Numerical Methods for Partial Differential Equations
(CS555 / MATH552 / CSE510

Andreas Kloeckner

Spring 2022



Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
About the Class
Classifcation of PDEs
Preliminaries: Differencing
Interpolation Error Estimates (reference)



Outline

Introduction
Notes



Outline

Introduction

Notes (unfilled, with empty boxes)



Outline

Introduction

About the Class



What's the point of this class?

PDEs describe lots of things in nature:

|dea: Use them to




Survey
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» Degree pursued

P Longest program ever written
» in Python?

» Research area
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ed. Birkh3user Basel, 1992.

Braess, Dietrich. Finite Elements: Theory, Fast Solvers, and
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Open Source <3

These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:

Copyright (C) 2020-22 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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https://github.com/inducer/numpde-notes
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Introduction

Classifcation of PDEs
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PDEs: Example |

What does this do? 0:u = O u
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PDEs: Example I

What does this do? 92u + 8§u =0

13



Some good questions

» What is a time-like variable? (Variables labeled ¢7)

» What if there are boundaries? (space/time)
» Existence and Uniqueness of Solutions?

» Depends on where we look (the function space)
> In the case of the two examples? (if there are no boundaries?)

Some general takeaways:
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PDEs: An Unhelpfully Broad Problem Statement

Looking for u: Q — R" where Q C R so that v € V and
F(u, tx, Uy, Use, Uy s Uy, o3 X, Y, ... ) =0

Used as convenient: 5
u
Uy = Oyl = —

ox
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Properties of PDEs
What is the order of the PDE?

When is the PDE linear?

When is the PDE quasilinear?

When is the PDE semilinear?

(
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Examples: Order, Linearity?

(xuz)uxx + (ux + y)uy, + uﬁ +yu, =f

(x +y+2)ux + (22)uy + (sinx)u, = f

17



Properties of Domains
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Function Spaces: Examples

Name some function spaces with their norms.

May also influence existence/uniqueness of solutions!
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Solving PDEs

Closed-form solutions:

» If separation of variables applies to the domain: good luck with your
ODE
» If not: Good luck! — Numerics

General Idea (that we will follow some of the time)

» Pick V}, C V finite-dimensional
» h is often a mesh spacing

» Approximate u through u, € V,

» Show: up — u (in some sense) as h — 0
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About grand big unifying theories

Is there a grand big unifying theory of PDEs?
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Collect some stamps

a(x, y)ua+2b(x, y) s, +c(x, y)uy,+d(x, y)ux+e(x, y)u,+f(x,y)u = g(x,y)

Example

Discriminant value Kind

b?> —ac <0 Elliptic

b? —ac=0 Parabolic
b?> —ac >0 Hyperbolic

Where do these names come from?

Laplace uyx + uy, =0
Heat up = Uy
Wave Uy = Uy
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PDE Classification in Other Cases

Scalar first order PDEs?

First order systems of PDEs?
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Classification in higher dimensions

Lu:= g E aj 4 lower order terms
'” Bx axj
i=1 j=1

Consider the matrix A(x) = (ajj(x))ij. May assume A symmetric. Why?

~

What cases can arise for the eigenvalues?
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Elliptic PDE: Laplace/Poisson Equation

d

0%u 2D
A”:Z@:V'V”(X) = U+ Uy, =f(x) (x€Q)

i=1 i
Called Laplace equation if f = 0. With Dirichlet boundary condition
u(x) = g(x) (x € 09).

Demo: Elliptic PDE lllustrating the Maximum Principle [cleared]
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Elliptic PDE Illustrating the Maximum Principle.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Elliptic PDE Illustrating the Maximum Principle.ipynb

Elliptic PDEs: Singular Solution

Demo: Elliptic PDE Radially Symmetric Singular Solution [cleared]

Given G(x) = Clog(|x|) as the free-space Green's function, can we
construct the solution to the PDE with a more general f?

What can we learn from this?
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Elliptic PDE Radially Symmetric Singular Solution.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Elliptic PDE Radially Symmetric Singular Solution.ipynb

Elliptic PDEs: Justifying the Singular Solution

u(x) = (G * f)(x) = y G(x = y)f(y)dy

Why?
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Parabolic PDE: Heat Equation -
Ut = Uxx

u(x,0) = g(x)
u(0,t) =u(l,t)=0

Separation of Variables
((x,t) €[0,1] x [0, T])
(x € [0,1])
(telo,T))
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Parabolic PDE: Solution Behavior

Demo: Parabolic PDE [cleared] What can we learn from analytic and
numerical solution?
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Parabolic PDE.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Parabolic PDE.ipynb

Hyperbolic PDE: Wave Equation

Ut = CPliy ((x,t) e Rx[0,T])
ux0) =g(x)  (xeR)
with g(x) = sin(mx).

Is this problem well-posed?

Can be rewritten in conservation law form:
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Hyperbolic Conservation Laws

q:(x,t) + V- F(q(x,t)) = s(x)
Why is this called a (system of) conservation law(s)?

F:7 7
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Wave Equation as a Conservation Law

Rewrite the wave equation in conservation law form:
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Solving Conservation Laws
Solve

Uy = CVx

Vi = Cly.

Demo: Hyperbolic PDE [cleared]
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Hyperbolic PDE.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Hyperbolic PDE.ipynb

Hyperbolic: Solution Properties

Properties of the solution for hyperbolic equations:
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Introduction

Preliminaries: Differencing
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Interpolation and Vandermonde Matrices
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Numerical Differentiation: How?
How can we take derivatives numerically?

Demo: Taking Derivatives with Vandermonde Matrices [cleared]
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Taking Derivatives with Vandermonde Matrices.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Taking Derivatives with Vandermonde Matrices.ipynb

Finite Differences Numerically

Demo: Finite Differences [cleared]
Demo: Finite Differences vs Noise [cleared]
Demo: Floating point vs Finite Differences [cleared]
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Finite Differences.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Finite Differences.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Finite Differences vs Noise.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Finite Differences vs Noise.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Floating point vs Finite Differences.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Floating point vs Finite Differences.ipynb

Taking Derivatives Numerically

Why shouldn’t you take derivatives numerically?
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Differencing Order of Accuracy Using Taylor

Find the order of accuracy of the finite difference formula
f'(x) =~ [f(x + h) — f(x — h)]/2h.

40
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Introduction

Interpolation Error Estimates (reference)
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Truncation Error in Interpolation
If f is n times continuously differentiable on a closed interval | and
pn—1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {x;} (i = 1,..., n) in that interval, then for each x in the
interval there exists £ in that interval such that

F(E)

F(x) = pn-a(x) = —

(x = x1)(x = x2) -+ (x — xp).

42



Truncation Error in Interpolation:

R(x)

Y«(t) = R(t) — W0

W(t)

cont'd.

where
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Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev
interpolation?
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Error Result: Simplified Form

Boil the error result down to a simpler form.

» Demo: Interpolation Error [cleared]
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/intro/Interpolation Error.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/intro/Interpolation Error.ipynb

Outline

Finite Difference Methods for Time-Dependent Problems
1D Advection
Stability and Convergence
Von Neumann Stability
Dispersion and Dissipation
A Glimpse of Parabolic PDEs
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Outline

Finite Difference Methods for Time-Dependent Problems
1D Advection
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1D Advection Equation and Characteristics

ur +aux =0, u(0,x) = g(x)
Solution?

(x € R)
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Solving Advection with Characteristics

ur+au, =0, u(0,x) = g(x) (x eR)

Find the characteristic curve for advection.

\.

Generalize this to a solution formula.

