/Dissipation
Finite difference scheme Phu`+1 = Qhu` with symbol s(k).

zj ,` = z0e
log|s(κ)|`e

ik
(
jhx−−ϕ(κ)

kht
`ht

)
When is the scheme dissipative?

If |s(khx)| < 1, the scheme is called dissipative. Dissipation occurs
exponentially in time, with factor s(khx).

What is the phase speed?

The scheme has phase speed vph = −ϕ(khx )
kht

.

Dispersion?

If vph is independent of k , all waves move with the same speed. If
not, the scheme is called dispersive.



Dispersion/Dissipation Analysis of ETBS
Let λ = aht/hx . Shown earlier: s(khx) = 1− λ(1− e−ikhx ).

|s(khx)| = 1 holds on a circle:

Re s(khx)

Im s(khx)

1− λ 1

For small λ, the circle moves towards s(khx) = 1, implying lower
dissipation per step.

Overall, we obtain

e−iω(κ)ht = 1− λ(1− e−ikhx ).



Dispersion/Dissipation Analysis of ETBS: Fine Grid

e−iω(κ)ht = 1− λ(1− e−ikhx )

If khx is small, e−ikhx ≈ 1− ikh, so that

s(khx) ≈ (1− λ) + λ(1− ikhx) = 1− iλkhx .

For small ω(khx), approximate e−iω(khx )ht = 1− iω(khx)ht .
Setting the two (approximately) equal yields

1− iω(khx)ht ≈ 1− iλkhx ⇒ ω(khx)ht ≈ λkhx =
aht
hx

khx ,

i.e. ω(khx) ≈ ak , or vph ≈ (−ak)/(kht) = −a/ht , which is inde-
pendent of k . Thus we expect little dispersion for waves with low
number of wavelengths per point.



Dispersion/Dissipation: Demo

I Demo: Experimenting with Dispersion and Dissipation
I Demo: Dispersion and Dissipation

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Experimenting with Dispersion and Dissipation.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Dispersion and Dissipation.ipynb
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Heat Equation

Heat equation (D > 0):

ut = Duxx , (x , t) ∈ R× (0,∞),

u(x , 0) = g(x) x ∈ R.

Fundamental solution (g(x) = δ(x)):

u(x , t) =
1√
4πt

e−x
2/4t .

Why is this a weird model?

Infinite speed of propagation of information



Schemes for the Heat Equation

Cook up some schemes for the heat equation.

Explicit Euler:

uk,`+1 − uk,`
ht

− D
uk+1,` − 2uk,` + uk−1,`

h2x
= 0

Implicit Euler:

uk,`+1 − uk,`
ht

− D
uk+1,`+1 − 2uk,`+1 + uk−1,`+1

h2x
= 0



Von Neumann Analysis of Explicit Euler for Heat (1/2)
Let λ = Dht/h

2
x .

uk,`+1 = uk,` + λ(uk+1,` − 2uk,` + uk−1,`).

Ph = I , Qh = tridiag(λ, 1− 2λ, λ).

Thus

p̂(ϕ) = 1,
q̂(ϕ) = λe−iϕ + (1− 2λ) + λe iϕ = 1− 2λ+ 2λ cos(ϕ).

We want |s(ϕ)| ≤ 1, thus we need

−1 ≤ 1 + 2λ(cos(ϕ)− 1) ≤ 1
⇔ −2 ≤ 2λ(cos(ϕ)− 1) ≤ 0.



Von Neumann Analysis of Explicit Euler for Heat (2/2)

−2 ≤ 2λ(cos(ϕ)− 1) ≤ 0.

Since |cos(ϕ)| ≤ 1, also −2 ≤ cos(ϕ)− 1 ≤ 0. For the lower bound,

−2 ≤ −4λ ⇔ 1
2
≥ Dht

h2x
⇔ ht ≤

h2x
2D

.

Observe ht = O(h2x), which is often prohibitively small.

Comment on the stability region found regarding speeds of propagation.

I Saw: heat equation has infinite speed of information
propagation

I Explicit Euler has finite speed of information propagation (how
fast?)



Von Neumann Analysis of Implicit Euler for Heat
Let λ = Dht/h

2
x .

uk,`+1 − λ(uk+1,`+1 − 2uk,`+1 + uk−1,`+1) = uk,`

Ph = tridiag(−λ, 1 + 2λ,−λ), Qh = I .

p̂(ϕ) = 1 + 2λ(1− cos(ϕ)), q̂(ϕ) = 1.

To obtain |s(ϕ)| ≤ 1, consider 1 ≤ |1 + 2λ(1− cos(ϕ))|, which is
always true.

Does the type of system we need to solve for implicit+parabolic correspond
to another PDE?

I Yes, elliptic.
I Focus on solving those later.
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Conservation Laws: Recap

ut + f (u)x = 0,

where u is a function of x and t ∈ R+
0 .

Rewrite in integral form:

d
dt

∫ b

a
u(x , t)dx + f (u(b, t))− f (u(a, t)) = 0 for any a, b.

Recall: Characteristic Curve: a function x(t) so that u(x(t), t) = u(x0, 0).{ dx(t)
dt = f ′(u(x(t), t)),

x(0) = x0.

What assumption underlies all this?

Smooth Solution.



Burger’s Equation
Consider Burgers’ Equation:{

ut +
(
u2

2

)
x

= 0,

u(x , 0) = g(x) = sin(x).

Interpret Burger’s equation.

f (u) = u2/2. So f ′(u) = u.
Characteristic speed is given by ‘how much stuff there is’/‘the density’

Consider the characteristics at π/2 and 3π/2.

f (u) = u2/2. So f ′(u) = u.
I x = π/2: f ′(sin x) = 1.
I x = 3π/2: f ′(sin x) = −1.

They intersect!



Weak Solutions

d
dt

∫ b

a
u(x , t)dx = f (u(a, t))− f (u(b, t))

Define a weak solution:

I If u satisfies the integral form for almost all (a, b) then u is
called a weak solution. (physically meaningful, correct)

I If for any ϕ ∈ C 1
0 (R× [0,∞)) (compact support),

−
∫ ∞
0

∫ ∞
−∞

(uϕt + f (u)ϕx)dxdt −
∫ ∞
−∞

u0(x)ϕ(x , 0)dx = 0,

then in u is called a weak solution. (more meaningful
mathematically)

Turns out: equivalent. (not shown)



Rankine-Hugoniot Condition (1/2)
Consider: Two C 1 segments separated by a curve x(t) with no regularity.

(d/dt)

(∫ x(t)

a
u(x , t)dx︸ ︷︷ ︸

Ga(x(t),t):=

+

∫ b

x(t)
u(x , t)dx︸ ︷︷ ︸

Gb(x(t),t):=

)
+f (u(b, t))−f (u(a, t)) = 0.

d

dt
Ga(x(t), t) =

∂Ga(x(t), t)

∂x
· dx(t)

dt
+
∂Ga

∂t

= u(x(t), t)x ′(t) +

∫ x(t)

a
ut(x , t)dx

= u(x(t), t)x ′(t)−
∫ x(t)

a
f (u)x(x , t)dx

= u(x(t), t)x ′(t)− (f (u(x(t), t))− f (u(a, t))),

and dGb(x(t), t)/dt analogously.



Rankine-Hugoniot Condition (2/2)

(d/dt)Ga(x(t), t) = u(x(t), t)x ′(t)− (f (u(x(t), t))− f (u(a, t))).

Discontinuity at u(x(t), t): (d/dt)Ga doesn’t exist. One-sided limits:[
dGa(x(t), t)

t

]−
= u−x ′(t)− (f (u−)− f (u(a, t))),[

dGb(x(t), t)

t

]+

= −u+x ′(t)− (f (u(b, t))− f (u+)).

Adopted shorthand: u− := u(x(t)−, t), u+ := u(x(t)+, t).
Plug into integral form: u−x ′(t)− f (u−)− u+x ′(t) + f (u+) = 0.

x ′(t) =
f (u+)− f (u−)

u+ − u−
.

This is the called the Rankine-Hugoniot Condition.



Rankine-Hugoniot and Weak Solutions

Theorem (Rankine-Hugoniot and Weak Solutions)

If u is piecewise C 1 and is discontinuous only along isoated curves, and if u
satisfies the PDE when it is C 1, and the Rankine-Hugoniot condition holds
along all discontinuous curves, then u is a weak solution of the
conservation law.



Riemann Problems: Example 1

Consider the following Riemann problem:

ut +

(
u2

2

)
x

= 0,

u(x , 0) =

{
1 x < 0,
−1 x ≥ 0.

The IC is just propagated in time (at “speed 0”) to form a weak
solution (a shock).



Riemann Problems: Example 2

ut +

(
u2

2

)
x

= 0,

u(x , 0) =

{
−1 x < 0,
1 x ≥ 0.

(IC sign flip compared to previous slide)

The propagated ICs also form a weak solution. But consider

u(x , t) =


−1 x ≤ −t,
x/t −t < x < t,

1 x > t.

This is also a weak solution (a rarefaction wave).
Conclusion: Our current notion of weak solution is too weak.



Bad Shocks and Good Shocks

In the shock version of the ‘ambiguous’ Riemann problem, where do the
characteristics go?

I Out of the shock.
I In the first example, the shock is self-steepening.
I In the second example, it is not.

Comment on the stability of that situation.

Smearing out the initial profile or adding viscosity would wash out the
solution into a rarefaction fan.



Ad-Hoc Idea: Ban Bad Shocks
Recall: what is f ′(u)?

Characteristic speed.

Devise a way to ban unstable shocks.

A discontinuity propagating with speed s (cf. Rankine-Hugoniot)
satsifes the entropy condition if

f ′(u−) > s > f ′(u+).

If f is convex, f ′ is monotonically non-decreasing, and the Rankine-
Hugoniot speed automatically falls between f ′(u−) and f ′(u+). So
for convex f , f ′(u−) > f ′(u+) is sufficient (and implies u− > u+ by
convexity).



Vanishing Viscosity Solutions
Goal: neither uniqueness nor existence poses a problem.

How?

Consider adding an artificial viscosity:

uεt + f (uε)x = εuεx ,x with small ε > 0.

By ‘washing out’ the solution, the viscous term increases smoothness,
and, we hope, restores uniqueness.

Then we would wish to define an vanishing viscosity weak solution as

lim
ε→0

uε(x , t) = u(x , t)

in some norm.



Entropy-Flux Pairs

What are features of (physical) entropy?

I Constant along particle paths in smooth flow
I Jumps to higher values across a shock

Definition (Entropy/Entropy Flux)

An entropy η(u) and an entropy flux ψ(u) are functions so that η is convex
and

η(u)t + ψ(u)x = 0

for smooth solutions of the conservation law.



Finding Entropy-Flux Pairs
η(u)t + ψ(u)x = 0. Find conditions on η and ψ.

For smooth u, the chain rule gives η′(u)ut + ψ′(u)ux = 0. Similarly,
we can rewrite the conservation law:

ut + f ′(u)ux = 0
⇔ η′(u)ut + η′(u)f ′(u)ux = 0.

This gives us ψ′(u) = η′(u)f ′(u).
Lots of solutions for scalar conservation laws. For systems and in
multiple dimensions: may have no solutions.

Come up with an entropy-flux pair for Burgers.

f (u) = u2/2. If we take η(u) = u2, then ψ′(u) = 2u · u, i.e.
ψ(u) = 2u3/3.



Back to Vanishing Viscosity (1/2)

ut + f (u)x = εuxx

What’s the evolution equation for the entropy?

Note: Viscosity solutions are always smooth. Allowed to do derivative
gymnastics.

η′(u)ut + η′(u)f ′(u)ux = εη′(u)uxx

⇔ η(u)t + ψ(u)x = ε(η′(u)ux)x − εη′′(u)u2x .



Back to Vanishing Viscosity (2/2)

η(u)t + ψ(u)x = ε(η′(u)ux)x − εη′′(u)u2x .

Integrate this over [x1, x2]× [t1, t2].∫ t2

t1

∫ x2

x1

η(u)t + ψ(u)xdxdt

= ε

∫ t2

t1

[η′(u(x2, t))ux(x2, t)− η′(u(x1, t))ux(x1, t)]dt

−ε
∫ t2

t1

∫ x2

x1

η′′(u)u2x︸ ︷︷ ︸
≥0

dxdt.

As ε → 0, the first term goes to zero. The second term involves
an integral over the square of the derivative of a steepening u (as
ε → 0), and so will not vanish. Accordingly, η(u)t + ψ(u)x ≤ 0
weakly.



Entropy Solution

Definition (Entropy solution)

The function u(x , t) is the entropy solution of the conservation law if for all
convex entropy functions and corresponding entropy fluxes, the inequality

η(u)t + ψ(u)x ≤ 0

is satisfied in the weak sense.



Conservation of Entropy?
What can you say about conservation of entropy in time?

0 ≥
∫ t2

t1

∫ x2

x1

η(u)t + ψ(u)xdxdt

=

[∫ x2

x1

η(u(x , t))dx

]t2
t1

+

[∫ t2

t1

ψ(u(x , t))dt

]x2
x1

,

so that∫ x2

x1

η(u(x , t2))dx ≤
∫ x2

x1

η(u(x , t1))dx −
[∫ t2

t1

ψ(u(x , t))dt

]x2
x1︸ ︷︷ ︸

Outflow/Inflow

If u is compactly supported, then we can choose x1 and x2 on either
side of u’s support and obtain that entropy can only decrease. (Phys-
ically, entropy only increases. Could have chosen concave for that.)



Total Variation

TV(u) = lim sup
ε→0

1
ε

∫
|u(x + ε)− u(x)| dx .

Simpler form if u is differentiable?

TV(u) =

∫ ∣∣u′(x)
∣∣ dx

Hiking analog?

Elevation change



Total Variation and Conservation Laws
Theorem (Total Variation is Bounded [Dafermos 2016, Thm. 6.2.6])

Let u be a solution to a conservation law with f ′′(u) ≥ 0. Then:

TV(u(t + ∆t, ·)) ≤ TV(u(t, ·)) for ∆t ≥ 0.

I For smooth solutions (and non-crossing characteristics), all
function values live ⇒ TV stays unchanged.

I For solutions with shocks, local minima and maxima may
disappear into the shock ⇒ TV decreases.

Theorem (L1 contraction [Dafermos 2016, Thm. 6.3.2])

Let u, v be viscosity solutions of the conservation law. Then

‖u(t + ∆, ·)− v(t + ∆t, ·)‖L1(R) ≤ ‖u(t, ·)− v(t, ·)‖L1(R) for ∆t ≥ 0.
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Finite Difference for Conservation Laws? (1/2)


ut +

(
u
2

)2
x

= 0

u(x , 0) =

{
1 x < 0,
0 x ≥ 0.