- 7

Does the solution formula admit solutions that aren’t obviously allowed by
the PDE?
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Finite Difference for Hyperbolic: Idea
{(Xk, tg) DXk = khy, tp = Eht}
If u(x, t) is the exact solution, want
Uk p = u(Xk, tg).

Condition at each grid point?

~

What are explicit/implicit schemes?

50



Designing Stencils
ETCS:

[

ITCS:

l

ETFS:

Terminology?

ETBS:

Write out ITCS:
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Crank-Nicolson

t
o 0o 0
o o o X

Crank-Nicolson

Write out Crank-Nicolson:
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Lax-Wendroff

Lax-
Wendroff

What's the core idea behind Lax-Wendroff?

Write out Lax-Wendroff.

~
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Exploring Advection Schemes

Demo: Methods for 1D Advection [cleared)]

» Which of the schemes “work’?

» Any restrictions worth noting?

54


https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Methods for 1D Advection.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/fd-tdep/Methods for 1D Advection.ipynb

Outline

Finite Difference Methods for Time-Dependent Problems

Stability and Convergence
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A Matrix View of Two-Level Stencil Schemes

Numerical solution vectors: True solution vectors:
uy g Vi u(x1, ty)
V) = , Vv = . uy = u=
up, ¢ VN, u(xn,, tr)

Definition (Two-Level Finite Difference Scheme)

A finite difference scheme that can be written as

is called a two-level linear finite difference scheme.




Rewriting Schemes in Matrix Form (1/2)

Phvei1 = Qpve + hiby
Find Py, and Q) for ETCS:

57



Rewriting Schemes in Matrix Form (2/2)

Find Py, and Qj, for Crank-Nicolson:
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Truncation Error

Definition (Truncation Error)

Demo: Truncation Error Analysis via sympy [cleared]
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https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Truncation Error Analysis via sympy.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/fd-tdep/Truncation Error Analysis via sympy.ipynb

Error and Error Propagation
Express definition of truncation error in our two-level framework:

Define e, = uy — vy. Understand the error as accumulation of truncation
error:
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Discrete and Continuous Norms

To measure properties of numerical solutions we need norms. Define a
discrete L°° norm.

Define a discrete L2 norm.

Important features:

61



Consistency and Convergence
Assume u, (0% )u, (07 )u € L?(R x [0, t*]).

Definition (Consistency)

A two-level scheme is consistent in the L?-norm with order g; in time and

gx in space if

Definition (Convergence)

A two-level scheme is convergent in the L?-norm with order g; in time and

gx in space if

| | .




Analyzing ETFS (1/2)

u —u u —u
k041 Kt Ukl — Ukt
ht hx
Let's understand more precisely what happens for this scheme. Assume
a> 0.

=0

63



Analyzing ETFS (2/2)

U1 = (14 AUk e — Mgy
Consider u(x,0) = 1[_; gj(x). Predict solution behavior.

Demo: Methods for 1D Advection [cleared] (Revisit ETFS)



https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Methods for 1D Advection.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/fd-tdep/Methods for 1D Advection.ipynb

Stability

Prvei1 = Qpvy
Write down a matrix product to bring vq to vy:

Definition (Stability)

A two-level scheme is stable in the L2-norm if there exists a constant ¢ > 0
independent of h; and hy so that

R

for all £ and h; such that Zh; < t*.
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Lax Convergence Theorem
Theorem (Lax Convergence)
If a two-level FD scheme is
» consistent in the L2-norm with order q; in time and gy in space, and

» stable in the L%2-norm, then

it is convergent in the L%-norm with order q: in time and gy in space.

66



Lax Convergence: Proof (1/2)

67



Lax Convergence: Proof (2/2)

~

e)= h; Z(Ph_lQh)é_mPh_le_l.

m=1

68



Conditions for Stability

ate] <

Give a simpler, sufficient condition:

How can we show bounds on these matrix norms?
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Stability of ETBS (1/3)
Theorem (Gershgorin)

For a matrix A € CN*N = (a; ),

a(A) C U B (ajwz |aj, k)

k#j

ETBS:
Uke+1 — Uk, Uk — Uk—10
) ) ” ) — 0
e 7 h

Analyze stability of ETBS:

70



Stability of ETBS (2/3)
Py =1 and Qy = tridiag(A, 1 - A, 0).
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Stability of ETBS (3/3)

Summarize ETBS stability:

Comments?

72



Outline

Finite Difference Methods for Time-Dependent Problems

Von Neumann Stability

73



Discrete (Space) Fourier Transform

Assume x infinitely long. Define:
x(0) = Zxke*’.ek
keZ

When is this well-defined?
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Inverting the Fourier Transform

To recover x: )

M= on

Proof?

%(0)e™*do.

—T
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Getting to L?

» Fourier Transform well defined for x € /1.
» Problem: We care about L2, not 1.

Theorem (Parseval)

If ||x||, < oo, then

1 ™
Ix13 = 5= | %) do < .

2r J_;

Impact?
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Toeplitz Operators

Definition (Toeplitz Operator)

An operator T is a Toeplitz operator if (Tx); = >, xkpj—«. In this case,
p is called the Toeplitz vector.

Example: ETCS
Let A = ah¢/2hy. Then

Uk p41 = AUg_10+ Uk g — AUky1e

Is ETCS Toeplitz?

7



Is ETCS Toeplitz?

|
(Phugt1)j = Ujov1 = D Uk e+1Pj—k

!
(Quug)j = Auj_1 0+ Ujp — Njp10 = D) Uk eGj—k

78



Fourier Transforms of Toeplitz Operators (1/3)

Yj = Z Xk Pj—k
k

79



Fourier Transforms of Toeplitz Operators (2/3)

N L[ io(k—j i(o—0)j
y(0) = 27T/ x(9)) (Ze“”(k ”pj_k> el(v=Didy.
. —\4
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Fourier Transforms of Toeplitz Operators (3/3)

N T A 1 i(0_0)i
y(0) = / %(0)b() - Y el idy,
. :
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Fourier Transforms of Inverse Toeplitz Operators
Recall (Px); = >, pj—kX«-
What is the Fourier transform 2(6) of P, 'x?

Fourier transform Ph_lth?

~
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Bounding the Operator Norm
Bound HPh_lQh”z using Fourier:

Is the upper bound attained?
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von Neumann Stability
Two-level finite difference scheme
Phvir1 = Qpve + heby,

where Pp, and Q) are Toeplitz operators with vectors p and q.

Definition (Symbol of a Two-Level Finite Difference Scheme)

Let

P(O) =D pre ™, q(0) = que k.
k k
Then the symbol of the two-level FD method is s(¢) = g(¢)/p(0).

Definition (Von Neumann Stability)
If

max [s(p)| < 1, max
® 2

1 ‘ -
= S C
p(»)

for some constant ¢ > 0, we say the scheme is von Neumann stable. ”



Comparison with Lax-Richtmyer Stability
Need H(Ph_lQh)ePh_lH <c.

Why is bounding the symbol the most salient part?

~

Main restriction of von Neumann stability?

85



von Neumann Stability: ETBS (1/2)
ETBS: Let A = ahy/hy. ukor1 = Auk—10+ (1 — X)uk .

86



von Neumann Stability: ETBS (2/2)
Found: |s(¢)|? =1+ 2(\ — A2)(cos ¢ — 1).

87



von Neumann Stability: ETCS
Let A = ah¢/hy. Then

Uk p+1 = Euk—l,f + Uk —

2

Upy1.e-

88



von Neumann Stability: Crank-Nicolson

Let \ = ahe/(4hy)

—AUK—1041 + Uk p41 + AUkg1,041 = AUk—10 + Uk g — Algg1-

89



Outline

Finite Difference Methods for Time-Dependent Problems

Dispersion and Dissipation
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Studying Solutions of the PDE

Saw numerically: interesting dispersion/dissipation behavior.
Want: theoretical understanding.