Entropy Solution?

u(x , t) =

{
1 x ≤ 1

2 t,

0 x > 1
2 t.

Rewrite the PDE to ‘match’ the form of advection ut + aux = 0:

ut + uux = 0.

Equivalent?



Finite Difference for Conservation Laws? (2/2)
Recall the upwind scheme for ut + aux = 0:

uj ,`+1 = uj ,` − a · ∆t

∆x
(uj ,` − uj−1,`).

Write the upwind FD scheme for ut + uux = 0:

uj ,`+1 = uj ,` −
∆t

∆x
uj ,`(uj ,` − uj−1,`).

I For j 6= 0, uj ,0 − uj−1,0 = 0
I For j = 0, uj ,0 = 0.

Altogether,
uj ,`+1 = uj ,`.

Bad.



Schemes in Conservation Form
Definition (Conservative Scheme)

A conservation law scheme is called conservative iff it can be written as

uj ,`+1 = uj ,` −
∆t

∆x
[f ∗j+1/2(u`)− f ∗j−1/2(u`)],

where f ∗. . .

I is Lipschitz continuous,
I satisfies f ∗(u, · · · , u) = f (u) (consistency).

Theorem (Lax-Wendroff)

If the solution {uj ,`} to a conservative scheme converges (as ∆t,∆x → 0)
boundedly almost everywhere to a function u(x , t), then u is a weak
solution of the conservation law.



Lax-Wendroff Theorem: Proof
Summation by parts: With ∆+ak = ak+1 − ak and ∆−ak = ak − ak−1:

N∑
k=1

ak(∆−ϕk) +
N∑

k=1

ϕk(∆+ak) = −a1ϕ0 + ϕNaN+1.

Let ϕj ,` = ϕ(xj , t`) for ϕ ∈ C 1
0 (compact support). Then

0 =
∞∑
`=1

∑
j

(
∆+

2 uj ,`
ht

+
∆+f ∗j−1/2

hx

)
ϕj ,`hxht

= −
∞∑
`=1

∑
j

(
∆−2 ϕj ,`

ht
uj ,` +

∆−1 ϕj ,`

hx
f ∗j−1/2

)
hxht −

∑
j

uj ,1φj ,0hx

DCT→
f ∗(u,u)=u

−
∫ ∞
0

∫ ∞
−∞

(ϕtu + ϕx f (u))dxdt −
∫ ∞
−∞

u(x , 0)φ(x , 0)dx = 0.



Finite Volume Schemes

Finite volume: Idea?

I Consider the solution constant in each cell: ūj
I ūj is the cell average of cell Ij :

ūj = (1/hx)

∫ xj+1/2

xj−1/2

u(x)dx

I Choose hx , ht so that max |f ′(u)|ht < hx .
Then in a sequence of cells (A,B,C ,D,E ), the solution in cell C in
the next timestep is not influenced at all by the solution in cells A
and E .

Idea: Solve Riemann problem at each cell interface.



Developing Finite Volume

∫ t`+1

t`

∫ xj+1/2

xj−1/2

(ut + f (u)x)dxdt = 0

1
hx

∫ xj+1/2

xj−1/2

u`+1dx − 1
hx

∫ xj+1/2

xj−1/2

u`dx

+
1
hx

∫ t`+1

t`

f (uj+1/2)dt − 1
hx

∫ t`+1

t`

f (uj−1/2)dt = 0

⇔ ūj ,`+1 − ūj ,`

+
1
hx

∫ t`+1

t`

f (uj+1/2)dt − 1
hx

∫ t`+1

t`

f (uj−1/2)dt = 0.



Flux Integrals?

1
hx

∫ t`+1

t`

f (uj+1/2)dt?

The substitution
x̄ = ax , t̄ = at.

leaves the conservation law and the Riemann ICs invariant.
⇒ The Riemann solution must be self-similar under scaling.

Thus: the Riemann solution u(x , t) can be viewed as function of only
one variable ξ = x/t.

Thus u is constant along x = xj±1/2, so that

1
hx

∫ t`+1

t`

f (uj+1/2)dt =
ht
hx

f (uj+1/2).



The Godunov Scheme
Altogether:

ūj ,`+1 = ūj ,` −
ht
hx

(f (uj+1/2,`)− f (uj−1/2,`)).

Overall algorithm?

I Reconstruct u−j±1/2,` and u+
j±1/2,`

I Evolve the Riemann problem at xj±1/2:
Numerical flux / Riemann solver: f ∗(u−j±1/2,`, u

+
j±1/2,`)

I Average the Riemann solutions to obtain ūj ,`+1

Heuristic time step restriction?

Will run into problems if wave from one cell interface interacts with
other interface: ht ≤ hx/maxj |f ′(uj)|



Riemann Problem 
ut + f (u)x = 0,

u(x , 0) =

{
ul x < 0,
ur x ≥ 0

Exact solution in the Burgers case?

u(x , t) =



{
ul x < st,

ur x ≥ st,
ul ≥ ur ,

ul x < ul t,

x/t ul t ≤ x < ur t,

ur x ≥ ur t,

ul < ur ,

s =
f (ur )− f (ul)

ur − ul
=

1
2 [u2r − u2l ]

ur − ul
=

1
2

(ul + ur ).

Why is the rarefaction part independent of ul and ur?



Rieamnn Solver for a General Conservation Law
To complete the scheme: Need f ∗(u−, u+). For Burgers: already known.
For a general (convex/concave-f ) conservation law?

Assume f ′′(u) > 0.
Let us such that f ′(us) = 0 (called the stagnation state: why?)

f ∗(u−, u+) =



f (u−) if shock with s > 0,
f (u+) if shock with s ≤ 0,
f (u−) if rarefaction with f ′(u−) ≥ 0,
f (u+) if rarefaction with f ′(u+) ≤ 0,
f (us) if rarefaction with f ′(u−) ≤ 0 ≤ f ′(u+).

Equivalent to

f ∗(u−, u+) =

{
maxu+≤u≤u− f (u) if u− > u+,

minu−≤u≤u+ f (u) if u− ≤ u+.



More Riemann Solvers

Downside of Godunov Riemann solver?

Not easy/efficient to implement in general. Want simpler Riemann
solvers.



Back to Advection
Consider only f (u) = au for now. Riemann solver inspiration from FD?

For a ≥ 0, want ETBS:

0 =
uj ,`+1 − uj ,`

ht
+ a

uj ,` − uj−1,`
hx

=
uj ,`+1 − uj ,`

ht
+

f (uj ,`)− f (uj−1,`)

hx

=
uj ,`+1 − uj ,`

ht
+

f ∗(uj ,`, uj+1,`)− f ∗(uj−1,`, uj ,`)

hx
.

Clearly equivalent to a finite volume scheme! Upwind numerical flux?

f ∗(u− , u+) =

{
au− a ≥ 0
au+ a < 0

=
au− + au+

2
− |a|

2
(u+ − u−).



Side Note: First Order Upwind, Rewritten

uj ,`+1 − uj ,`
ht

+
f ∗(uj ,`, uj+1,`)− f ∗(uj−1,`, uj ,`)

hx

with

f ∗(u− , u+) =
au− + au+

2
− |a|

2
(u+ − u−).

uj ,`+1 − uj ,`
ht

+ a
uj+1,` − uj−1,`

2hx
=
|a| hx
2
·
uj+1,` − 2uj ,` + uj−1,`

h2x
,

i.e. it is equivalent to ETCS (unstable!) with a second-order dis-
cretization of ∂2x , i.e. a dissipation, with a coefficient that vanishes
as hx → 0.



Lax-Friedrichs
Generalize linear upwind flux for a nonlinear conservation law:

f ∗(u− , u+) =
au− + au+

2
− |a|

2
(u+ − u−).

f ∗(u− , u+) =
f (u−) + f (u+)

2
− α

2
(u+ − u−).

Choice of α (consistent with linear)? Idea: α = |f ′((u− + u+)/2)|
Unfortunately: may converge to a weak solution that violates the
entropy condition (not shown). Better:

α = max
(∣∣f ′(u−)

∣∣ , ∣∣f ′(u+)
∣∣) .

Called local Lax-Friedrichs. Global variant (with global max) also OK.

Demo: Finite Volume Burgers (Part I)

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fv-hyperbolic/Finite Volume Burgers.ipynb
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Improving Accuracy
Consider our existing discrete FV formulation:

ūj ,`+1 = ūj ,` −
ht
hx

(f (uj+1/2,`)− f (uj−1/2,`)).

What obstacles exist to increasing the order of accuracy?

I Temporal Accuracy
I Spatial Accuracy
I Nonsmoothness (in both space and time)

What order of accuracy can we expect?

I Near shocks: no convergence in L∞, first-order in L2.
I Elsewhere: hopefully, as high as we would like



Improving the Order of Accuracy
Improve temporal accuracy.

Rewrite FV using the method of lines:

dūj(t)

dt
+

f ∗(u−j+1/2(t), u+
j+1/2(t))− f ∗(u−j−1/2(t), u+

j−1/2(t))

hx
= 0.

What’s the obstacle to higher spatial accuracy?

Letting u−j+1/2 = ūj = u+
j−1/2.

How can we improve the accuracy of that approximation?

Include more cells in the reconstruction of the state u±j+1/2.



Increasing Spatial Accuracy
Temporary Assumptions:
I f ′(u) ≥ 0
I f ∗j+1/2 = f (ūj) (e.g. Godunov in this situation)

Reconstruct uj+1/2 using {ūj−1, ūj , ūj+1}. Accuracy? Names?

u
(1)
j+1/2 =

1
2

(ūj + ūj+1), (2nd order central)

u
(2)
j+1/2 =

3
2
ūj −

1
2
ūj−1, (2nd order upwind)

Compute fluxes, use increments over cell average:

f
∗,(1)
j+1/2 = f

(
ūj +

1
2

(ūj+1 − ūj)︸ ︷︷ ︸
ũ

(1)
j

)
, f

∗,(2)
j+1/2 = f

(
ūj +

1
2

(ūj − ūj−1)︸ ︷︷ ︸
ũ

(2)
j

)
.

Demo: Finite Volume Burgers (Part II)

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fv-hyperbolic/Finite Volume Burgers.ipynb


Lax-Wendroff
For ut + aux , from finite difference:

f ∗(u−, u+) =
au− + au+

2
− a2

2
· ∆t

∆x
(u+ − u−).

Taylor in time: u`+1 = u` + ∂tu` · ht + ∂2t u` · ht/2 + O(h3t ).

ut = −f (u)x ,

utt = −f (u)xt = −(f (u)t)x = −(f ′(u)ut)x = (f ′(u)f (u)x)x .

uj ,`+1 − uj ,`
ht

+
f (uj+1,`)− f (uj−1,`)

2hx

=
ht
2hx

[
f ′(uj+1/2,`)

f (uj+1,`)− f (uj ,`)

hx
− f ′(uj−1/2,`)

f (uj ,`)− f (uj−1,`)

hx

]
As a Riemann solver:

f ∗(u−, u+) =
f (u−) + f (u+)

2
− ht

hx
[f ′(u◦)(f (u+)− f (u−))].



Monotone Schemes

Definition (Monotone Scheme)

A scheme

uj ,`+1 = uj ,` − λ(f ∗(uj−p, . . . , uj+q)− f ∗(uj−p−1, . . . , uj+q−1))

=: G (uj−p−1, . . . , uj+q)

is called a montone scheme if G is a monotonically nondecreasing function
G (↑, ↑, . . . , ↑) of each argument.



Monotonicity for Three-Point Schemes
Three-Point Scheme:

G (uj−1, uj , uj+1) = uj − λ[f ∗(uj , uj+1)− f ∗(uj−1, uj)].

When is this monotone?

If f ∗(↑, ↓), then G (↑, ?, ↑). To clean up the second argument, con-
sider

∂G

∂uj
= 1− λ[f ∗1 − f ∗2︸ ︷︷ ︸

≥0

] ≥ 0.

(The subscripts indicate partial derivatives with respect to the first
and second argument.)

If λ(f ∗1 − f ∗2 ) ≤ 1, then G (↑, ↑, ↑).

Note: Also obtain a time-step restriction.



Lax-Friedrichs is Monotone

f ∗(u− , u+) =
f (u−) + f (u+)

2
− α

2
(u+ − u−).

Show: This is monotone.

Let α = maxu |f ′(u)|.

f ∗1 =
1
2

[f ′(uj) + α] ≥ 0,

f ∗2 =
1
2

[f ′(uj+1)− α] ≤ 0.

So f ∗(↑, ↓). Assume ht is chosen small enough so that λ(f ∗1 −f ∗2 ) ≤ 1
is satisfied.



Monotone Schemes: Properties

Theorem (Good properties of monotone schemes)

I Local maximum principle:

min
i∈stencil around j

ui ≤ G (u)j ≤ max
i∈stencil around j

ui .

I L1-contraction:

‖G (u)− G (v)‖L1 ≤ ‖u − v‖L1 .

I TVD:
TV (G (u)) ≤ TV (u).

I Solutions to monotone schemes satisfy all entropy conditions.



Godunov’s Theorem

Theorem (Godunov)

Monotone schemes are at most first-order accurate.

What now?

Maybe relax this condition? Maybe only ask for TVD?



Linear Schemes
Definition (Linear Schemes)

A scheme is called a linear scheme if it is linear when applied to a linear
PDE:

ut + aux = 0,

where a is a constant.

Write the general case of a linear scheme for ut + ux = 0:

uj ,`+1 =
K∑

k=−K
ck(λ)uj−k,`,

where ck(λ) are constants which may depend on λ = ht/hx . Such a
linear scheme is monotone iff ck(λ) ≥ 0 for all k .

Also called positive schemes.



Linear + TVD = ?

Theorem (TVD for linear Schemes)

For linear schemes, TVD ⇒ monotone.

What does that mean?

Linear TVD schemes are at most first order accurate.

Now what?

Not all bad: Implies that nonlinear TVD schemes at least stand a
chance.



Harten’s Lemma

Theorem (Harten’s Lemma)

If a scheme can be written as

ūj ,`+1 = ūj ,` + λ(Cj+1/2∆+ūj − Dj−1/2∆−ūj)

with Cj+1/2 ≥ 0, Dj+1/2 ≥ 0, 1− λ(Cj+1/2 + Dj+1/2) ≥ 0 and λ = ht/hx ,
then it is TVD.

As a matter of notation, we have

∆+uj = uj+1 − uj ,

∆−uj = uj − uj−1.

We have omitted the time subscript for the time level `.