Consider linear, continuous (not yet discrete) differential operators

Liu = u:+ auy,
Lsu = up+ auy — plUssx-

What could we use as a prototype solution?

91



A Prototype Solution of the PDE

Observation: all these operators are diagonalized by complex exponentials.
Come up with a ‘prototype complex exponential solution’.

7~

What type of function is this?

92



Wave-like Solutions of the PDE

z(x,t) = zge'(x—wt)

Lou = us — Duyx + auy (D > 0). Plug in z.

.

Observations in connection with L?

What is the dispersion relation?

93



Picking Apart the Dispersion Relation

Consider w(k) = a(k) + iB(k). Rewrite the wave solution with this.

How can we recognize dissipation?

\.

What is the phase speed? How can we recognize dispersion?

94



Dispersion Relation: Examples

In each case, find the dispersion relation and identify properties.
Liu = us + auy

Lou = up — Duyy + auy (D > 0)

L3u = us + auy — HUxxx

95



Numerical Dissipation/Dispersion Analysis

Goal: Want discrete finite difference scheme to match
dissipation/dispersion behavior of continuous PDE.

Define a discrete wave-like function:

We want z to solve Ppzy 1 = Qpzy. How can we connect the operators to
the wave solution?

96



Toeplitz and Waves

zig= ZOGI(thX—tht)'

Theorem (Waves Diagonalize Toeplitz Operators)
Let T be a Toeplitz operator. Then Tz; = \(k)z, = t(khy)z,.
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Waves and Two-Level Schemes
Since Py, and @y, are Toeplitz, we must have

Phzoy1 = Ap(k)ze41, Qnz; =

What does that mean?

)\Q(k)Zg.

Seen before?

[
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Discrete Dispersion Relation (1/2)

So zy is a solution of the finite difference scheme if w = w(khy) satisfies
e—iw(ﬁ)ht _ S(/i),

where we let K = khy. Interpret k.

Let s(k) = |s(k)| e’?(n) = elogls(w)l+iv(x) (k)7

99



Discrete Dispersion Relation (2/2)

o) — )+ ilog ()]

he

Plug that into the wave-like solution:

Criterion for stability?

100



Numerical Dispersion/Dissipation

Finite difference scheme Pruyi1 = Qpu, with symbol s(k).

ik ((ip. — =(r)
Zje =zoe|°g‘s(“)|£e'k(1hx khy zht>

When is the scheme dissipative?

What is the phase speed?

7

Dispersion?

101



Dispersion/Dissipation Analysis of ETBS
Let A = ahy/hx. Shown earlier: s(khy) =1 — A(1

— e ikhe),

102



Dispersion/Dissipation Analysis of ETBS: Fine Grid

e—iw(n)ht —1_ /\(1 N e—ikhx)

103



Dispersion/Dissipation: Demo

» Demo: Experimenting with Dispersion and Dissipation [cleared]

» Demo: Dispersion and Dissipation [cleared]

104


https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Experimenting with Dispersion and Dissipation.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/fd-tdep/Experimenting with Dispersion and Dissipation.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Dispersion and Dissipation.ipynb
https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=cleared-demos/fd-tdep/Dispersion and Dissipation.ipynb

Outline

Finite Difference Methods for Time-Dependent Problems

A Glimpse of Parabolic PDEs
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Heat Equation

Heat equation (D > 0):

Ui = Duy, (x,t) € R x (0,00),
u(x,0) = g(x) x € R.

Fundamental solution (g(x) = d(x)):

Why is this a weird model?

[
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Schemes for the Heat Equation

Cook up some schemes for the heat equation.

Explicit Euler:

Implicit Euler:




Von Neumann Analysis of Explicit Euler for Heat (1/2)
Let A = Dh,/h2.

U p+1 = Ukp + MUggre — 2up 0 + Ug—1,7).

108



Von Neumann Analysis of Explicit Euler for Heat (2/2)

—2 < 2)\(cos(p) — 1) < 0.

Comment on the stability region found regarding speeds of propagation.
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Von Neumann Analysis of Implicit Euler for Heat
Let A = Dhe/h2.

Uk o1 — MUk1,041 — 2Up 41 + Uk—1,041) = Uiye

J

Does the type of system we need to solve for implicit+parabolic correspond
to another PDE?

110



Outline

Finite Volume Methods for Hyperbolic Conservation Laws
Theory of 1D Scalar Conservation Laws
Numerical Methods for Conservation Laws
Higher-Order Finite Volume
Outlook: Systems and Multiple Dimensions

111



Outline

Finite Volume Methods for Hyperbolic Conservation Laws
Theory of 1D Scalar Conservation Laws
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Conservation Laws: Recap

ur + f(u)x =0,
where u is a function of x and t € R{.

Rewrite in integral form:

Recall: Characteristic Curve: a function x(t) so that u(x(t),t) = u(x,0).

x(0) = xo.

What assumption underlies all this?

[ | .




Going Nonlinear: Burgers' Equation

Make a simple modification to advection u; + auy, = 0 to make it nonlinear.

Is that a sensible modification?

Is that still a conservation law?

~
[ ) 114




Burgers' Equation: Try FD Numerics

Demo: ETBS for Volume Burgers [cleared]

What do you think of these results?

115


https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fv-hyperbolic/ETBS for Volume Burgers.ipynb
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Burgers' Equation

{ ut+<“72) =0,

u(x,0) = g(x) = sin(x).

Interpret Burgers' equation.

Consider the characteristics at 7/2 and 37/2.
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Weak Solutions

b

— u
dt J, (
Define a weak solution:

x, t)dx

f(u(a ) — f(u(b, 1))




Rankine-Hugoniot Condition (1/2)

Consider: Two C! segments separated by a curve x(t) with no regularity.
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Rankine-Hugoniot Condition (2/2)

(d/dt)Ga(x(t), t) = ulx(t), t)x'(t) — (F(u(x(t), 1)) — f(u(a, 1))).
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Rankine-Hugoniot and Weak Solutions

Theorem (Rankine-Hugoniot and Weak Solutions)

If u is piecewise C1 and is discontinuous only along isoated curves, and if u
satisfies the PDE when it is C', and the Rankine-Hugoniot condition holds
along all discontinuous curves, then u is a weak solution of the
conservation law.
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Riemann Problems: Example 1

Consider the following Riemann problem:

U2
LI1_-+ 7 B}

1
u(X,O):{ x <0,

-1 x>0.

0,
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Riemann Problems: Example 2

u2
wr(3), 70

-1 0
u(x,O):{ X<

1 x > 0.

(IC sign flip compared to previous slide)
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Bad Shocks and Good Shocks

In the shock version of the ‘ambiguous’ Riemann problem, where do the
characteristics go?

Comment on the stability of that situation.
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Ad-Hoc |dea: Ban Bad Shocks

Recall: what is f'(u)?

. 7

Devise a way to ban unstable shocks.
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Vanishing Viscosity Solutions

Goal: neither uniqueness nor existence poses a problem.

How?

125



Entropy-Flux Pairs

What are features of (physical) entropy?

Definition (Entropy/Entropy Flux)

An entropy n(u) and an entropy flux v (u) are functions so that 7 is convex

and
U(U)t + ¢(u)x =0

for smooth solutions of the conservation law.
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Finding Entropy-Flux Pairs
n(u)s + ¥ (u)x = 0. Find conditions on 7 and .

Come up with an entropy-flux pair for Burgers.




Back to Vanishing Viscosity (1/2)

ur + F(U)x = el

What's the evolution equation for the entropy?
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Back to Vanishing Viscosity (2/2)

n(u)e +(u)x = (' (u)u)x — e (u)us.

Integrate this over [x1, x2] X [t1, t2], with x1, x2 on either side of jump.
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Entropy Solution

Definition (Entropy solution)

The function u(x, t) is the entropy solution of the conservation law if for all
convex entropy functions and corresponding entropy fluxes, the inequality

n(u)e +p(u)x <0

is satisfied in the weak sense.
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Entropy Solution vs Entropy Condition
Relate entropy solutions n(u): + ¢(u)x < 0 back to the entropy condition.
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Conservation of Entropy?
What can you say about conservation of entropy in time?
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Total Variation

1
TV(u) = limsup R

e—0

Simpler form if u is differentiable?

/ lu(x + 2) — ()] dx.

Hiking analog?
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Total Variation and Conservation Laws

Theorem (Total Variation is Bounded [Dafermos 2016, Thm. 6.2.6])

Let u be a solution to a conservation law with f"(u) > 0. Then:

TV(u(t + At,-)) < TV(u(t,-)) for At > 0.

Theorem (L! contraction [Dafermos 2016, Thm. 6.3.2])

Let u, v be viscosity solutions of the conservation law. Then
134
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Outline

Finite Volume Methods for Hyperbolic Conservation Laws

Numerical Methods for Conservation Laws
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Finite Difference for Conservation Laws? (1/2)

e+ (3) =0
1 x<0,
b0 =10 =0

Entropy Solution?

Rewrite the PDE to ‘match’ the form of advection u; + auy, = 0:

[ J

Equivalent?
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Finite Difference for Conservation Laws? (2/2)

Recall the upwind scheme for u; + au, = 0:

Write the upwind FD scheme for u; + uu, = 0:




Schemes in Conservation Form

Definition (Conservative Scheme)

A conservation law scheme is called conservative iff it can be written as

where f*. ..

Theorem (Lax-Wendroff)

If the solution {uj ,} to a conservative scheme converges (as At,Ax —0) 135




Lax-Wendroff Theorem: Proof

Summation by parts: With Ata, = ax.1 — ax and A~ ax = ax — ax_1:

N N
D a(A7er) + Y k(AT ak) = —a1po + pnanga-
k=1 k=1
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Finite Volume Schemes

Finite volume: Idea?
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Developing Finite Volume

L
/ / (e + (1)) dxdt = 0
ty Xj—1/2
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Flux Integrals?

toy1
—/ f(ujp1/2)dt?
te
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The Godunov Scheme

Altogether:

_ _ h
Uje+1 = Ujy — Ft(f(“j+1/2,£) — f(uj—1/2,0))-

Overall algorithm?

Heuristic time step restriction?

J 143




Riemann Problem

ur + f(u)x =0,
0
u(x,0) = {ul x <5

u x>0

Exact solution in the Burgers case?

's N
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Riemann Solver for a General Conservation Law

To complete the scheme: Need f*(u~, u™). For Burgers: already known.
For a general convex (f”(u) > 0) conservation law?

. v

Equivalent to
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More Riemann Solvers

Downside of Godunov Riemann solver?
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Back to Advection

Consider only f(u) = au for now. Riemann solver inspiration from FD?
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Side Note: First Order Upwind, Rewritten

Uier1 — Uje | (U0 uirre) — £ (Uj—1,0, Uj0)
+
ht hx
with B N
f*(u—7u+): u_m(u—i_—u_)'

2 2
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Lax-Friedrichs
Generalize linear upwind flux for a nonlinear conservation law:

au” +aut |4

f(u,ut) = 5 5

(vt —u).

Demo: Finite Volume Burgers [cleared] (Part I)
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Outline

Finite Volume Methods for Hyperbolic Conservation Laws

Higher-Order Finite Volume
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Improving Accuracy
Consider our existing discrete FV formulation:
hy

Gjevr = G — = (F(Up172,0) = F(Ujo1/2,0))-

What obstacles exist to increasing the order of accuracy?

What order of accuracy can we expect?
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Improving the Order of Accuracy

Improve temporal accuracy.

What's the obstacle to higher spatial accuracy?

7~

How can we improve the accuracy of that approximation?

152



Increasing Spatial Accuracy

Temporary Assumptions:
> f'(u) >0
> 75.:1/2(u_, ut) = f(u) (e.g. Godunov in this situation)

Reconstruct uj 1/, using {1, I, Tj1}. Accuracy? Names?

Compute fluxes, use increments over cell average:
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Demos: Spatial Accuracy

» Demo: Higher-Order Reconstruction [cleared]

» Demo: Finite Volume Burgers [cleared] (Part 11)
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Lax-Wendroff

Another scheme for high-order. For u; + au,, from finite difference:
au” +aut  a°> At
2 2 Ax
Taylor in time: g 1 = up + Orup - he + 2up - h2/2 + O(h3).

f(u,ut) = (um —u™).

Then use central differences to discretize derivatives:
U1 = Uje f(ujr1,e) — f(uj—1y)
h; 2hy
f(ujy1e) — Fluje) £ )f(Uj,e) — f(uj-1,)
hX J—1/2,é hX
oy )+ f(ut)

h
= i f'(Ujy1)2,0)

bt o N e — 5D

Ae Ricrmmanm ec~lhvinv £%(,,—



Monotone Schemes

Definition (Monotone Scheme)

A scheme
ierr = U= M (Ujps o Uprg) = £ (Uj—p-1,- s Ujrg-1))
=: G(UJ_p_l,...,UJ+q)

is called a montone scheme if G is a monotonically nondecreasing function
G(T,1,...,1) of each argument.
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Monotonicity for Three-Point Schemes
Three-Point Scheme:

G(uj—1, uj, ujr1) = uj — N[ (uj, ujy1) — £ (uj-1, 4j)].

When is this monotone?




Lax-Friedrichs is Monotone

Show: This is monotone.
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Monotone Schemes: Properties

Theorem (Good properties of monotone schemes)

» [ocal maximum principle:

min up < G(u); < max uj.

i€stencil around j "~ i€stencil around j
» [l-contraction:
16(u) = G(W)llp2 < flu= vl

» TVD:
TV(G(u)) < TV(u).

» Solutions to monotone schemes satisfy all entropy conditions.
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Godunov's Theorem

Theorem (Godunov, see also

Monotone schemes are at most first-order accurate.

What now?

[
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Linear Schemes

Definition (Linear Schemes)

A scheme is called a linear scheme if it is linear when applied to a linear
PDE:
us + auy = 0,

where a is a constant.

Write the general case of a linear scheme for u; + u, = 0:
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Linear + TVD =7

Theorem (TVD for linear Schemes)

For linear schemes, TVD = monotone.

What does that mean?

[

Now what?
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Harten's Lemma

Theorem (Harten's Lemma)

If a scheme can be written as
Bjer1 = o + MGar2B4 8 — Dj1pA i)

with i1/ >0, Djy1/5 >0, 1= X(Cyay2 + Djy12) > 0 and A = he/hy,
then it is TVD.

As a matter of notation, we have

Atruj = U -y,

A_UJ' = uj—uj1.

We have omitted the time subscript for the time level /.
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Harten's Lemma: Proof
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Minmod Scheme
Still assume f’(u) > 0.

* - 1 - — *
Fh =G+ (@ -), T, =f(a

j+1/2
| —
i)
J

Design a ‘safe’ thing to use for i:




Minmod is TVD
Show that Minmod is TVD:
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Minmod: CFL restriction?

Derive a time step restriction for Minmod.




What about Time Integration?

3+ %(u(” + heL(u™M)).