Harten’s Lemma: Proof

∆+ūj ,`+1 = ∆+ūj ,` + λ∆+

(
Cj+1/2∆+ūj − Dj−1/2∆−ūj

)
= ∆+ūj ,` + λ

(
Cj+3/2∆+ūj+1 − Dj+1/2 ∆+ūj︸ ︷︷ ︸

=∆−ūj+1

−Cj+1/2∆+ūj + Dj−1/2∆−ūj
)

= [1− λ(Cj+1/2 + Dj+1/2)]∆+ūj

+λCj+3/2∆+ūj+1 + λDj−1/2∆−ūj .

|∆+ūj ,`+1| ≤ [1− λ(Cj+1/2 + Dj+1/2)]|∆+ūj |
+λCj+3/2|∆ + ūj+1|︸ ︷︷ ︸

Cj′+1/2|∆+ūj′ |

+λDj−1/2|∆−ūj |︸ ︷︷ ︸
Dj′′+1/2|∆+ūj′′ |

.

TV(ū`+1) =
∑
j

|∆+ūj ,`+1| ≤
∑
j

[
1− λ(Cj+1/2 + Dj+1/2)

+λCj+1/2 + λDj+1/2
]
|∆+ūj | ≤ TV(u`).



Minmod Scheme
Still assume f ′(u) ≥ 0.

f
∗,(1)
j+1/2 = f

(
ūj +

1
2

(ūj+1 − ūj)︸ ︷︷ ︸
ũ

(1)
j

)
, f

∗,(2)
j+1/2 = f

(
ūj +

1
2

(ūj − ūj−1)︸ ︷︷ ︸
ũ

(2)
j

)
.

Design a ‘safe’ thing to use for ũ:

minmod(a, b) :=


a |a| < |b|, ab > 0,
b |b| < |a|, ab > 0,
0 ab ≤ 0,

ũj := minmod(ũ
(1)
j , ũ

(2)
j ).

Intuition: TV growth driven by local extrema
→ if slopes have different signs, revert to first order.

Then consider f ∗,(3)
j+1/2 = f (ūj + ũj). Called a slope limiter.



Minmod is TVD
Show that Minmod is TVD:

Rewrite

ūj ,`+1 = ūj −λ[f (ūj + ũj)− f (ūj−1 + ũj−1)] = ūj −λ[−Dj−1/2∆−ūj ],

with

Dj−1/2 =
f (ūj + ũj)− f (ūj−1 + ũj−1)

ūj − ūj−1
= f ′(ξ)

ūj − ūj−1 + ũj − ũj−1
ūj − ūj−1

= f ′(ξ)︸︷︷︸
≥0

1 +
ũj

ūj − ūj−1︸ ︷︷ ︸
0≤·≤ 1

2

−
ũj−1

ūj − ūj−1︸ ︷︷ ︸
0≤·≤ 1

2

 ≥ 0.



Minmod: CFL restriction?

Derive a time step restriction for Minmod.

Dj−1/2 ≤ 3/2f ′(ξ) ≤ 3
2

max
u
|f ′(u)|.

Plugging this into the Harten CFL bound gives:

1− λDj−1/2 ≥ 1− 3
2
λmax

u
|f ′(u)| ≥ 0⇐ λmax |f ′(ξ)| ≤ 2

3 .



What about Time Integration?

u(1) = u` + htL(u`), u`+1 =
u`
2

+
1
2

(u(1) + htL(u(1))).

Above: A version of RK2 with L the ODE RHS. Will this cause wrinkles?

Use: TV is convex. TV (αu +(1−α)v) ≤ αTV (u)+(1−α)TV (v).

TV(u`+1) = TV

(
u`
2

+
1
2

(u(1) + htL(u(1)))

)
≤ 1

2
TV (u`) +

1
2

TV(u(1) + htL(u(1)))

TVD
≤ 1

2
TV (u`) +

1
2

TV(u(1))

TVD
≤ 1

2
TV (u`) +

1
2

TV(u`) = TV(u`).

General idea: time steppers out of convex comb. of Fw Euler.
(SSP / Strong-Stability Preserving Schemes) Above: SSPRK(2,2)



Total Variation is Convex

Show: TV(·) is a convex functional.

With 0 ≤ α ≤ 1:

TV(αu + (1− α)v)

≤
∑
j

|α(uj − uj−1) + (1− α)(vj − vj−1)|

≤
∑
j

α |uj − uj−1|+ (1− α) |vj − vj−1|

= αTV(u) + (1− α) TV(v).



TVD and High Order
Can TVD schemes be high order everywhere? (aside from near shocks)

Consider ut + ux = 0.

∆x2

exact solution after ∆t

initial condition

Consider what TVD means here:

At most first order!

The solution has an error of h2x , which means the approximation to
the derivative has error hx : first order. [Osher/Chakravarthy ‘84]



High Order at Smooth Extrema

I TVB Schemes [Shu ‘87]
I ENO [Harten/Engquist/Osher/Chakravarthy ‘87]

I Define Wj = w(xj+1/2) =
∫ xj+1/2
x1/2

u(ξ, t)dξ = hx
∑j

i=1 ūi

I Observe uj+1/2 = w ′(xj+1/2).
I Approximate by interpolation/numerical differentiation.

I Start with the linear function p(1) through Wj−1 and Wj

I Compute divided differences on (Wj−2,Wj−1,Wj)
I Compute divided differences on (Wj−1,Wj ,Wj+1)
I Use the one with the smaller magnitude (of the divided differences) to

extend p(1) to quadratic
I (and so on, adding points on the side with the lowest magnitude of the

divided differences)

I WENO [Liu/Osher/Chan ‘94]

https://en.wikipedia.org/w/index.php?title=Newton_polynomial&oldid=940058390
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Systems of Conservation Laws
Linear system of hyperbolic conservation laws, A ∈ Rm×m:

ut + Aux = 0,
u(x , 0) = u0(x).

Assumptions on A?

System is hyperbolic [cf. Loret ‘08] if A is diagonalizable with real
eigenvalues.

Let Arp = λprp (p = 1, . . . ,m). Called strictly hyperbolic if the
eigenvalues are distinct. AR = RΛ.

Substitution v = R−1u attains v t + Λv x = 0, called characteristic
variables.

Recall: Rewrote wave equation in this form early on.



Linear System Solution

v = R−1u, v t + Λv x = 0.

Write down the solution.

u(x , t) =
∑
p

rpvp(x − λpt, 0),

where
v(x , 0) = R−1u(x , 0).

What is the impact on boundary conditions? E.g. (λp) = (−c , 0, c) for a
BC at x = 0 for [0, 1]?

Can only impose BCs on incoming waves! E.g. only one BC (on v3)
at x = 0.



Characteristics for Systems (1/2)

Consider system ut + f (u)x = 0. Write in quasilinear form:

ut + A(u)ux = 0 with A(u) = Jf (u).

When hyperbolic?

A diagonalizable w/real eigenvalues. “Strictly” hyperbolic for distinct
eigenvalues. Both now local properties.



Characteristics for Systems (2/2)

What about characteristics/shock speeds?

I By considering eigenstates: can still define characteristics.
m characteristics through each point.

I Characteristic locations no longer obey an ODE.

Are values of u still constant along characteristics?

No, only the coefficients of the eigenstates are constant along char-
acteristics, and only locally.



Shocks and Riemann Problems for Systems

ut + Aux = 0,

u(x , 0) =

{
u l x < 0,
ur x > 0.

Solution? (Assume strict hyperbolicity with λ1 < λ2 < · · · < λm.)

u l =
m∑

p=1

αprp, ur =
m∑

p=1

βprp. Then vp(x , 0) =

{
αp x < 0,
βp x > 0.

Let P(x , t) be the maximum value of p for which x − λpt > 0, then

u(x , t) =

P(x ,t)∑
p=1

βprp +
m∑

p=P(x ,t)+1

αprp.



Shock Fans (1/2)
What does the solution look like?

Fan of values constant between each characteristic.

x
0

t
λ1

λ2
λ3

Jump across the characteristic associated with λp?

[u] = (βp − αp)rp.



Shock Fans (2/2)

Do those jumps satisfy Rankine-Hugoniot?

[f ] = A[u] = (βp − αp)Arp = λp[u],

where λp is the propagation speed of the jump.

How can we find intermediate values of u?

“Split up” the jump into a sum of jumps:

ur − u l = (β1 − α1)r1 + · · ·+ (βm − αm)rm.

Use Rankine-Hugoniot as a constraint.
This works much the same way in the nonlinear case.



Two Dimensions
ut + f (u)x + g(u)y = 0. Finite volume methods generalize in principle:

dūij(t)

dt
+

1
h2

∫ yj+1/2

yj−1/2

f (u(xi+1/2, y , t))− f (u(xi−1/2, y , t))dy

+
1
h2

∫ xi+1/2

xi−1/2

g(u(x , yj+1/2, t))− g(u(x , yj−1/2, t))dx

Downside: Stencil full (n × n), not star-shaped (cf. FD)

However:

I If a method is TVD in two dimensions, it is at most first order
accurate except in trivial cases. [Goodman/Leveque ‘85].

I The ‘reconstruction’ idea in complex geometry can become
computationally expensive at high order.

Later: discontinuous Galerkin (DG) for high order with c. laws.
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Function Spaces

Consider

fn(x) =


−1 x ≤ − 1

n ,
3n
2 x −

n3

2 x
3 − 1

n < x < 1
n ,

1 x ≥ 1/n.

Converges to the step function. Problem?

fn continuous, step function not. Want: limits that preserve smooth-
ness properties. Limits defined by norms.



Norms

Definition (Norm)

A norm ‖ · ‖ maps an element of a vector space into [0,∞). It satisfies:
I ‖x‖ = 0⇔ x = 0
I ‖λx‖ = |λ|‖x‖
I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)



Convergence

Definition (Convergent Sequence)

xn → x :⇔ ‖xn − x‖ → 0 (convergence in norm)

Definition (Cauchy Sequence)

For all ε > 0 there exists an n for which ‖xν − xµ‖ ≤ ε for µ, ν ≥ n.



Banach Spaces

Definition (Complete/“Banach” space)

Cauchy ⇒ Convergent

What’s special about Cauchy sequences?

Limits appear out of thin air. Can be used to construct things.

Counterexamples?

I Q with absolute value
I C 0 with L2 norm



More on C 0

Let Ω ⊆ Rn be open. Is C 0(Ω) with ‖f ‖∞ := supx∈Ω |f (x)| Banach?

f (x) = 1/x clearly satisfies f ∈ C 0(Ω), but its norm is unbounded,
so ‖·‖∞ is not a norm on this space.

Is C 0(Ω̄) with ‖f ‖∞ := supx∈Ω |f (x)| Banach?

Assume (fi )i is Cauchy.
I For each x , (fi (x))i is Cauchy, so a pointwise limit exists. Call

that f .
I Let ε > 0. There exists N so that |fn(x)− fm(x)| < ε for all

n,m ≥ N and x ∈ Ω̄. Taking the limit m→∞ yields
|fn(x)− f (x)| < ε, i.e. uniform convergence, forcing f to be
continuous.



Cm Spaces
Let Ω ⊆ Rn.

Consider a multi-index k = (k1, . . . , kn) and define the symbols

Dk f =
∂|k|

∂xk1
1 · · · ∂x

kn
n

, |k | = k1 + · · ·+ kn.

Definition (Cm Spaces)

Cm(Ω) =
{
f ∈ C 0(Ω) : Dk f ∈ C 0 for all k with |k | ≤ m

}
,

C∞(Ω) =
{
f ∈ C 0(Ω) : Dk f ∈ C 0(Ω) for all k

}
,

Cm
0 (Ω) = {f ∈ Cm(Ω) : f has compact support} ,

where compact support means that there is a compact (closed and
bounded) set S ⊂ Ω for which f (x) = 0 if x 6∈ S .



Lp Spaces
Let 1 ≤ p <∞.

Definition (Lp Spaces)

Lp(Ω) :=

{
u : (u : R→ R) measurable,

∫
Ω
|u|p dx <∞

}
,

‖u‖p :=

(∫
Ω
|u|p dx

)1/p

.

Definition (L∞ Space)

L∞(Ω) := {u : (u : R→ R), |u(x)| <∞ almost everywhere} ,

‖u‖∞ = inf {C : |u(x)| ≤ C almost everywhere} .



Lp Spaces: Properties

Theorem (Hölder’s Inequality)

For 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and measurable u and v ,

‖uv‖1 ≤ ‖u‖p ‖v‖q .

Theorem (Minkowski’s Inequality (Triangle inequality in Lp))

For 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω),

‖u + v‖p ≤ ‖u‖p + ‖v‖p .



Inner Product Spaces
Let V be a vector space.

Definition (Inner Product)

An inner product is a function 〈·, ·〉 : V × V → R such that for any
f , g , h ∈ V and α ∈ R

〈f , f 〉 ≥ 0,
〈f , f 〉 = 0⇔ f = 0,
〈f , g〉 = 〈f , g〉 ,

〈αf + g , h〉 = α 〈f , h〉+ 〈g , h〉 .

Definition (Induced Norm)

‖f ‖ =
√
〈f , f 〉.



Hilbert Spaces
Definition (Hilbert Space)

An inner product space that is complete under the induced norm.

Let Ω be open.

Theorem (L2)

L2(Ω) equals the closure of (set of all imits of Cauchy sequences in)
C∞0 (Ω) under the induced norm ‖·‖2.

Theorem (Hilbert Projection)

LetM ⊆ V be a closed subspace of a Hilbert space V . For any u ∈ V
there exists a unique v ∈ M such that u = v + w with w ∈ M⊥.

M⊥ = {w ∈ V : 〈z ,w〉V = 0 for all z ∈ M}.



Weak Derivatives
Define the space L1loc of locally integrable functions.

L1loc(Ω) =

{
u : (u : R→ R) measurable,∫

Ω
|u(x)ϕ(x)| dx <∞ for every ϕ ∈ C∞0 (Ω)

}

Definition (Weak Derivative)

v ∈ L1loc(Ω) is the weak partial derivative of u ∈ L1loc(Ω) of multi-index
order k if

∫
Ω
vϕdx = (−1)|k|

∫
Ω
uDkϕdx for all ϕ ∈ C∞0 (Ω).

In this case, Dk
wu := v .



Weak Derivatives: Examples (1/2)
Consider all these on the interval [−1, 1].

f1(x) = 4(1− x)x

Dw f1(x) = 4−8x . For (“strongly”) differentiable functions, weak and
strong derivatives coincide.

f2(x) =

{
2x x ≤ 1/2,
2− 2x x > 1/2.

“Kinks” in the function are allowed (but jumps are not):

Dw f2(x) =

{
2 x ≤ 1/2,
−2 x > 1/2.



Weak Derivatives: Examples (2/2)

f3(x) =

√
1
2
−
√
|x − 1/2|

Even cusps are allowed:

Dw f3(x) =


1

2
√

1/2−x
x < 1/2,

− 1
2
√

x−1/2
x > 1/2.



Sobolev Spaces

Let Ω ⊂ Rn, k ∈ N0 and 1 ≤ p <∞.