Above: A version of RK2 with L the ODE RHS. Will this cause wrinkles?

u® =y + heL(uy), Upi1 =

7~
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Total Variation is Convex

Show: TV(:) is a convex functional.
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TVD and High Order

Can TVD schemes be high order everywhere? (aside from near shocks)
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High Order at Smooth Extrema

» TVB Schemes [Shu ‘87]
» ENO [Harten/Engquist/Osher/Chakravarthy ‘87]
> Define W, = w(xjy1/2) = [/ u(€, t)dE = h S G

X1/2
> Observe uji1/2 = W' (Xj11/2).
> Approximate by interpolation/numerical differentiation.
Start with the linear function p() through W_1 and W;
Compute on (VVJ'—Qa VVJ'—la VVJ)
Compute divided differences on (W;_1, W;, Wj41)
Use the one with the smaller magnitude (of the divided differences) to
extend p(!) to quadratic
» (and so on, adding points on the side with the lowest magnitude of the
divided differences)

» WENO [Liu/Osher/Chan '94]

vVVvVYVvyYy
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Outline

Finite Volume Methods for Hyperbolic Conservation Laws

Outlook: Systems and Multiple Dimensions
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Systems of Conservation Laws
Linear system of hyperbolic conservation laws, A €

u; +Au, = 0,
u(x,0) = wup(x).

Assumptions on A?

Rm)(m.
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Linear System Solution

v = R_lu, vi + Av, =0.

Write down the solution.

What is the impact on boundary conditions? E.g. (\,) = (—c,0,c) for a
BC at x =0 for [0, 1]?
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Characteristics for Systems (1/2)

Consider system u; + f(u)x = 0. Write in quasilinear form:

When hyperbolic?
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Characteristics for Systems (2/2)

What about characteristics/shock speeds?

Are values of u still constant along characteristics?
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Shocks and Riemann Problems for Systems

u; +Au, = 0,

u x<0,
u(x,0) = {u x>0

Solution? (Assume strict hyperbolicity with A\; < Ay < -+ < Ap.)




Shock Fans (1/2)

What does the solution look like?

.

Jump across the characteristic associated with A,?
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Shock Fans (2/2)

Do those jumps satisfy Rankine-Hugoniot?

How can we find intermediate values of u?
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Two Dimensions
ut + f(u)x + g(u), = 0. Finite volume methods generalize in principle:

However:
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Outline

Finite Element Methods for Elliptic Problems
tl:dr: Functional Analysis
Back to Elliptic PDEs
Galerkin Approximation
Finite Elements: A 1D Cartoon
Finite Elements in 2D
Approximation Theory in Sobolev Spaces
Saddle Point Problems, Stokes, and Mixed FEM
Non-symmetric Bilinear Forms
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Outline

Finite Element Methods for Elliptic Problems
tl:dr: Functional Analysis
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Function Spaces

Consider
-1 x < -1
- n
3
fa(x) = ¢ 3Fx— Tx3 —Lox<l
1 x>1/n.

Converges to the step function. Problem?
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Norms

Definition (Norm)

A norm || - || maps an element of a vector space into [0, c0). It satisfies:
> |x]|=0&x=0
> ax] = Al
> x+ yll < Ixll + lly| (triangle inequality)
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Convergence

Definition (Convergent Sequence)

Xp — X & ||xp — x|| = 0 (convergence in norm)

Definition (Cauchy Sequence)

|
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Banach Spaces

Definition (Complete/“Banach” space)

What's special about Cauchy sequences?

7~

Counterexamples?
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More on C°
Let Q C R” be open. Is C%(Q) with || f]|, := supyeq |f(x)| Banach?

Is C°(Q) with ||f||, := supyeq |f(x)| Banach?

~




C™ Spaces
Let Q C R".

Consider a multi-index k = (ki, . ..

, kn) € Ng and define the symbols

Definition (C™ Spaces)
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LP Spaces
Let 1 < p < .

Definition (LP Spaces)

LP(Q) = {u (u:R—R) measurable,/ lulP dx < oo} :
Q

, 1/p
lull, = (/Q\u\ dx> .

Definition (L> Space)

L®(Q) :=={u: (u:R— R),|u(x)| < oo almost everywhere} ,

llulloo = inf {C : |u(x)| < C almost everywhere} .
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LP Spaces: Properties
Theorem (Holder's Inequality)
For1 < p,q < oo with1/p+1/q =1 and measurable u and v,

Theorem (Minkowski's Inequality (Triangle inequality in LP))

For1 < p<ooandu,v € LP(Q),
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Inner Product Spaces
Let V be a vector space.

Definition (Inner Product)

An inner product is a function (-,-) : V x V — R such that for any
f,g,heVandaeR

) 0,

) = 0& =0,
(f.g) = (f,g),

) = af(f,h)+{(g,h).

Definition (Induced Norm)

Il = V{F, f).
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Hilbert Spaces
Definition (Hilbert Space)

An inner product space that is complete under the induced norm.
Let Q be open.
Theorem (L?)

L?(R) equals the closure of (set of all limits of Cauchy sequences in)
C5°(Q2) under the induced norm ||-||,.

Theorem (Hilbert Projection (e.g. Yosida ‘95, Thm. I11.1))
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Weak Derivatives

Define the space L{_ of locally integrable functions.

Definition (Weak Derivative)
v € LL () is the weak partial derivative of u € L} () of multi-index

loc

order k if
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Weak Derivatives: Examples (1/2)

Consider all these on the interval [—1,1].

f(x) =4(1 —x)x

2x x <1/2,
00 = =
2-2x x>1/2.
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Weak Derivatives: Examples (2/2)

A0 =[5 V-1
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Sobolev Spaces

Let QCR", keNpand 1 < p < oo.
Definition ((k, p)-Sobolev Norm/Space)
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More Sobolev Spaces
wo2?

we2?

HE(Q)?




Outline

Finite Element Methods for Elliptic Problems

Back to Elliptic PDEs
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An Elliptic Model Problem
Let Q C R" open, bounded, f € HI(Q).

-V -Vu+u = f(x) (xe€Q),

ulx) = 0 (x € 09).
Let V := H}(Q). Integration by parts? (Gauss's theorem applied to ab):

Weak form?
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Motivation: Bilinear Forms and Functionals

/Vu-Vv—i—/uv:/fv.
Q Q

This is the weak form of the strong-form problem. The task is to find a
u € V that satisfies this for all test functions v € V.

Recast this in terms of bilinear forms and functionals:
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Dual Spaces and Functionals

Bounded Linear Functional

Let (V,||-||) be a Banach space. A linear functional is a linear function
g : V — R. Itis bounded (& continuous) if there exists a constant C so
that [g(v)| < C|v|| forall v € V.

Dual Space

Let (V, ||||) be a Banach space. Then the dual space V' is the space of
bounded linear functionals on V.

Dual Space is Banach (cf. e.g. Yosida ‘95 Thm. IV.7.1)

V' is a Banach space with the dual norm
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Functionals in the Model Problem
Is g from the model problem a bounded functional? (In what space?)

That bound felt loose and wasteful. Can we do better?
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Riesz Representation Theorem (1/3)
Let V be a Hilbert space with inner product (-, -).

Theorem (Riesz)

Let g be a bounded linear functional on V, i.e. g € VV'. Then there exists
a unique u € V so that g(v) = (u,v) forallv e V.
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Riesz Representation Theorem: Proof (2/3)

Have w € N(g)* \ {0}, a = g(w) #0, and z := v — (g(v)/a)w L w.
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Riesz Representation Theorem: Proof (3/3)

Uniqueness of u?
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Back to the Model Problem

a(u,v) = (Vu,Vv)2+(u,v)2
g(v) = (f,v)p
a(u,v) = g(v)

Have we learned anything about the solvability of this problem?

206



Poisson
Let Q C R" open, bounded, f € H_l(Q).