Definition ((k , p)-Sobolev Norm/Space)

‖u‖k,p := p

√∑
|α|≤k

‖Dα
w u‖

p
p,

|u|k,p := p

√∑
|α|=k

‖Dα
w u‖

p
p.

W k,p(Ω) :=
{
u : (u : Ω→ R), ‖u‖k,p <∞

}
.



More Sobolev Spaces

W 0,2?

Equal to L2.

W s,2?

Also called Hs , a Hilbert space, with an induced norm. From what
scalar product?

H1
0 (Ω)?

Closure of the space C∞0 (Ω) under ‖u‖k,p.
The Sobolev way of saying zero on the boundary.
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An Elliptic Model Problem
Let Ω ⊂ Rn open, bounded, f ∈ H1(Ω).

−∇ · ∇u + u = f (x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω).

Let V := H1
0 (Ω). Integration by parts? (Gauss’s theorem applied to ab):

∫
Ω
∇a · b +

∫
Ω
a∇ · b =

∫
Ω
∇ · (ab) =

∫
∂Ω

n̂ · (ab).

Weak form?

Multiply by test function v ∈ V , integrate by parts:∫
Ω
∇u · ∇v −

∫
∂Ω

n̂ · (v∇u)︸ ︷︷ ︸
=0 (v∈H1

0 )

+

∫
Ω
uv =

∫
Ω
fv .



Motivation: Bilinear Forms and Functionals∫
Ω
∇u · ∇v +

∫
Ω
uv =

∫
fv .

This is the weak form of the strong-form problem. The task is to find a
u ∈ V that satisfies this for all test functions v ∈ V .

Recast this in terms of bilinear forms and functionals:

a(u, v) = 〈∇u,∇v〉+ 〈u, v〉 ,
g(v) = 〈f , v〉 ,

where 〈·, ·〉 is the L2 inner product. Then the weak form is equivalent
to

a(u, v) = f (v) for all v ∈ V .

This motivates further study of Hilbert spaces and objects in them.



Dual Spaces and Functionals
Bounded Linear Functional
Let (V , ‖·‖) be a Banach space. A linear functional is a linear function
g : V → R. It is bounded (⇔ continuous) if there exists a constant C so
that |g(v)| ≤ C ‖v‖ for all v ∈ V .

Dual Space

Let (V , ‖·‖) be a Banach space. Then the dual space V ′ is the space of
bounded linear functionals on V .

Dual Space is Banach (cf. e.g. Trèves 1967)

V ′ is a Banach space with the dual norm

‖g‖V ′ = sup
v∈V \{0}

|g(v)|
‖v‖V

.



Functionals in the Model Problem
Is g from the model problem a bounded functional? (In what space?)

Must use same space as rest of problem: H1(Ω).

‖g‖V ′ = sup
v∈H1\{0}

|〈f , v〉L2 |
‖v‖H1

≤
‖f ‖L2 ‖v‖L2

‖v‖L2 + ‖Dwv‖L2
≤
‖f ‖L2 ‖v‖L2

‖v‖L2
= ‖f ‖L2

using Cauchy-Schwarz. Find: f ∈ L2 leads to bounded g in H1.

That bound felt loose and wasteful. Can we do better?

Define negative-index Sobolev norms:

‖f ‖H−1 = sup
v∈H1(Ω)\{0}

|〈f , v〉L2 |
‖v‖H1

.

Bound (by definition) |g(v)| ≤ ‖f ‖H−1 ‖v‖H1 . Allows f ∈ H−1.



Riesz Representation Theorem (1/3)
Let V be a Hilbert space with inner product 〈·, ·〉.

Theorem (Riesz)

Let g be a bounded linear functional on V , i.e. g ∈ V ′. Then there exists
a unique u ∈ V so that g(v) = 〈u, v〉 for all v ∈ V .

Let g ∈ V ′. N(·) below represents the nullspace.
Case 1. N(g) = V . u = 0 works, unique by scalar product axioms.
Case 2. N(g) 6= V . Let w ∈ N(g)⊥ \ {0}. Let α = g(w) 6= 0.

g

(
g(v)

α
w

)
=

g(v)

α
g(w) = g(v) for all v ∈ V .

Let v ∈ V be arbitrary, and let z := v − (g(v)/α)w . (Feel reminded
of Gram-Schmidt?) Then g(z) = g(v) − g(v) = 0, i.e. z ∈ N(g),
i.e. 〈z ,w〉V = 0 since w ∈ N(g)⊥.



Riesz Representation Theorem: Proof (2/3)

Have w ∈ N(g)⊥ \ {0}, α = g(w) 6= 0, and z := v − (g(v)/α)w ⊥ w .

0 =

〈
v − g(v)

α
w ,w

〉
⇔

〈
g(v)

α
w ,w

〉
= 〈v ,w〉 for all v ∈ V .

N(g)

w

z

v Multiplying by α/ 〈w ,w〉 yields

g(v) =

〈
v ,

=α︷ ︸︸ ︷
g(w)

〈w ,w〉V
w︸ ︷︷ ︸

u:=

〉
.



Riesz Representation Theorem: Proof (3/3)

Uniqueness of u?

Suppose we have two: u and û so that

g(v) = 〈u, v〉 = 〈û, v〉 ⇒ 〈u − û, v〉 = 0 for all v ∈ V ,

Plugging in v = u− û yields u− û = 0 by the properties of the inner
product.



Back to the Model Problem

a(u, v) = 〈∇u,∇v〉L2 + 〈u, v〉L2

g(v) = 〈f , v〉L2

a(u, v) = g(v)

Have we learned anything about the solvability of this problem?

In this particular case, observe that a(u, v) = 〈u, v〉H1 . By the Riesz
Representation theorem and knowing that g is a bounded linear func-
tional in H1, we know that there exists a unique u so that

a(u, v) = 〈u, v〉H1 = g(v).



Poisson
Let Ω ⊂ Rn open, bounded, f ∈ H−1(Ω).

−∇ · ∇u = f (x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω).

This is called the Poisson problem (with Dirichlet BCs).

Weak form?

∫
Ω
∇u · ∇vdx︸ ︷︷ ︸
a(u,v)

=

∫
Ω
f (x)v(x)dx︸ ︷︷ ︸

g(v)

for all v ∈ V .

We know that g is a bounded linear functional in H1
0 , but a(u, v) is

no longer identical to our inner product. Maybe we can come up with
some conditions that make a ‘sufficiently similar’ to an inner product?



Ellipticity

Let V be Hilbert space.

V -Ellipticity

A bilinear form a(·, ·) : V × V → R is called coercive if there exists a
constant c0 > 0 so that

c0 ‖u‖2V ≤ a(u, u) for all u ∈ V ,

and a is called continuous if there exists a constant c1 > 0 so that

|a(u, v)| ≤ c1 ‖u‖V ‖v‖V for all u, v ∈ V .

If a is both coercive and continuous on V , then a is said to be V -elliptic.



Lax-Milgram Theorem
Let V be Hilbert space with inner product 〈·, ·〉.

Lax-Milgram, Symmetric Case

Let a be a V -elliptic bilinear form that is also symmetric, and let g be a
bounded linear functional on V .
Then there exists a unique u ∈ V so that a(u, v) = g(v) for all v ∈ V .

a defines an inner product 〈u, v〉a = a(u, v) on V , with linearity and
symmetry trivial, and:
I Show a(u, u) ≥ 0.

a(u, u) ≥ c0 ‖u‖2V ≥ 0 by coercivity,
I Show a(u, u) = 0⇒ u = 0.

0 = a(u, u) ≥ c0 ‖u‖2V ≥ 0, i.e. ‖u‖V = 0, i.e. u = 0.
From the Riesz representation theorem, there exists a unique u ∈ V
so that a(u, v) = 〈u, v〉a = g(v).



Back to Poisson
Can we declare victory for Poisson?

Continuity of a holds:∣∣∣∣∫
Ω
∇u · ∇vdx

∣∣∣∣ = |〈∇u,∇v〉L2 | ≤ ‖∇u‖L2 ‖∇v‖L2 ≤ ‖u‖H1 ‖v‖H1 .

However coercivity is less clear:∫
Ω
∇u · ∇udx

?
≥ c1

(∫
Ω
∇u · ∇udx +

∫
Ω
u2dx

)
.

Can this inequality hold in general, without further assumptions?

No: a constant would violate it.



Poincaré-Friedrichs Inequality (1/3)

Theorem (Poincaré-Friedrichs Inequality)

Suppose Ω ⊂ Rn is bounded and u ∈ H1
0 (Ω). Then there exists a constant

C > 0 such that
‖u‖L2 ≤ C ‖∇u‖L2 .

Outline: Helpful identity, result in C∞0 (Ω), result in H1
0 (Ω).

A helpful identity. For u ∈ C∞0 (Ω),

∇ · (u2x) = ∂x1(u2x1) + · · ·+ ∂xn(u2xn)

= u2 + 2(u∂x1u)x1 + · · ·+ u2 + 2(u∂xnu)xn

= nu2 + 2u(∇u · x).

⇒ u2 =
1
n
∇ · (u2x)− 2

n
u(∇u · x).



Poincaré-Friedrichs Inequality (2/3)

Prove the result in C∞0 (Ω).

‖u‖2L2 =

∫
Ω
u2dx =

∫
Ω

1
n
∇ · (u2x)− 2

n
u(∇u · x)dx

=
1
n

∫
∂Ω

n̂ · (u2x)︸ ︷︷ ︸
0

dsx −
2
n

∫
Ω
u(∇u · x)dx

≤ 2
n

max
x∈Ω
|x |
∫

Ω
|u∇u| dx ≤ 2

n
max
x∈Ω
|x | ‖u‖L2 ‖∇u‖L2

⇒ ‖u‖L2 ≤ 2
n

max
x∈Ω
|x |︸ ︷︷ ︸

C

‖∇u‖L2 .



Poincaré-Friedrichs Inequality (3/3)

Prove the result in H1
0 (Ω).

Let u ∈ H1
0 (Ω). Since C∞0 (Ω) is dense in H1

0 (Ω), let (uk) ⊂ C∞0 .
Then the inequality holds for each uk , and ‖uk‖L2 → ‖u‖L2 and
‖∇uk‖L2 → ‖∇u‖L2 .



Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

1
C 2 + 1

‖u‖2H1(Ω) =
1

C 2 + 1

(
‖u‖2L2(Ω) + ‖∇u‖2L2

)
≤ ‖∇u‖2L2 = a(u, u).

Draw a conclusion on Poisson:

Because of coercivity and continuity of a, the Poisson weak form
admits a unique solution in H1

0 (Ω).
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Ritz-Galerkin
Some key goals for this section:
I How do we use the weak form to compute an approximate solution?
I What can we know about the accuracy of the approximate solution?

Can we pick one underlying principle for the construction of the
approximation?

Considered: Weak form a(u, v) = g(v) for all v ∈ V ⊆ H, where H
is a Hilbert space. (Think of V as H1

0 for example.)
Idea: Choose a finite-dimensional subspace Vh ⊂ V , find a solution
uh ∈ Vh to the weak-form problem

a(uh, vh) = g(vh) for all vh ∈ Vh.

This is called Ritz-Galerkin approximation.



Galerkin Orthogonality

a(u, v) = g(v) for all v ∈ V , a(uh, vh) = g(vh) for all vh ∈ Vh.

Observations?

Observe that the ‘continuous’ weak form also allows vh to be plugged
in:

a(u, vh) = g(vh) for all vh ∈ Vh.

Subtracting the two leads to Galerkin Orthgonality:

a(uh − u, vh) = 0 for all vh ∈ Vh,

i.e. using a(·, ·) as a (sort of) inner product, the error u − uh is
orthogonal to the space of test functions.



Céa’s Lemma
Let V ⊂ H be a closed subspace of a Hilbert space H.

Céa’s Lemma
Let a(·, ·) be a coercive and continuous bilinear form on V . In addition, for
a bounded linear functional g on V , let u ∈ V satisfy

a(u, v) = g(v) for all v ∈ V .

Consider the finite-dimensional subspace Vh ⊂ V and uh ∈ Vh that satisfies

a(uh, vh) = g(vh) for all vh ∈ Vh.

Then

‖u − uh‖V ≤
c1
c0

inf
vh∈Vh

‖u − vh‖V .



Céa’s Lemma: Proof

Recall Galerkin orthgonality: a(uh − u, vh) = 0 for all vh ∈ Vh. Show the
result.

For any vh ∈ Vh,

c0 ‖u − uh‖2V ≤ a(u − uh, u − uh) (coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)

= a(u − uh, u − vh) (Galerkin orth.)
≤ c1 ‖u − uh‖V ‖u − vh‖V .

Dividing by ‖u − uh‖V completes the proof.



Elliptic Regularity
Definition (H s Regularity)

Let m ≥ 1, Hm
0 (Ω) ⊆ V ⊆ Hm(Ω) and a(·, ·) a V -elliptic bilinear form.

The bilinear form a(u, v) = 〈f , v〉 for all v ∈ V is called Hs regular, if for
every f ∈ Hs−2m there exists a solution u ∈ Hs(Ω) and we have with a
constant C (Ω, a, s),

‖u‖Hs ≤ C (Ω, a, s) ‖f ‖Hs−2m .

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H1
0 -elliptic bilinear form with sufficiently smooth coefficient

functions.

I If Ω is convex, then then Dirichlet problem is H2 regular.
I Let s ≥ 2. If ∂Ω is C s , the Dirichlet problem is Hs regular.



Elliptic Regularity: Counterexamples
Are the conditions on the boundary essential for elliptic regularity?

Consider 4u = 0, u(e iφ) = sin(2/3φ), u = 0
elsewhere.
I u(z) = Im(z2/3) with z = x + iy ∈ C.
I Derivative: (2/3)z−1/3: unbounded ⇒

u 6∈ H2!

Are there any particular concerns for mixed boundary conditions?

Homogeneous Neumann on dashed line with (e.g.)
left half, Dirichlet elsewhere.
I Solution could be found by solving on whole

domain using reflected Dirichlet BCs.
I Reentrant corner ⇒ u 6∈ H2 (in gen.)



Estimating the Error in the Energy Norm
Come up with an idea of a bound on ‖u − uh‖H1 .

‖u − uh‖H1 ≤
Céa

C inf
vh∈Vh

‖u − vh‖H1 ≤ C ‖u − Ihu‖H1

≤
TBD

C1h ‖u‖H2 ≤
H2 reg.

c2h ‖f ‖L2 .

What’s still to do?

I we still need to figure out what Vh will be,
I Ih is some interpolation operator that we will define more

precisely later, and
I we need to worry about the interpolation error bound (“TBD”)
I Finally, H1 is kind of a weird norm. Can we get an error

estimate in L2?



L2 Estimates
Let H be a Hilbert space with the norm ‖·‖H and the inner product 〈·, ·〉.
(Think: H = L2, V = H1.)

Theorem (Aubin-Nitsche)

Let V ⊆ H be a subspace that becomes a Hilbert space under the norm
‖·‖V . Let the embedding V → H be continuous. Then we have for the
finite element solution u ∈ Vh ⊂ V :

‖u − uh‖H ≤ c1 ‖u − uh‖V sup
g∈H

[
1
‖g‖H

inf
vh∈Vh

‖ϕg − vh‖V

]
,

if with every g ∈ H we associate the unique (weak) solution ϕg of the
equation (also called the dual problem)

a(w , ϕg ) = 〈g ,w〉 for all w ∈ V ,



Aubin-Nitsche: Proof

The norm of an element in a Hilbert space can be determined via the
scalar product: ‖w‖H = supg∈H 〈g ,w〉 / ‖g‖H .

〈g , u − uh〉 =
Def. ϕg

a(u − uh, ϕg ) =
Galerkin orth.

a(u − uh, ϕg − vh)

≤
cont. a

c1 ‖u − uh‖ V ‖ϕg − vh‖V .

Since this argument is valid for any vh ∈ Vh, we obtain

〈g , u − uh〉 ≤ c1 ‖u − uh‖V inf
vh∈Vh

‖ϕg − vh‖V .

Plugging into the norm relationship yields

‖u − uh‖H = sup
g∈H

〈g ,w〉
‖g‖H

≤ c1 ‖u − uh‖V sup
g∈H

[
1
‖g‖H

inf
vh∈Vh

‖ϕg − vh‖V

]
.



L2 Estimates using Aubin-Nitsche

‖u − uh‖H ≤ c1 ‖u − uh‖V sup
g∈H

[
1
‖g‖H

inf
vh∈Vh

‖ϕg − vh‖V

]
,

If u ∈ H1
0 (Ω), what do we get from Aubin-Nitsche?

As before (e.g. Poisson: symmetry of a: primal prob. = dual prob.):

inf
vh∈Vh

‖ϕg − vh‖H1 ≤ C ‖ϕg − Ihϕg‖H1 ≤ C1h ‖ϕg‖H2 ≤ c2h ‖g‖L2 .

So ‖u − uh‖L2 ≤ Ch ‖u − uh‖H1 .

So does Aubin-Nitsche give us an L2 estimate?

Had (aside from missing pieces): ‖u − uh‖H1 ≤ c2h ‖f ‖L2 .
If we have f ∈ L2(Ω) and hence u ∈ H2(Ω) (H2 regularity), then

‖u − uh‖L2 ≤ Ch2 ‖f ‖L2 .
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Finite Elements in 1D: Discrete Form
Ω := [α, β]. Look for u ∈ H1

0 (Ω), so that a(u, ϕ) = 〈f , ϕ〉 for all
ϕ ∈ H1

0 (Ω). Choose Vh = span{ϕ1, . . . , ϕn} and expand
uh =

∑n
i=1 u

i
hϕi ∈ Vh. Find the discrete system.

a

(
n∑

i=1

uihϕi , ϕ

)
= 〈f , ϕ〉 for all ϕ ∈ Vh,

We may as well choose the basis (ϕi ) to represent ϕ ∈ Vh:

a

(
n∑

i=1

uihϕi , ϕj

)
= 〈f , ϕj〉 for all j ∈ {1, . . . , n}.

This could lead to a linear system Au = b, where A = {ai ,j} ∈ Rn×n

with ai ,j = a(ϕi , ϕj), u = {uih}, bj = 〈f , ϕj〉, but we choose not to
go this route.



Grids and Hats
Let Ii := [αi , βi ], so that Ω̄ =

⋃N
i=0 Ii and I ◦i ∩ Ij = ∅ for i 6= j . Consider a

grid
α = x0 < · · · < xN < xN+1 = β,

i.e. αi = xi , βi = xi+1 for i ∈ {0, . . . ,N}. The {xi} are called nodes of the
grid. hi := xi+1 − xi for i ∈ {0, . . . ,N} and h := maxi hi . Vh? Basis?

P1
h := {vh ∈ C 0(Ω̄) : for all i ∈ {0, . . . ,N}, vh|Ii ∈ P1}.

For i ∈ {0, . . . ,N + 1}, let

ϕi (x) :=


1

hi−1
(x − xi−1) x ∈ Ii−1,

1
hi

(xi+1 − x) x ∈ Ii ,

0 otherwise
∈ P1

h .

Observe: The set {ϕi}i forms a basis of P1
h .



Degrees of Freedom and Matrices
Define something more general than basis coefficients to solve for.

I For i ∈ {0, . . . ,N + 1}, let γi : C (Ω̄)→ R.
Here: v 7→ γi (v) := v(xi ) ∈ R.
Generally: could be derivatives etc. (cf. splines).

I {γi}N+1
i=0 are global degrees of freedom in P1

h .
I {γi}N+1

i=0 forms a basis of the dual space (P1
h)′.

(i.e. uniquely determine ϕ ∈ Vh, global unisolvence)

Define shape functions and assemble the stiffness matrix:

Shape functions ϕ̂ ∈ Vh satisfy γj(ϕ̂i ) = δi ,j for i , j ∈ {0, . . . ,N+1}.

a(uh, ϕ̂i ) = 〈f , ϕi 〉 ⇔
N∑
j=1

γj(uh)︸ ︷︷ ︸
=uih

a(ϕ̂j , ϕ̂i )︸ ︷︷ ︸
(Ah)i,j

= 〈f , ϕi 〉︸ ︷︷ ︸
(bh)i

(j = 1, . . . ,N)



A Matrix Property for Efficiency

(Ah)i ,j = a(ϕ̂j , ϕ̂i ).

Anything special about the matrix?

Only ai ,i , ai ,i+1, ai ,i−1 6= 0 in the ith row of A is nonzero. Sparse.



Error Estimation

According to Céa, what’s our main missing piece in error estimation now?

An interpolation operator

I 1h : C 0(Ω̄) → P1
h ,

v 7→
N+1∑
i=0

γi (v)ϕ̂i ∈ P1
h .

Next: need to estimate its accuracy.



Interpolation Error (1D-only)
For v ∈ H2(Ω),

∥∥v − I 1h v
∥∥
L2 ≤ h2 |v |H2 for all h > 0,∣∣(v − I 1h v)
∣∣
H1 ≤ h |v |H2 for all h > 0.

If v ∈ H1(Ω) \ H2(Ω),

∥∥v − I 1h v
∥∥
L2 ≤ h |v |H1 for all h > 0,

lim
h→0

∣∣(v − I 1h v)
∣∣
H1 = 0.

Is I 1h defined for v ∈ H2? for v ∈ H1 \ H2?

Depends on the dimension n and the domain Ω. Need to consider
the Sobolev Embedding Theorem.



Interpolation Error: Towards an Estimate

Provide an a-priori estimate.

‖u − uh‖H1 ≤
c1
c0

inf
vh∈P1

h

‖u − vh‖H1 ≤
c1
c0

∥∥u − I 1h u
∥∥
H1 ≤

c1
c0
h |u|H2 .

What’s the relationship between I 1h u and uh?

None!



Local-to-Global

Is there a simple way of constructing the polynomial basis?

The basis functions {ϕi}Ni=1 can be viewed as a composition of
I grid-independent reference basis functions on a reference

element, and
I geometric transformations from the reference element to the

grid.



Local-to-Global: Math

Construct a polynomial basis using this approach.

Let κ̂ = [0, 1] be the reference interval and consider the affine trans-
formations TI : x̂ ∈ κ̂ 7→ x = xi + x̂hi for i ∈ {0, . . . ,N}. Define the
shape functions

ϕ̂0(x̂) := 1− x̂ for all x̂ ∈ κ̂,
ϕ̂1(x̂) := x̂ for all x̂ ∈ κ.

These functions form a basis of P1(κ̂). Then

ϕi (x) =

{
(ϕ̂1 ◦ T−1i−1)(x) x ∈ [xi−1, xi ],

(ϕ̂0 ◦ T−1i )(x) x ∈ [xi , xi+1].



Demo

Demo: Developing FEM in 1D

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/Developing FEM in 1D.ipynb


Going Higher Order

Ω ⊂ R with a grid as above.

Possible extension:

Pk
h := {vh ∈ C 0(Ω̄) : for all i ∈ {1, . . . ,N}, vh|Ii ∈ Pk}.

Higher Order Approximation

Let 0 ≤ ` ≤ k . Then for v ∈ H`+1(Ω),

∥∥∥v − I kh v
∥∥∥
L2

+ h
∣∣∣(v − I kh v)

∣∣∣
H1
≤ Ch`+1 |v |H`+1 .



High-Order: Degrees of Freedom

Define some degrees of freedom (or DoFs) for high-order 1D FEM.

Let {γj}N+1
j=0 ∈ (V 1

h )′ be the linear functionals so that

γj(vh) = vh(xj) for all vh ∈ V 1
h .

Using terminology from classical mechanics, these functions are called
(global) degrees of freedom. The functions {ϕi}N+1

i=0 that are defined
so that

γj(ϕi ) = δi ,j (i , j ∈ {0, . . . ,N + 1}, ϕi ∈ V 1
h )

holds are called (global) shape functions. One can also define local
shape functions on the reference element.



High-Order: Local Basis

Define local form functions for high-order 1D FEM.

The local form functions are typically chosen to be Lagrange polyno-
mials:

ϕ̂k
i (x̂) =

∏k
j=0,j 6=i (x̂ − x̂j)∏k
j=0,j 6=i (x̂i − x̂j)

,

where x̂j = j/k for i = 0, . . . , k .
xi ,j := xi + (j/k)hi for i = 0, . . . ,N and j = 0, . . . , k − 1, further
xN+1,0 = 0. Then

dim(V k
h ) = k(N + 1) + 1.



High-Order: Global Basis

Obtain the global shape functions for high-order 1D FEM.

Define

ϕi ,0(x) :=


ϕ̂k
k ◦ T

−1
i−1(x) x ∈ [xi−1, xi ],

ϕ̂k
0 ◦ T

−1
i (x) x ∈ [xi , xi+1],

0 otherwise,

and

ϕi ,j(x) :=

{
ϕ̂k
j ◦ T

−1
i (x) x ∈ [xi , xi+1],

0 otherwise.

for j = 0, . . . , k − 1 und i = 0, . . . ,N.
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A Boundary Value Problem
Consider the following elliptic PDE

−∇ · (κ (x)∇u) = f (x) for x ∈ Ω ⊂ R2,

u (x) = 0 when x ∈ ∂Ω.

Weak form?

Multiply by a test function v ∈ H1
0 (Ω) and integrate by parts:∫

Ω
[−∇ · (κ (x)∇u)− f (x)] v dx = 0

⇔ −
∫
∂Ω

v [κn̂ · ∇u] dΓ +

∫
Ω

[κ (x)∇u · ∇v − f (x) v ] dx = 0.

The boundary integral vanishes since v ∈ H1
0 and we find∫

Ω
κ (x)∇u · ∇v dx =

∫
Ω
f (x) v dx .



Weak Form: Bilinear Form and RHS Functional
Hence the problem is to find u ∈ V , such that

a (u, v) = g (v) , for all v ∈ V = H1
0 (Ω)

where. . .

a (u, v) :=

∫
Ω
κ (x)∇u · ∇v dx ,

g (v) :=

∫
Ω
f (x) v dx ,

Is this symmetric, coercive, and continuous?

I Symmetric: yes.
I Coercive: When there exists c so that 0 < c ≤ κ(x) for all x .
I Continuous: When there exists C so that κ(x) ≤ C <∞ for

all x .



Triangulation: 2D
Suppose the domain is a union of triangles Em, with vertices xi .

Ω

Em

Ω̄ =
M⋃
i=1

Em.



Elements and the Bilinear Form

If the domain, Ω, can be written as a disjoint union of elements, Ek ,

Ω = ∪Mm=1Em with E ◦i ∩ E ◦j = ∅ for i 6= j ,

what happens to a and g?

a (u, v) =
M∑

m=1

∫
Em

κ (x)∇u · ∇v dx ,

g (v) =
M∑

m=1

∫
Em

q (x) v dx .



Basis Functions

Expand

uN (x) =

Np∑
i=1

uiϕi ,

and plug into the weak form.

Np∑
j=1

uja (ϕj , ϕi ) = g (ϕi ) , for i = 1 . . .Np.



Global Lagrange Basis

Approximate solution uh: Piecewise linear on Ω

Ω

uh

The Lagrange basis for Vh consists of piecewise linear ϕi , with. . .

ϕi (x i ) = 1 and ϕi (x j) = 0, for i 6= j .



Basis Functions Features

Features of the basis?

I For the piecewise linear Lagrange basis, each ϕi is continuous
on Ω.

I Restricted to Em, each ϕi is linear.

→



Local Basis

What basis functions exist on each triangle?

On each triangle, Em, we have three non-zero basis functions, one for
each vertex of the triangle:

x1
x2

x3

x1
x2

x3

x1
x2

x3

ϕ1 ϕ2 ϕ3

In the Figure, ϕ1 (x1) = 1, ϕ1 (x2) = 0, and ϕ1 (x3) = 0.



Local Basis Expressions

Write expressions for the nodal linear basis in 2D.

r

s

1

1

ϕ1 ϕ2

ϕ3

I ϕ1(r , s) = 1− r − s

I ϕ2(r , s) = r

I ϕ3(r , s) = s



Higher-Order, Higher-Dimensional Simplex Bases
What’s an n-simplex?

ri ≥ 0,
∑

ri ≤ 1. (→ barycentric) Interval, 4, tetrahedron, . . .

Give a higher-order polynomial space on the n-simplex:

PN := span

{
d∏

i=1

xnii :
∑

ni ≤ N

}

Give nodal sets (on the 4) for PN and dimPN in general.

r

s

1

1

r

s

1

1
dimPN = Np =

(N + 1)(N + 2)

2

Avoiding Runge: e.g. Warburton ‘06

https://en.wikipedia.org/wiki/Barycentric_coordinate_system
https://doi.org/10.1007/s10665-006-9086-6


Finding a Nodal/Lagrange Basis in General

Given a nodal set (ξi )
Np

i=1 ⊂ Ê (where Ê is the reference element) and a
basis (ϕj)

Np

j=1 : Ê → R, find a Lagrange basis.

Set up a Vandermonde matrix:

V :=

 ϕ1(ξ1) · · · ϕNp(ξ1)
...

. . .
...

ϕ1(ξNp) · · · ϕNp(ξNp)

 .
Then `i :=

∑Np

j=1(V−T )i ,jϕj is a Lagrange basis.



Higher-Order, Higher-Dimensional Tensor Product Bases
What’s a tensor product element?

[0, 1]n ⊂ Rn. Interval, quad, hexahedron.