This is called the Poisson problem (with Dirichlet BCs).
Weak form?




Ellipticity
Let V be Hilbert space.

V-Ellipticity

A bilinear form a(-,-) : V x V — R is called coercive if there exists a
constant ¢g > 0 so that

and a is called continuous if there exists a constant ¢; > 0 so that

If ais both coercive and continuous on V/, then a is said to be V-elliptic.
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Lax-Milgram Theorem
Let V be Hilbert space with inner product (-, ).

Lax-Milgram, Symmetric Case

Let a be a V-elliptic bilinear form that is also symmetric, and let g be a
bounded linear functional on V.
Then there exists a unique u € V so that a(u,v) = g(v) forall v € V.

7
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Back to Poisson
Can we declare victory for Poisson?

Can this inequality hold in general, without further assumptions?
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Poincaré-Friedrichs Inequality (1/3)
Theorem (Poincaré-Friedrichs Inequality)

Suppose Q C R" is bounded and u € H}(Q). Then there exists a constant
C > 0 such that
lull iz < ClIVull 2
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Poincaré-Friedrichs Inequality (2/3)

Prove the result in C5°(€2).
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Poincaré-Friedrichs Inequality (3/3)

Prove the result in H}(9).
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Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

Draw a conclusion on Poisson:
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Outline

Finite Element Methods for Elliptic Problems

Galerkin Approximation

215



Ritz-Galerkin

Some key goals for this section:
> How do we use the weak form to compute an approximate solution?
» What can we know about the accuracy of the approximate solution?

Can we pick one underlying principle for the construction of the
approximation?
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Galerkin Orthogonality

a(u,v) = g(v) for all v € V, a(up, vp)

Observations?

= g(vn)

for all v, € V.




Céa's Lemma
Let V C H be a closed subspace of a Hilbert space H.

Céa's Lemma

Let a(-,-) be a coercive and continuous bilinear form on V. In addition, for
a bounded linear functional g on V, let u € V satisfy

a(u,v) = g(v) forall ve V.
Consider the finite-dimensional subspace V;, C V and uj, € Vj, that satisfies
a(up, vp) = g(vp) for all v, € V.

Then
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Céa's Lemma: Proof

Recall Galerkin orthgonality: a(up — u, v) = 0 for all v, € V},. Show the
result.
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Elliptic Regularity
Definition (H® Regularity)
Let m>1, H'(2) C V C H™(Q) and a(-,-) a V-elliptic bilinear form.
The bilinear form a(u, v) = (f, v) for all v € V is called H® regular, if for

every f € HS~2™ there exists a solution u € H5(Q2) and we have with a
constant C(, a, s),

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H}-elliptic bilinear form with sufficiently smooth coefficient
functions.

[ |




Elliptic Regularity: Counterexamples

Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?

~
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Estimating the Error in the Energy Norm

Come up with an idea of a bound on ||u — up|| 1.

What's still to do?
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[? Estimates

Let H be a Hilbert space with the norm ||-||; and the inner product (-, -).
(Think: H= L2, V = H!)

Theorem (Aubin-Nitsche)

Let V C H be a subspace that becomes a Hilbert space under the norm
||I-|l\/- Let the embedding V — H be continuous. Then we have for the
finite element solution u € V}, C V:

if with every g € H we associate the unique (weak) solution ¢z of the
equation (also called the dual problem)

[ | .




Aubin-Nitsche: Proof

224



[? Estimates using Aubin-Nitsche

lu = uplly < exflu—unlly sup inf, llog —

&1l v
If ue H}(Q), what do we get from Aubm—Nltsche?

Vh”v

So does Aubin-Nitsche give us an L? estimate?

7~

225



Outline

Finite Element Methods for Elliptic Problems

Finite Elements: A 1D Cartoon
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Finite Elements in 1D: Discrete Form
Q := [a, B]. Look for u € H}(R), so that a(u, ) = (f, ) for all
¢ € H}(Q). Choose Vi, = span{¢p1,...,¢n} and expand
up = Y1, ulp; € Vi Find the discrete system.




Grids and Hats
Let /; := [a;, Bi], so that Q = U,I'V:o liand 17N [ =0 for i # j. Consider a
grid
a=xp < <xy<xXnp1 =P,
ie. aj =x;, Bi = xj41 for i € {0,...,N}. The {x;} are called nodes of the
grid. hj :== xj31 — x; for i € {0,..., N} and h := max; h;. V}? Basis?
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Degrees of Freedom and Matrices
Define something more general than basis coefficients to solve for.

Define shape functions and assemble the stiffness matrix:
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A Matrix Property for Efficiency

(An)ij = a(Bj, $i)-
Anything special about the matrix?

|
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Error Estimation

According to Céa, what's our main missing piece in error estimation now?
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Interpolation Error (1D-only)
For v € H?(Q),

If v e HY(Q) \ H3(Q),

In general (not just 1D), is I} defined for v € H?? for v € H' \ H??
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Interpolation Error: Towards an Estimate

Provide an a-priori estimate.

What's the relationship between /!u and uj?
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Local-to-Global

Is there a simple way of constructing the polynomial basis?
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Local-to-Global: Math

Construct a polynomial basis using this approach.

~
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Demo

Demo: Developing FEM in 1D [cleared|
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Going Higher Order
Q C R with a grid as above.

Possible extension:

Higher Order Approximation
Let 0 < £ < k. Then for v € H1(Q),




High-Order: Degrees of Freedom
Define some degrees of freedom (or DoFs) for high-order 1D FEM.
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High-Order: Local Basis

Define local form functions for high-order 1D FEM.
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High-Order: Global Basis

Obtain the global shape functions for high-order 1D FEM.
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Outline

Finite Element Methods for Elliptic Problems

Finite Elements in 2D
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A Boundary Value Problem
Consider the following elliptic PDE
—V - (k(x)Vu) = f(x) forxecQcCR?
u(x)=0 when x € 0Q.
Weak form?
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Weak Form: Bilinear Form and RHS Functional
Hence the problem is to find v € V/, such that

a(u,v)=g(v), forallveV=H;Q)

where. ..

Is this symmetric, coercive, and continuous?

243



Triangulation: 2D

Suppose the domain is a union of triangles E,, with vertices x;.

Qi

Il
NG

"
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Elements and the Bilinear Form

If the domain, €, can be written as a disjoint union of elements, Ej,
Q=UN_1En with ESNE> =0foris],

what happens to a and g7
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Basis Functions

Expand
Np
un (x) =Y uii,
i=1

and plug into the weak form.
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Global Lagrange Basis

Approximate solution uy: Piecewise linear on Q

Up

The Lagrange basis for V), consists of piecewise linear ¢;, with. ..
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asis Functions Features

Features of the basis?

N
£




Local Basis

What basis functions exist on each triangle?
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Local Basis Expressions

Write expressions for the nodal linear basis in 2D.
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Higher-Order, Higher-Dimensional Simplex Bases

What’s an n-simplex?

Give a higher-order polynomial space on the n-simplex:

~

Give nodal sets (on the A) for PN and dim PV in general.
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Finding a Nodal/Lagrange Basis in General

Given a nodal set (f;)?’z"l C E (where E is the reference element) and a

basis (goj-)J,-V:”1 : E - R, find a Lagrange basis.
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Higher-Order, Higher-Dimensional Tensor Product Bases

What's a tensor product element?

Give a higher-order polynomial space on the n-simplex:

Give the nodal sets (on the quad) for QV.
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Tensor Product Elements: Lagrange Basis

Lagrange Basis for Tensor Product Elements?
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Element Mappings

E Em

Construct a mapping T, : E— E,,. Reference element E global A E,.

~

What is the Jacobian of T,,7
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More on Mappings

Is an affine mapping sufficient for a tensor product element?