Give a higher-order polynomial space on the n-simplex:

QN := span

{
d∏

i=1

xnii : max ni ≤ N

}

Give the nodal sets (on the quad) for QN .

r

s

1

1

r

s

1

1



Tensor Product Elements: Lagrange Basis

Lagrange Basis for Tensor Product Elements?

Can use tensor product of one-dimensional basis⇒ Lower complexity
for this and many other operations.



Element Mappings

Ê Em

Tm

Construct a mapping Tm : Ê → Em. Reference element Ê , global 4 Em.

Tm(r , s) = (x2 − x1)r + (x3 − x1)s + x1.

What is the Jacobian of Tm?

JT =

[
∂x/∂r ∂x/∂s
∂y/∂r ∂y/∂s

]
=

[
∂T

∂r

∂T

∂s

]
=[ (x2 − x1) (x3 − x1) ] ∈ R2×2.



More on Mappings

Is an affine mapping sufficient for a tensor product element?

No, because affine mappings preserve parallel lines: Global elements
could only be parallelograms.
Idea: Consider a mapping Tm ∈ (Q1)n.

How might we accomplish curvilinear elements using the same idea?

I Use isoparametric mappings Tm ∈ (PN)n (if FEM basis is PN)
I Use subparametric mappings Tm ∈ (PM)n

(M < N if FEM basis is PN)
I Use superparametric mappings Tm ∈ (PM)n

(M > N if FEM basis is PN)



Constructing the Global Basis

Construct a basis on the element Em from the reference basis
(ϕ̂j)

Np

j=1 : Em → R.

ϕi ,j(x) = ϕ̂j(T
−1
m (x)).

What’s the gradient of this basis?

∇xϕj(T
−1(x)) =

[
d

dx
ϕj(T

−1(x))

]T
=

[(
dϕj

dr

)
T−1(x)

J−1T (x)

]T
= J−TT (x)∇rϕj(T

−1(x)).



Assembling a Linear System

Express the matrix and vector elements in

Np∑
j=1

uja(ϕj , ϕi ) = g(ϕi ) for i = 1, . . . ,Np.

a(ϕi , ϕj) =
M∑

m=1

∫
Em

κ(x)∇ϕi · ∇ϕj dx ,

g(ϕi ) =
M∑

m=1

∫
Em

f (x)ϕi dx .



Integrals on the Reference Element
Evaluate ∫

E
κ(x)∇xϕi (x)T∇xϕj(x)dx .

∫
E
κ(x)∇xϕi (x)T∇xϕj(x)dx

=

∫
E
κ(x)(J−TT ∇rϕi )

T (J−TT ∇rϕj)dx

P1
=(J−TT ∇rϕi )

T (J−TT ∇rϕj)|JT |
∫
Ê
κ(T (r))dr

And now the RHS functional.

∫
E
f (x)ϕi (x)dx = |JT |

∫
Ê
f (T (r))ϕi (r)dr .



Inhomogeneous Dirichlet BCs
Handle an inhomogeneous boundary condition u(x) = η(x) on ∂Ω.

I Find a function u0 ∈ H1(Ω) with boundary values
u0(x) = η(x) on ∂Ω. (“lifted” from boundary to volume)

I Define û := u − u0 ∈ H1
0 (Ω).

I Insert u = û + u0 into the weak form:

a(û + u0, v) = a(û, v) + a(u0, v) = g(v),

a(û, v) = g(v)− a(u0, v)︸ ︷︷ ︸
ĝ(v):=

,

where still û ∈ H1
0 .

Altogether:
I Inhomogeneous BC just leads to extra term on RHS.
I No change in function spaces.



Demo

I Demo: Developing FEM in 2D
I Demo: 2D FEM Using Firedrake
I Demo: Rates of Convergence

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/Developing FEM in 2D.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/2D FEM Using Firedrake.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/Rates of Convergence.ipynb
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Conditions on the Mesh
Let Ω be a polygonal domain.

Admissibility (Braess, Def. II.5.1)

A partition (mesh) T = {E1, . . . ,EM} of Ω into triangular or quadrilateral
elements is called admissible if

I Ω̄ =
⋃M

i=1 Ei .
I If Ei ∩ Ej consists of exactly one point, then it is a common

vertex of Ei and Ej .
I If Ei ∩ Ej consists of more than one point for i 6= j , then

Ei ∩ Ej is a common edge of Ei and Ej .

Give an example of a non-admissible partition.

One with a hanging node.



Mesh Resolution, Shape Regularity
Definition (Diameter)

A bounded set Ω has diameter d(Ω) = sup {|x − y | : x , y ∈ Ω}.

Mesh Resolution

When every element of a partition has diameter at most 2h, we write
Th instead of T .

Definition (Shape Regularity (Braess, Def. II.5.1))

A family of partitions {Th} is called shape regular if

there exists a number κ > 0 so that every E ∈ Th contains a circle
of radius ρT with ρE ≥ hE/κ, where hT is half the diameter of E .



Cone Conditions
Definition (Lipschitz Domain)

A bounded domain Ω ⊂ Rn is called a Lipschitz domain provided that. . .

for every x ∈ ∂Ω there exists a neighborhood of x within which ∂Ω
can be represented as the graph of a Lipschitz function.

Lipschitz domains satisfy a cone condition:

The interior angles at vertices are positive, so that a cone can be
placed in Ω with its tip at the vertex.

Theorem (Rellich Selection Theorem (Braess, Thm. II.1.9))

Let m ≥ 0, let Ω be Lipschitz. Then the imbedding Hm+1(Ω)→ Hm(Ω) is
compact, i.e. any bounded sequence in the range of the imbedding has a
convergent subsequence.



The Interpolation Operator
Theorem (Interpolation Operator (Braess, Lemma II.6.2))

Let Ω ⊂ R2 be Lipschitz. Let t ≥ 2, and z1, z2, . . . , zs are s := t(t + 1)/2
prescribed points in Ω̄ such that the interpolation operator I : Ht → Pt−1

is well-defined. Then there exists a constant c so that for u ∈ Ht(Ω)

‖u − Iu‖Ht ≤ c(Ω, (zi )) |u|Ht .

Theorem (Approx. for Congruent 4 (Braess, Remark II.6.5))

Let Eh := hÊ , i.e. a scaled version of a reference triangle, with h ≤ 1.
Then, for 0 ≤ m ≤ t, there exists a C so that

‖u − Iu‖Hm(Eh) ≤ Cht−m |u|Ht(Eh) .



Approximation for Congruent Triangles: Proof (1/2)
Set up a function on Eh and Ê . Work out the scaling for the derivative.

Let u ∈ Ht(Eh). Define v ∈ Ht(Ê ) by v(y) := u(hy).
Then Dα

wv = h|α|Dα
wu for |α| ≤ t.

Work out the scaling for the Sobolev seminorm.

|v |2
H`(Ê)

=
∑
|α|=`

∫
Ê

(Dα
wv)2 =

∑
|α|=`

∫
Eh

h2`(Dα
wu)2h−2 = h2`−2 |u|2H`(Eh) .

Work out the scaling for the Sobolev norm. Recall h ≤ 1.

‖u‖2Hm(Eh) =
∑
`≤m
|u|2H`(Eh) =

∑
`≤m

h−2`+2 |v |2H`(Eh) ≤ C ′h−2m+2 ‖v‖2
Hm(Ê)

.



Approximation for Congruent Triangles: Proof (1/2)

‖u − Iu‖Hm(Eh) ≤ Cht−m |u|Ht(Eh) (0 ≤ m ≤ t)

I |v |2
H`(Ê)

= |u|2H`(Eh)

I ‖u‖2Hm(Eh) ≤ C ′h−2m+2 ‖v‖2
Hm(Ê)

Prove the estimate.

Inserting u − Iu into this estimate in place of u:

‖u − Iu‖Hm(Eh) ≤ C ′h−m+1 ‖v − Iv‖Hm(Ê) ≤ C ′h−m+1 ‖v − Iv‖Ht(Ê)

≤ C ′ch−m+1 |v |Ht(Ê) ≤ C ′cht−m |u|Ht(Eh) .



Hm Polynomial Approximation on Meshes
Definition (Broken Norm)

Given a partition Th = {Ei}Mi=1 and a function u such that u ∈ Hm(Ei ),

‖u‖Hm,h :=

√√√√ M∑
i=1

‖u‖2Hm(Ei )
.

Approximation Theorem (Braess, Theorem II.6.4)

Let t ≥ 2, suppose Th is a shape-regular triangulation of Ω. Then there
exists a constant c such that, for 0 ≤ m ≤ t and u ∈ Ht(Ω),

‖u − Ihu‖Hm,h ≤ c(Ω, κ, t)ht−m |u|Ht(Ω) ,

where Ih denotes interpolation by a piecewise polynomial of degree t − 1.



Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems
tl;dr: Functional Analysis
Back to Elliptic PDEs
Galerkin Approximation
Finite Elements: A 1D Cartoon
Finite Elements in 2D
Approximation Theory in Sobolev Spaces
Saddle Point Problems, Stokes, and Mixed FEM
Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems



Weak Forms as Minimization Problems
Let V be a linear space, and a : V × V → R a bilinear form, and g ∈ V ′.

Theorem (Solutions of Weak Forms are Quadratic Form Minimizers)

If a is SPD, then

J(v) := 1
2a(v , v)− g(v)

attains its minimum over V at u iff a(u, v) = g(v) for all v ∈ V .

J(u + tv) =
1
2
a(u + tv , u + tv)− g(u + tv)

= J(u) + t[a(u, v)− g(v)] +
t2

2
a(v , v).

for u, v ∈ V and t ∈ R.
If u satisfies a(u, v) = g(v), J(u + v) > J(u).
If J has a min at u, derivative of t 7→ J(u+ tv) must vanish at t = 0.



Example: Lagrange Multipliers in R2

f (x , y) = x2 + y2 → min!

g(x , y) = x + y = 2

Write down the Lagrangian.

L(x , y , λ) = f (x , y) + λg(x , y) = x2 + y2 + λ(x + y − 2).

Write down a necessary condition for a constrained minimum.

0 = ∇L =

[
∇f + λ∇g

g

]
.



Saddle Point Problems
X , M Hilbert spaces. a : X × X → R and b : X ×M → R continuous
bilinear forms, f ∈ X ′, g ∈ M ′. Minimize

J(u) =
1
2
a(u, u)− 〈f , u〉 subject to b(u, µ) = 〈g , µ〉 (µ ∈ M).

Apply the method of the Lagrange multipliers.

L(u, λ) = J(u) + [b(u, λ)− 〈g , λ〉] (λ ∈ M).

I J and L(·, λ) agree when constraint is satisfied.
I Idea: Select λ ∈ M to ‘tweak’ L so that minimizer of L(·, λ)

satsifies the constraints. (Finite-dim: −∇f = JTg λ)
Yields saddle point problem: find (u, λ) ∈ X ×M so that

a(u, v) + b(v , λ) = 〈f , v〉 (v ∈ X ),

b(u, µ) = 〈g , µ〉 (µ ∈ M).



Example: Saddle Point Problem in R2

f (x , y) = x2 + y2 → min!

g(x , y) = x + y = 2

Lagrangian: L(x , y , λ) = f (x , y) + λg(x , y) = x2 + y2 + λ(x + y − 2).

Show that x = y = 1, λ = −2 is a saddle point.

The Hessian has the form

HL =

[
Hf ∇g
∇gT 0

]
.

HL =

[
A BT

B 0

]
= M

[
A
−BA−1BT

]
MT ,

demonstrating indefiniteness using Sylvester’s Law of Inertia.
(cf. Benzi et al. ‘05, Section 3.4)

https://en.wikipedia.org/wiki/Sylvester's_law_of_inertia
https://doi.org/10.1017/S0962492904000212


Stokes Equation

∆u +∇p = −f (x ∈ Ω),

∇ · u = 0 (x ∈ Ω),

u = u0 (x ∈ ∂Ω).

What are the pieces?

I u is the velocity field,
I p is the pressure,
I f is an externally applied force field,
I Pressure gradient gives rise to an additional force that prevents

a density change.
I ∇ · u = 0 is the incompressibility constraint:

Pressure falls/rises where a source/sink would be created.



Stokes: Properties

∆u +∇p = −f (x ∈ Ω),

∇ · u = 0 (x ∈ Ω),

u = u0 (x ∈ ∂Ω).

Can we choose any u0?∫
∂Ω

u0 · n̂dSx =

∫
∂Ω

u · n̂dSx =

∫
Ω
∇ · udx = 0

is a compatibility condition. Satisfied e.g. for u0 ≡ 0.

Does Stokes fully determine the pressure?

Only up to an additive constant. Additionally demand
∫

Ω pdx = 0.



Stokes: Variational Formulation
∆u +∇p = −f , ∇ · u = 0 (x ∈ ∂Ω).

Choose some function spaces (for homogeneous u0 = 0).

X = H1
0 (Ω)n, M = L20(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
qdx = 0

}

Derive a weak form.

a(u, v) =

∫
Ω
Ju : Jv , b(v , q) =

∫
Ω
∇ · vq,

A : B = tr(ABT ) =
∑

i ,j Ai ,jBi ,j . Find (u, p) ∈ X ×M so that

a(u, v) + b(v , p) = 〈f , v〉L2 (v ∈ X ),

b(u, q) = 0 (q ∈ M),

where in reusing b, we used that (− div)∗ = grad are adjoint.



Solvability of Saddle Point Problems

The Stokes weak form is clearly in saddle-point form.
Do all saddle point problems have unique solutions?

f (x , y) = x2 + y2 → min!,

x + y = 2,
3x + 3y = 6.

L(x , y , λ) = x2 + y2 + λ(x + y − 2) + µ(3x + 3y − 6). (λ, µ) no
longer uniquely determined.

→ Need a criterion.



The inf-sup Condition
a(u, v) + b(v , λ) = 〈f , v〉 (v ∈ X ),

b(u, µ) = 〈g , µ〉 (µ ∈ M).

Theorem (Brezzi’s splitting theorem (Braess, III.4.3))

The saddle point problem has a unique solution if and only if
I The bilinear form a(·, ·) is V -elliptic, where

V = {u : b(u, µ) = 0for all µ ∈ M}, i.e. there exists c0 > 0 so that

a(v , v) ≥ c0 ‖v‖2X (v ∈ V ).

I There exists a constant c2 > 0 so that (inf-sup or LBB condition):

inf
µ∈M

sup
v∈X

b(v , µ)

‖v‖X ‖µ‖M
≥ c2.



Interpreting the inf-sup Condition[
A BT

B 0

]
= M

[
A
−BA−1BT

]
MT

a(v , v) ≥ c0 ‖v‖2X , inf
µ∈M

sup
v∈X

b(v , µ)

‖v‖X ‖µ‖M
≥ c2.

For any given v , can we expect b(v , µ) to be nonzero for all µ?

No! E.g. for Stokes, the B block is short-and-fat ⇒ ∃ nullspace.

What is the inf-sup condition saying?

“b has no µ-nullspace.”

Why does it suffice for a to be V -elliptic?

True in the linear algebra, too! (Think Schur complements.) (Benzi
et al. ‘05, Thm. 3.2)

https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1017/S0962492904000212


inf-sup and Stokes

a(u, v) =

∫
Ω
Ju : Jv , where A : B = tr(ABT ),

b(v , q) =

∫
Ω
∇ · vq.

Find (u, p) ∈ X ×M so that

a(u, v) + b(v , p) = 〈f , v〉L2 (v ∈ X ),

b(u, q) = 0 (q ∈ M).

Theorem (Existence and Uniqueness for Stokes (Braess, III.6.5))

There exists a unique solution of this system when f ∈ H−1(Ω)n.

(based on results due to Ladyšenskaya, Nečas)



Discretizations for Stokes

Demo: 2D Stokes Using Firedrake (P1-P1)

Give a heuristic reason why P1-P1 might not be great.

The differential operators being applied to u and p in the Stokes
system are of different order.

Demo: Bad Discretizations for 2D Stokes

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/2D Stokes Using Firedrake.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/Bad Discretizations for 2D Stokes.ipynb


Establishing a Discrete inf-sup Condition
Suppose b : X ×M → R satisfies inf-sup. Subspaces Xh ⊆ X , Mh ⊆ M.

Fortin’s Criterion ([Fortin 1977])

Suppose there exists a bounded projector Πh : X → Xh so that

b(v − Πhv , µh) = 0 (µh ∈ Mh).

If ‖Πh‖ ≤ c for some constant c independent of h, then b satisfies the
inf-sup-condition on Xh ×Mh.

Let µh ∈ Mh. By assumption, b(v , µh) = b(Πhv , µh) for v ∈ X .

sup
vh∈Xh

b(vh, µh)

‖vh‖
≥ sup

vh∈ΠhX

b(vh, µh)

‖vh‖
= sup

v∈X

b(Πhv , µh)

‖Πhv‖

≥ 1
c

sup
v∈X

b(v , µh)

‖v‖
≥ c2 ‖µh‖ .



H1-Boundedness of the L2-Projector
Assume H2-regularity and a uniform triangulations Th. (Not in general!)

H1-Boundedness of the L2-Projector (Braess Corollary II.7.8)

Let π0h be the L2-projector onto a finite element space Vh ⊂ H1(Ω). Then,
for an h-independent constant c ,

∥∥π0hv∥∥H1 ≤ c ‖v‖H1 .

Ingredients?

I Regularity
I Aubin-Nitsche
I Inverse estimates (For affine, pw. polynomial family Vh:
‖vh‖Ht ,h ≤ Chm−t ‖vh‖Hm,h with 0 ≤ m ≤ t, e.g.
‖vh‖H1,h ≤ Ch−1 ‖vh‖L2,h.)



H1-Boundedness of the L2-Projector

Does H1 boundedness of the H1 projector hold?

Yes, any Hilbert space projection is bounded. (Pythagoras)

How would this break down without the uniformity assumption?

On a graded mesh, where L2 projection introduces O(1/h) growth in
the H1 seminorm (which measures oscillation, in a way).



Bubbles and the MINI Element
What is a bubble function?

ϕb(r , s) = rs(1− r − s). (see figure on next slide)

Let B3 be the span of the bubble function and Th the triangulation.

Define the MINI variational space Xh ×Mh.

Xh :=
{
vh ∈ C (Ω̄)2 ∩ H1

0 (Ω)2 : vh|E ∈ (P1 ⊕ B3)2 for E ∈ Th
}

Mh :=
{
qh ∈ C (Ω̄) ∩ L20(Ω) : vh|E ∈ P1 for E ∈ Th

}
Computational impact of the bubble DOF?

Not coupled to DOFs outside the element; can use static condensation
to eliminate.



The Bubble in Pictures
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MINI Satisifies an inf-sup Condition (1/4)
MINI satisifes inf-sup (Braess Theorem III.7.2)

Assume Ω is convex or has a smooth boundary. Then the MINI variational
space satisfies an inf-sup condition for every variational form that itself
satisfies one.

Assume uniform meshes (can generalize). Let

Mh :=
{
vh ∈ C (Ω̄) ∩ H1

0 (Ω) : vh|E ∈ P1 for E ∈ Th
}
.

Let π0h : H1
0 →Mh be the L2 projector.

Then
∥∥π0hv∥∥H1 ≤ c1 ‖v‖H1 from its H1-boundedness and, from the

interpolation estimate,∥∥v − π0hv∥∥L2 ≤ ‖v − Iv‖L2 +
∥∥Iv − π0hv∥∥L2

= ‖v − Iv‖L2 +
∥∥π0h(Iv − v)

∥∥
L2 ≤ c2h |v |H1 .



MINI Satisifies an inf-sup Condition (2/4)
Create a projector onto the bubble space B3.

Let π1h : L2 → B3 be linear so that∫
E

(π1hv − v)dx = 0 for E ∈ Th.

What does this bubble projector do?

I Project onto piecewise constant functions.
I Replace the constant by a bubble with the same integral.

Do we have an estimate for the bubble projector?

∥∥π1hv∥∥L2 ≤ c3 ‖v‖L2 .



MINI Satisifies an inf-sup Condition (3/4)
Make an overall projector Πh onto Xh.

Define Πhv := π0hv + π1h(v − π0hv). By construction, Πh preserves
the constant mode, i.e.

∫
(Πhv − v)dx = 0.

Show Fortin’s criterion for Πh.

Extend Πh to vector-valued component-by-component.
qh ∈ Mh is continuous, so we may apply Gauss’s theorem.

b(v − Πhv , qh)

=

∫
∇ · (v − Πhv)qhdx

=

∫
∂Ω

(v − Πhv) · n̂ qh︸︷︷︸
0

dSx −
∫

Ω
(v − Πhv) · ∇qh︸︷︷︸

const

dx = 0.



MINI Satisifies an inf-sup Condition (4/4)

I
∥∥π0hv∥∥H1 ≤ c1 ‖v‖H1 for L2 projector π0h : H1

0 →Mh.
I
∥∥v − π0hv∥∥L2 ≤ c2h |v |H1 .

I
∥∥π1hv∥∥L2 ≤ c3 ‖v‖L2 .

Show H1-boundedness of Πh.

‖Πhv‖H1 ≤
∥∥π0hv∥∥H1 +

∥∥π1h(v − π0hv)
∥∥
H1

≤
inv.est.

c1 ‖v‖H1 + c4h
−1 ∥∥π1h(v − π0hv)

∥∥
L2

≤ c1 ‖v‖H1 + c4h
−1c3

∥∥v − π0hv∥∥L2

≤ c1 ‖v‖H1 + c4c3c2 ‖v‖H1 .



Demo

Demo: 2D Stokes Using Firedrake (MINI and Taylor-Hood)

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fe-elliptic/2D Stokes Using Firedrake.ipynb
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Lax-Milgram, General Case

Let V be Hilbert space with inner product 〈·, ·〉.

Theorem (Lax-Milgram, General Case)

Let a be a V -elliptic bilinear form, and let g be a bounded linear functional
on V .
Then there exists a unique u ∈ V so that a(u, v) = g(v) for all v ∈ V .

Let u ∈ V and observe au(v) := a(u, v) is a bounded linear functional
(due to continuity of a). Let tu ∈ V be the Riesz representer of au
with au(v) = 〈v , tu〉 for all v ∈ V . Consider the mapping defined by
that:

T : V → V , u 7→ Tu := tu.

We show that T is linear, bounded, has closed range, and is onto V .



Lax-Milgram Proof (2/5)

a(u, v) = 〈v ,Tu〉. Show linearity of T .

For u, v ,w ∈ V and α ∈ R:

〈v ,T (αu + w)〉 = a(αu + w , v) = α 〈v ,Tu〉+ 〈v ,Tw〉 .

Show boundedness ⇔ continuity of T .

‖Tu‖2 = 〈Tu,Tu〉 = au(Tu) = a(u,Tu) ≤ c1 ‖Tu‖ ‖u‖ (continuity).



Lax-Milgram Proof (3/5)
a(u, v) = 〈v ,Tu〉. Show that T has closed range. (Needed for Hilbert
projection, which is needed for onto.)

Let zn = Tun be a sequence in range(T ). By definition, a(un, v) =
〈v ,Tun〉 = 〈v , zn〉 for all v ∈ V , so that

a(un − um, v) = 〈v , zn − zm〉
⇒ a(un − um, un − um) = 〈un − um, zn − zm〉

⇒ c0 ‖un − um‖2 ≤ ‖un − um‖ ‖zn − zm‖ (coercivity)
⇒ c0 ‖un − um‖ ≤ ‖zn − zm‖ .

If zn → z , (un) must be Cauchy, so has a limit (because V is Hilbert).
Let u be the limit. Next: Show z = Tu.
Let v ∈ V be arbitrary. a(un, v) → a(u, v) by continuity. Also:
|〈Tun − z , v〉| → 0, so that 〈v ,Tun〉 → 〈v , z〉, so a(u, v) = 〈v , z〉,
and by definition of T , z = Tu.



Lax-Milgram Proof (4/5)

a(u, v) = 〈v ,Tu〉. Show that T is onto V .

Suppose not. By the Hilbert projection theorem, there exists w ∈
range(T )⊥ \ {0}. Therefore 〈w ,Tu〉 = 0 for all u ∈ V . Choosing
u = w gives 0 = 〈w ,Tw〉 = a(w ,w), a contradiction.



Lax-Milgram Proof (5/5)

Show existence of the solution u.

Let z be the Riesz representer of g : g(v) = 〈v , z〉 for all v ∈ V .
Since T : V → V is onto, there exists a u ∈ V so that z = Tu, i.e.
g(v) = 〈v ,Tu〉 = a(u, v) for all v ∈ V .

Show uniqueness of the solution u.

Suppose we have a second û with z = Tû. Then a(u− û, v) = 0 for
all v ∈ V , particularly a(u − û, u − û) = 0, i.e. u = û.
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Conservation laws

Goal: Solve conservation laws on bounded domain Ω ⊂ Rn:

qt +∇ · F (q) = 0

Example: Maxwell’s Equations

∂tD −∇×H = −j , ∂tB +∇× E = 0,
∇ ·D = ρ, ∇ · B = 0.

What do we do with the divergence constraints?

Ignore them. If satisfied at initial condition, they continue to be
satisfied.



Rewriting Maxwell’s
Let q = (Dx ,Dy ,Dz ,Bx ,By ,Bz)T . Consider D = εE and B = µH .

∂tD −∇×H = −0, ∂tB +∇× E = 0.

Rewrite in conservation law form: qt +∇ · F (q) = 0

qt +∇ ·



0 −Bz
ε

By

ε
Bz
ε 0 −Bx

ε

−By

ε
Bx
ε 0

0 Dz
µ −Dy

µ

−Dz
µ 0 Dx

µ
Dy

µ −Dx
µ 0


= 0

Could we also define q = (Ex ,Ey ,Ez ,Hx ,Hy ,Hz)T ?

No: coeff. on the wrong side of the ∇·. Only OK for constant-coeff.
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Solving qt + aqx = 0: Finite Differences

+ Simple to implement
+ High-order
+ Local and explicit in time
+ Theory available
- High-order/geometry: pick one.
I Upwind/downwind differencing?

I How about in a system?

I Boundaries?
I Discontinuities?

D−t + aD−x = 0

D+
t f :=

f (t + ∆t)− f (t)

∆t



Solving qt + aqx = 0: Finite Volume

+ Robust, fast, good for c.laws
+ Local and explicit in time
+ Solid theory
- High-order/geometry: pick one.

q̄k :=

∫ (k+1/2)∆x

(k−1/2)∆x
q(x)dx

∆x∂t q̄k +f k+1/2−f k−1/2 = 0

f k±1/2: flux “reconstructions”



Solving qt + aqx = 0: Finite Elements

+ High-order
+ geom. flexible
+ Non-local and implicit in time
+ Solid theory
- Not nonlinearly robust
- Not fast: Mass matrix solve

∫
Ω
qNt φ+ aqNx φdx = 0

for φ in a test space.



Do we really want high order?Any advantage to high-order ?

Observation: Significant potential for savings without 
impacting accuracy by using high-order

Example - High-order makes the difference
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h−version (P=2)
p−version (K=20)
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Figure: Optimized CPU-time vs. integration time for a fixed relative error
in amplitude of 5%.

! Conclusion: a significant improvement in performance can be
achieved using high-order elements over long times of
integration. 36 / 41

Test: Time to compute 
solution at 5% error

Friday, July 23, 2010

Figure from talk by Jan Hesthaven

Time to compute solution at 5%
error

Big assumption?

Spectral expansion of solution
decays quickly
(i.e. solution smooth)



Summarizing

Want flexibility of finite elements without the drawbacks.

Let’s redevelop finite elements, with a bit more care.
Strategy:
I Use n-dimensional POV for a while to expose geometric issues

more clearly.
I Reduce to 1D when necessary.
I Mop up remaining issues later.
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Developing the Scheme

Ω

Em

What do do about unbounded domains?

Need to truncate domain, e.g.:
I Special boundary conditions (e.g. Engquist/Majda ‘77,

Hagstrom/Warburton ‘04)
I Perfectly Matched Layers (PMLs, Berenger ‘94)

https://doi.org/10.1073/pnas.74.5.1765
https://doi.org/10.1016/j.wavemoti.2003.12.007
https://doi.org/10.1006/jcph.1994.1159


Dealing with the Mesh, Part I
For each cell Ek , find a ref-to-global map Tk :

Ê Ek

Tk

Tk : Ê → Ek

x = (x , y , z) = Tk(r , s, t) = Tk(r)

I Tk affine for straight-sided simplices: Tk(r) = Ar + b
I Curved elements also possible: iso/sub/super-parametric



Dealing with the Mesh, Part II
Based on knowledge of how to do this on Ê :

Can now integrate on Ω:

∫
Ω
fdx =

∑
Ek

∫
Ek

fdx =
∑
Ek

∫
Ê
f

∣∣∣∣dx
dr

∣∣∣∣ dr
and differentiate on Ω:

∂f

∂x
=
∂r
∂x

∂f

∂r

Jacobian of T−1k ?

dx
dr

dr
dx

= Id ⇔
(
dx
dr

)−1
=

dr
dx



Dealing with the Mesh, Part III

Approximation basis set on Ek?

Use the one we have on Ê :

φki (x) := φi (T
−1
k (x))

What function space do we get if Ψ is non-affine?

I A basis of rational functions.
I Approximation results nontrivial.