How might we accomplish curvilinear elements using the same idea?

256



Constructing the Global Basis

Construct a basis on the element E,,, from the reference basis
(Saj)j cE— R.

What's the gradient of this basis?




Assembling a Linear System

Express the matrix and vector elements in

NP
> uja(pj, i) = g(#i)
j=1

fori=1,...
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Integrals on the Reference Element
Evaluate

/E/i(x)vxgoi(x)Twaj(x)dx.

And now the RHS functional.
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Inhomogeneous Dirichlet BCs
Handle an inhomogeneous boundary condition u(x) = n(x) on 0%.
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Demo

vvyyypy

Demo:

Meshing and Connectivity for FEM in 2D [cleared]

Demo:

Developing FEM in 2D |[cleared]

Demo:

2D FEM Using Firedrake [cleared]

Demo:

Rates of Convergence [cleared]
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Finite Element Methods for Elliptic Problems

Approximation Theory in Sobolev Spaces
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Conditions on the Mesh
Let ©Q be a polygonal domain.

Admissibility (Braess, Def. 11.5.1)

A partition (mesh) 7 = {E1, ..., Em} of Q into triangular or quadrilateral
elements is called admissible if

Give an example of a non-admissible partition.

[



Mesh Resolution, Shape Regularity
Definition (Diameter)

| |

Mesh Resolution

A family of partitions {75} is called shape regular if

( | e

Definition (Shape Regularity (Braess, Def. 11.5.1))




Cone Conditions

Definition (Lipschitz Domain)

A bounded domain Q C R" is called a Lipschitz domain provided that. . .

Lipschitz domains satisfy a cone condition:

Theorem (Rellich Selection Theorem (Braess, Thm. 11.1.9))

Let m > 0, let Q be Lipschitz. Then the imbedding H™1(Q) — H™(Q) is
compact, i.e. any bounded sequence in the range of the imbedding has a 265




The Interpolation Operator
Theorem (Interpolation Operator (Braess, Lemma 11.6.2))

Let Q C R? be Lipschitz. Lett > 2, and z1,2,,...,2s are s := t(t +1)/2
prescribed points in Q such that the interpolation operator | : Ht — Pt~1
is well-defined. Then there exists a constant c so that for u € H'(Q)

Theorem (Approx. for Congruent A (Braess, Remark 11.6.5))

Let E;, := hE, i.e. a scaled version of a reference triangle, with h < 1.
Then, for 0 < m < t, there exists a C so that
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Approximation for Congruent Triangles: Proof (1/2)

Set up a function on Ej, and E. Work out the scaling for the derivative.

Work out the scaling for the Sobolev seminorm.

Work out the scaling for the Sobolev norm. Recall h < 1.




Approximation for Congruent Triangles: Proof (1/2)
lu = tull ymig,y < Ch " [ulpyeg,y (0<m<t)

2 2
> \V|Hé(é) = lulfe(g,)
2 _
> |[ullfmE,) < C'h 2mE2 |

Prove the estimate.

2
VHHm(E)
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H™ Polynomial Approximation on Meshes
Definition (Broken Norm)

Given a partition T, = {E;}™, and a function u such that u € H™(E;),

Approximation Theorem (Braess, Theorem I1.6.4)

Let t > 2, suppose T is a shape-regular triangulation of Q. Then there
exists a constant ¢ such that, for 0 < m < t and u € H*(Q),
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Outline

Finite Element Methods for Elliptic Problems

Saddle Point Problems, Stokes, and Mixed FEM
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Weak Forms as Minimization Problems
Let V be a linear space, and a: V x V — R a bilinear form, and g € V'.

Theorem (Solutions of Weak Forms are Quadratic Form Minimizers)

If a is SPD, then

attains its minimum over V' at u iff a(u,v) = g(v) for all v € V.
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Example: Lagrange Multipliers in R?

fx,y)=x>+y*> — minl
gxy)=x+y = 2

Write down the Lagrangian.

\.

Write down a necessary condition for a constrained minimum.
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Saddle Point Problems

X, M Hilbert spaces. a: X x X =R and b: X x M — R continuous
bilinear forms, f € X', g € M’. Minimize

J(u) = %a(u, W= (Fu)  subjectto  b(u,p) = (g, ) (1€ M).

Apply the method of the Lagrange multipliers.
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Example: Saddle Point Problem in R?
f(x,y) =x*+y*> — min!
glx,y)=x+y = 2

Lagrangian: L(x,y,\) = f(x,y) + Ag(x,y) = x> +y> + Ax +y — 2).

Show that x = y =1, A = —2 is a saddle point.

7~
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Stokes Equation

Au+Vp
V-u

What are the pieces?

—f (xeQ),
0 (xeQ),
up (x €09).
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Stokes: Properties

Au+Vp = —f (xe€Q),
V-u = 0 (xeQ),

u = uy (xe09).

Can we choose any uqg?

Does Stokes fully determine the pressure?
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Stokes: Variational Formulation
Au+Vp=—f, V-u=0 (xe€0Q).

Choose some function spaces (for homogeneous ug = 0).

Derive a weak form.




Solvability of Saddle Point Problems

The Stokes weak form is clearly in saddle-point form.
Do all saddle point problems have unique solutions?
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The inf-sup Condition
a(u,v) +b(v,\) = (f,v) (veX),

b(u,p) = (g,p) (neM).

Theorem (Brezzi's splitting theorem (Braess, 111.4.3))

The saddle point problem has a unique solution if and only if

» The bilinear form a(-,-) is V-elliptic, where
V = {u: b(u, ) = 0for all 4 € M}, i.e. there exists cg > 0 so that

» There exists a constant c; > 0 so that (inf-sup or LBB condition):
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Interpreting the inf-sup Condition

A BT A T
{B 0 ] - M[ —BAlBT} M
b(v, p)
a(v,v) > |v]%, |nf sup —————— > .
X neM vex (VI [l

For any given v, can we expect b(v, 1) to be nonzero for all u?

What is the inf-sup condition saying?

~

Why does it suffice for a to be V-elliptic?
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inf-sup and Stokes

a(u,v) = /JU:JV, where A: B =tr(ABT),

Q
b(v,q) = QV-vq.

Find (u, p) € X x M so that

a(u,v)+b(v,p) = (f.v) (veEX),
b(u,q) = 0 (qeM).

Theorem (Existence and Uniqueness for Stokes (Braess, 111.6.5))

There exists a unique solution of this system when f € H=(Q)".

(based on results due to LadySenskaya, Necas)
281



Discretizations for Stokes

Demo: 2D Stokes Using Firedrake [cleared] (P!-P?)

Give a heuristic reason why P-P! might not be great.

Demo: Bad Discretizations for 2D Stokes [cleared]
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Establishing a Discrete inf-sup Condition
Suppose b : X x M — R satisfies inf-sup. Subspaces X, C X, M, C M.

Fortin's Criterion ([Fortin 1977])

Suppose there exists a bounded projector MMy, : X — X}, so that

If ||[Mp]] < ¢ for some constant ¢ independent of h, then b satisfies the
inf-sup-condition on X}, x M,
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H!-Boundedness of the L?-Projector
Assume H>-regularity and a uniform triangulations 7,. (Not in general!)

H'-Boundedness of the L2-Projector (Braess Corollary 11.7.8)

Let 79 be the Ly-projector onto a finite element space V, C HY(Q). Then,
for an h-independent constant c,

Ingredients?
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H!-Boundedness of the L?-Projector

Does H! boundedness of the H' projector hold?

How would this break down without the uniformity assumption?
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Bubbles and the MINI Element

What is a bubble function?

Let B3 be the span of the bubble function and 73 the triangulation.
Define the MINI variational space X, x M.