Going Galerkin∫
Ek

qkt φ+ (∇ · F k)φdx = 0

Integrate by parts:

0 =

∫
Ek

qkt φdx −
∫
Ek

F k · ∇φdx +

∫
∂Ek

(F k · n̂)φdx

Problem?

I Problem: Two values to choose from on
boundary.

I Don’t choose (for now).
I Call chosen answer numerical flux (F k · n)∗

I Feel vaguely reminded of finite volume



Strong-Form DG

Weak form:

0 =

∫
Ek

qkt φdx −
∫
Ek

F k · ∇φdx +

∫
∂Ek

(F k · n̂)∗φdx

Integrate by parts again:

0 =

∫
Ek

qkt φ+ (∇ · F k)φdx +

∫
∂Ek

(F k · n̂)∗ − (F k · n̂)−φdx

I Strong-form DG
I Same solution as weak for linear, constant-coefficient problems.
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Accuracy and Stabillity

In DG: what provides accuracy? what provides stability?

I Local approximation space provides accuracy
I Fluxes provide stability

Lax equivalence: Accuracy + Stability = Convergence

→ Let flux choice be guided by stability.

Following slides based on material by Tim Warburton



Stability: Basic Setup (1/2)

0 =

∫
Ek

qkt φdx −
∫
Ek

F k · ∇φdx +

∫
∂Ek

(F k · n̂)φdSx

Trick: Set φ = q. Specialize F (u) := (au, 0, 0)T = aexu.

0 =

∫
Ek

qkt qkdx −
∫
Ek

aqkex · ∇qkdx +

∫
∂Ek

(aqkex · n̂)∗qkdSx

=

∫
Ek

qkt qkdx −
∫
Ek

aqk∂xqkdx +

∫
∂Ek

(aqknx)∗qkdSx

=
∂t
2

∫
Ek

qkqkdx −
∫
Ek

aqk∂xqkdx +

∫
∂Ek

(aqknx)∗qkdSx

⇒
∂t‖qk‖22,Ek

2
=

∫
Ek

aqk∂xqkdx −
∫
∂Ek

(aqknx)∗qkdSx
!
≤ 0



Stability: Basic Setup (2/2)

∂t‖qk‖22,Ek

2
=

∫
Ek

aqk∂xqkdx −
∫
∂Ek

(aqknx)∗qkdSx

Integrate by parts:∫
f ∂x f = −

∫
f ∂x f +

∫
∂
f 2nx

to see:

∂t‖qk‖22,Ek

2
=

∫
∂Ek

a(qk)2nx
2

− (aqknx)∗qkdSx

This depends on neighbors–end of element-local analysis!



Stability: Going Global

∂t‖qk‖22,Ek

2
=

∫
∂Ek

a(qk)2nx
2

− (aqknx)∗qkdSx

∂t‖qk‖22,Ω
2

=
∑
k

∫
∂Ek

a(qk)2nx
2

− (aqknx)∗qkdSx

=
∑

f ∈faces

(∫
f

a(q+
k )2n+

x

2
− (aqknx)∗+q

+
k dSx

+

∫
f

a(q−k )2n−x
2

− (aqknx)∗−q
−
k dSx

)
I Assumption: (aqknx)∗+ + (aqknx)∗− = 0

(“no accumulation on interface”)
I a is constant



Gather up
∂t‖qk‖22,Ω

2
=

∑
f ∈faces

(∫
f

a(q+
k )2n+

x

2
− (aqknx)∗+q

+
k dSx

+

∫
f

a(q−k )2n−x
2

− (aqknx)∗−q
−
k dSx

)
∂t‖qk‖22,Ω

2
=

∑
f ∈faces

∫
f
an−x

(q−k )2 − (q+
k )2

2
− (aqknx)∗−(q−k − q+

k )dSx

=
∑

f ∈faces

∫
f

(
an−x

q−k + q+
k

2
− (aqknx)∗−

)
(q−k − q+

k )dSx

Want all that non-positive. So demand:(
an−x

q−k + q+
k

2
− (aqknx)∗−

)
(q−k − q+

k )
!
≤ 0



Picking a Flux
Want:

(∗) =

(
an−x

q−k + q+
k

2
− (aqknx)∗−

)
(q−k − q+

k )
!
≤ 0

Ideas?

One possible choice:

(aqknx)∗− := an−x
q−k + q+

k

2

I Called the central flux.
I Observe: (∗) = 0 ⇒ L2-norm exactly conserved!
I The lazy man’s flux.
I Works.
I Problematic! Why?



Picking a flux, attempt two

Want:

(∗) =

(
an−x

q−k + q+
k

2
− (aqknx)∗−

)
(q−k − q+

k )
!
≤ 0

More ideas?

(aqknx)∗− := an−x
q−k + q+

k

2
+ α

q−k − q+
k

2
(with α ≥ 0)

Unit considerations suggest: α = ±an−x
!
≥ 0.

Called the upwind flux (aka local L-F)
I Observe: (∗) < 0 ⇒ dissipative!
I Quite good in practice.



Comparing Fluxes (1/3)

Central

Back to the example

Central flux Upwind flux

2.2 Basic elements of the schemes 29
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Fig. 2.2. On the left we compare the solution to the wave equation, computed
using an N = 1, K = 12 discontinuous Galerkin method with a central flux. On the
right the same computation employs an upwind flux. In both cases, the dashed line
represents the exact solution.

and K = 12 elements, we show the solution at T = 2π, computed using a
central flux. We note in particular the discontinuous nature of the solution,
which is a characteristic of the family of methods discussed here. To contrast
this, we show on the right of Fig. 2.2 the same solution computed using a
pure upwind flux. This leads to a solution with smaller jumps between the
elements. However, the dissipative nature of the upwind flux is also apparent.
An important lesson to learn from this is that a visually smoother solution
is not necessarily a more accurate solution, although in the case considered
here, the global errors are comparable.

Many of the observations made in the above example regarding high-order
methods can be put on firmer ground through an analysis of the phase errors.
Although we will return to some of this again in Chapter 4, other insightful
details can be found in [155, 159, 208, 307].

The example illustrates that to solve a given problem to a specific accuracy,
one is most likely best off by having the ability to choose the element size, h,
as well as the order of the scheme, N , independently, and preferably in a local
manner. The ability to do this is one of the main advantages of the family of
schemes discussed in this text.

2.2.2 An alternative viewpoint

Before we continue, it is instructive to consider an alternative derivation. The
main dilemma posed by the choice of a piecewise polynomial representation
of uh with no a priori assumptions about continuity is how to evaluate a
gradient. Starting with a solution defined on each of the elements of the grid,
uk

h, we can imagine continuing the function from the boundaries and beyond
the element. In the one-dimensional case, this is achieved by adding two scaled
Heaviside functions, defined as
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Upwind

Back to the example

Central flux Upwind flux

2.2 Basic elements of the schemes 29
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Fig. 2.2. On the left we compare the solution to the wave equation, computed
using an N = 1, K = 12 discontinuous Galerkin method with a central flux. On the
right the same computation employs an upwind flux. In both cases, the dashed line
represents the exact solution.

and K = 12 elements, we show the solution at T = 2π, computed using a
central flux. We note in particular the discontinuous nature of the solution,
which is a characteristic of the family of methods discussed here. To contrast
this, we show on the right of Fig. 2.2 the same solution computed using a
pure upwind flux. This leads to a solution with smaller jumps between the
elements. However, the dissipative nature of the upwind flux is also apparent.
An important lesson to learn from this is that a visually smoother solution
is not necessarily a more accurate solution, although in the case considered
here, the global errors are comparable.

Many of the observations made in the above example regarding high-order
methods can be put on firmer ground through an analysis of the phase errors.
Although we will return to some of this again in Chapter 4, other insightful
details can be found in [155, 159, 208, 307].

The example illustrates that to solve a given problem to a specific accuracy,
one is most likely best off by having the ability to choose the element size, h,
as well as the order of the scheme, N , independently, and preferably in a local
manner. The ability to do this is one of the main advantages of the family of
schemes discussed in this text.

2.2.2 An alternative viewpoint

Before we continue, it is instructive to consider an alternative derivation. The
main dilemma posed by the choice of a piecewise polynomial representation
of uh with no a priori assumptions about continuity is how to evaluate a
gradient. Starting with a solution defined on each of the elements of the grid,
uk

h, we can imagine continuing the function from the boundaries and beyond
the element. In the one-dimensional case, this is achieved by adding two scaled
Heaviside functions, defined as
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Figure from talk by Jan Hesthaven

Upwind penalizes jumps!



Comparing Fluxes (2/3)

Central fluxes v. Upwind fluxes

27

Inter-element jumps are better controlled for this example by upwinding.

Red: central fluxes (alpha=0)
Blue: upwind fluxes (alpha=1)

Wednesday, January 26, 2011

Figure from lecture by Tim Warburton



Comparing Fluxes (3/3)

Central Fluxes v. Upwind Fluxes

26

Red: central fluxes (alpha=0)
Blue: upwind fluxes (alpha=1)

Peak errors are not quite so peaky for upwind fluxes.

Wednesday, January 26, 2011

Figure from lecture by Tim Warburton



Stability Analysis

Clif notes on flux choice?

‘Pick the average’ or ‘pick the upwind value’

Swept under the rug: Boundary conditions

Also important for stability!

Element coupling (and BCs) done weakly

I Numerical solution really is discontinuous
I Hence “discontinuous Galerkin”



Accuracy

Stability: (preliminary version) done!
Accuracy: Depends on approximation properties!

Need approximation space: polynomials of (total) degree at most N
on the reference element.

So, expect hN+1 residual.

Practically often true. Theoretically:
I Lesaint, Raviart ‘74:

I hN in the general case
I hN+1 for special grids

I Johnson ‘86: hN+1/2



Systems of Conservation Laws

What to do about systems?

I Consider Riemann (jump) problem
I Obtain ‘fan’ of different wave speeds

I Rankine-Hugoniot condition:

JF (q)K = (wave speed) JqK

I Number states across fan q0, q−1, q1, . . .

I Set up Rankine-Hugoniot at each state boundary
I Solve for rest-state flux F (q0)

I Just like Finite Volume



What about multiple dimensions?

We’ve dealt with 1D systems.

How about the move to multiple dimensions?

In principle there is (almost) nothing to see.

Recipe:
I Reduce nD c.law to 1D c.law across

boundary
I Diagonalize
I Play Rankine-Hugoniot game as before
I Transform back



Simultaneous Diagonalization

2D second-order wave equation across a boundary with normal n:

qt +

 0 −c nx −c ny
−c nx 0 0
−c ny 0 0

 ∂nq = 0

Must simultaneously diagonalize for all (nx , ny )T to obtain generic
expression!
More symbolically:

qt + (Anx)∂xq + (Bny )∂yq

Need to find matrix S that simultaneously diagonalizes Anx and Bny !

Demo: Finding Numerical Fluxes for DG (Part 1)

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/dg-hyperbolic/Finding Numerical Fluxes for DG.ipynb


Jumps and Averages

Jump and average of a scalar quantity:

{q} :=
q− + q+

2
JqK := q+n+ + q−n−

Jump and average of a vector quantity:

{q} :=
q− + q+

2
JqK := q+ · n+ + q− · n−



A Flux for Maxwell’s

Wanted to solve Maxwell’s equation in the time domain. Numerical flux?

Either look in the literature:

n̂ · (FN − F ∗N) :=
1
2

(
{Z}−1n̂ × (Z+ JHK− αn̂ × JEK)
{Y }−1n̂ × (−Y + JEK− αn̂ × JHK)

)
.

or derive yourself: Demo: Finding Numerical Fluxes for DG (Part 2)

Good news: Scheme mathematically complete.

https://doi.org/10.1016/0010-4655(91)90199-U
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/dg-hyperbolic/Finding Numerical Fluxes for DG.ipynb
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Implementing DG

Weak form:

0 =

∫
Ek

qkt φdx −
∫
Ek

F k · ∇φdx +

∫
∂Ek

(F k · n)∗φdx

What do the DoFs mean?

Two main choices:
I Modal DG (expansion coefficients)
I Nodal DG (point values at nodal locations)

We choose to use nodal DG here.

Need: set of basis functions, set of nodes



Modes

Function spaces same as for FEM: PN , QN .

Numerically: better to use orthogonal polynomials with∫
Ê
φiφj = δi ,j

I 1D: Legendre polys
I nD: Proriol ‘57/Koornwinder ‘75/Dubiner ‘93

Notation: (φi )
Np

i=1.



Nodes
Define set of interpolation nodes (ξi )

Np

i=1 and `i their Lagrange basis.

Define generalized Vandermonde matrix

Vij := φj(ξi )

V (modal coeff.) = (nodal coeff.)

ξi determine cond(V )!

I Equispaced nodes: cond. exponential in
N

I 1D: Gauß-Lobatto or Chebyshev
I nD: cottage industry

(e.g. [Warburton ‘06])



In Matrix Form

0 =

∫
Ek

qkt φdx −
∫
Ek

F k · ∇φdx +

∫
∂Ek

(F k · n)∗φdx

Write in matrix form:

Mk
ij :=

∫
Ek

`i`jdx = |Ak |M := |Ak |
∫
Ê
`i`jdx = |Ak |V−TV−1

Sk,∂νij :=

∫
Ek

`i∂xν `jdx ,

Mk,A
ij :=

∫
A⊂∂Ek

`i`jdSx .

0 =Mk∂tu
k −

∑
ν

Sk,∂ν [F (uk)] +
∑

A⊂∂Ek

Mk,A(n̂ · F )∗



Explicit Time Integration

0 =Mk∂tu
k −

∑
ν

Sk,∂ν [F (uk)] +
∑

A⊂∂Ek

Mk,A(n̂ · F )∗

How can we do time integration on this weak form?

Goal: Dig out ∂tu! Must invertM.

I In ‘normal’ finite elements: large, unstructured, sparse matrix
I In DG: Block-diagonal
I In simplicial DG: Templated block-diagonal
I In curvilinear DG: Still templated block-diagonal

e.g.: [Warburton ‘08], [Chan, Hewett, Warburton ‘17]

https://doi.org/10.1137/16M1089198


Trick: Multiple face mass matrices

Applying multiple face mass matrices at once:

∫
∂Ek

n̂ · (F ∗)φdS =

MA1

MA2

MA3
(
J1n̂ · (F ∗)|A1

∣∣∣∣ · · · ∣∣∣∣J3n̂ · (F ∗)|A3

)
.



DG and Modern Computers: Possible Advantages

DG on modern processor architectures: Why?

I On-chip parallelism
I DG inherently parallel.

I Deepening Memory Hierarchy
I The majority of DG is local.

I Compute Bandwidth � Memory Bandwidth
I DG is arithmetically intense.

I Processors favor dense data.
I Local parts of the DG operator are dense.

I Penalty on scattered access.
I DG’s cell connectivity is sparser than CG’s
I and more regular.
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