Computational impact of the bubble DOF?
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The Bubble in Pictures

r+s<=17r*s*(1-r-s):1/0 ——
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MINI Satisifies an inf-sup Condition (1/4)
MINI satisifes inf-sup (Braess Theorem [11.7.2)

Assume Q is convex or has a smooth boundary. Then the MINI variational
space satisfies an inf-sup condition for every variational form that itself

satisfies one.
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MINI Satisifies an inf-sup Condition (2/4)

Create a projector onto the bubble space B3.

What does this bubble projector do?

Do we have an estimate for the bubble projector?
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MINI Satisifies an inf-sup Condition (3/4)

Make an overall projector Iy, onto Xp.

Show Fortin's criterion for y,.
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MINI Satisifies an inf-sup Condition (4/4)

> ||7pv]| < eIVl for L2 projector 7 : HY — M.

> Hv—wgv”l_2 < oh|v|g.

> ||mhv],2 < asllvlle.

Show H!-boundedness of M.
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Demo

Demo: 2D Stokes Using Firedrake [cleared] (MINI and Taylor-Hood)
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Finite Element Methods for Elliptic Problems

Non-symmetric Bilinear Forms
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Lax-Milgram, General Case
Let V be Hilbert space with inner product (-, -).

Theorem (Lax-Milgram, General Case)

Let a be a V-elliptic bilinear form, and let g be a bounded linear functional
onV.

Then there exists a unique u € V so that a(u,v) = g(v) for all v € V.

7
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Lax-Milgram Proof (2/5)

a(u,v) = (v, Tu). Show linearity of T.

Show boundedness < continuity of T.
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Lax-Milgram Proof (3/5)
a(u,v) = (v, Tu). Show that T has closed range. (Needed for Hilbert
projection, which is needed for onto.)
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Lax-Milgram Proof (4/5)

a(u,v) = (v, Tu). Show that T is onto V.




Lax-Milgram Proof (5/5)

Show existence of the solution w.

Show uniqueness of the solution u.

~
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Discontinuous Galerkin Methods for Hyperbolic Problems
Case Study: Maxwell's as a Conservation Law
Evaluating Schemes for Advection
Developing DG
Fluxes and Stability
Implementation Concerns
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Outline

Discontinuous Galerkin Methods for Hyperbolic Problems
Case Study: Maxwell's as a Conservation Law
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Conservation laws

Goal: Solve conservation laws on bounded domain Q C R"™:

q.+V-F(q)=0

Example: Maxwell's Equations

atD—VXH:—j, 8tB—|-V><E:0,
V-D = p, V-B=0.

What do we do with the divergence constraints?
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Rewriting Maxwell's
Let ¢ = (D«, Dy, D,, By, B, B,)". Consider D = ¢E and B = puH.

0:D —V x H= -0, 0:B+V x E=0.

Assume €, p constant. Rewrite in conservation law form: q,+ V- F(q) =0

N

. J

Could we also define q = (Ex, E,, E;, Hx, H,, H,)T?

's D
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Outline

Discontinuous Galerkin Methods for Hyperbolic Problems

Evaluating Schemes for Advection
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Solving g;: + ag, = 0: Finite Differences

AVAVS

b ol ‘ N

D, +aD, =0

f(t+ At) — 1(t)
At

D} f =

304



Solving g: + agx = 0: Finite Volume

AxD G+ FFTH2— k12 = g

FKEL/2: flux “reconstructions”
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Solving g: + agx = 0: Finite Elements

[ at'o + aqlodx — o0
Q

for ¢ in a test space.
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Do we really want high order?

50

40

30

201

—o— h-version (P=2)
p-version (K=20)
—o— p-version (K=10)

o

0
0

50 100 150 200
Integration time [wave periods]

250

Time to compute solution at 5%
error

Big assumption?

Figure from talk by Jan Hesthaven

307



Summarizing

Want flexibility of finite elements without the drawbacks.
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Discontinuous Galerkin Methods for Hyperbolic Problems

Developing DG
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Developing the Scheme

What do do about unbounded domains?

Enm
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Dealing with the Mesh, Part |
For each cell E, find a ref-to-global map Ty:

Tk

Tk . E — Ek
x = (x,y,z) = Tg(r,s, t) = Tk(r)

» Ty affine for straight-sided simplices: Tx(r) = Ar+ b
» Curved elements also possible: iso/sub/super-parametric
311



Dealing with the Mesh, Part Il

Based on knowledge of how to do this on E:

Can now integrate on Q:

and differentiate on Q:

~

Jacobian of T,:l?
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Dealing with the Mesh, Part Il

Approximation basis set on E,?

What function space do we get if T is non-affine?
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Going Galerkin
| a4 (v Fyodx =0
Ey

Integrate by parts:

Problem?
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Strong-Form DG

Weak form:

o:/E qf¢dx—/E Fk-V¢dx+/ (FK - a)*pdx

OEy

Integrate by parts again:




Outline

Discontinuous Galerkin Methods for Hyperbolic Problems

Fluxes and Stability
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Accuracy and Stabillity

In DG: what provides accuracy? what provides stability?

Following slides based on material by Tim Warburton
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Stability: Basic Setup (1/2)

oz/E qtk(pdx—/E Fk.v¢dx+/ (FX . h)pdS,

OEy




Stability: Basic Setup (2/2)

Ol qkll3
Ollarllz, _ . i~ [ (oauneyquds.
2 Ek 8Ek
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Stability: Going Global

Ocllqk3 g,

2

/aa

a(qk)znx

2

— (aqkny)” qrdSx
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Gather up

6thkH%,Q _

2

fefaces

)

a(qy )?ny

> (7%

a(q, )’ny

2

- (aqknx)*-t,-q:_dsx

~ (aqkm)" a5 dS;)
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Picking a Flux
Want:

|deas?

322



Picking a flux, attempt two
Want:

()= (am %

More ideas?

G

- (aqknx)*_) (a5 —af) <0
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Comparing Fluxes (1/3)

Central

1.25
1

0.25 0.5 0.75 1
x/2n

Upwind penalizes jumps!

Upwin
.25

.75
)5
25

.25
0.5

.75

.25

d

0.25 0.5 0.75 1
x/2n

Figure from talk by Jan Hesthaven
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Comparing Fluxes (2/3)

6

max(I[u]l)

x 10"

ook ‘.|.|.‘.|.||| .|.|J1|J!,M||I'u.ulﬁwaL

G LG
h'ﬁ.]uhm wi I b Red: central fluxes (alpha=0)
Blue: upwind fluxes (alpha=1)

0 20 100

time

Figure from lecture by Tim Warburton
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Comparing Fluxes (3/3)
4 Maximum nodal error

4;(10

Red: central fluxes (alpha=0)
Blue: upwind fluxes (alpha=1)

0 50 100
time
Figure from lecture by Tim Warburton
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Stability Analysis

Clif notes on flux choice?

Swept under the rug: Boundary conditions

[

Element coupling (and BCs) done weakly




Accuracy

Stability: (preliminary version) done!
Accuracy: Depends on approximation properties!
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Systems of Conservation Laws

What to do about systems?

329



What about multiple dimensions?

We've dealt with 1D systems.

How about the move to multiple dimensions?
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Simultaneous Diagonalization

2D second-order wave equation across a boundary with normal n:

Demo: Finding Numerical Fluxes for DG [cleared] (Part 1)
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Jumps and Averages

Jump and average of a scalar quantity:

~

Jump and average of a vector quantity:

~
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A Flux for Maxwell's

Wanted to solve Maxwell's equation in the time domain. Numerical flux?

Either look in the

A . 1 {ZY i x (ZF [H] - af x [E])
h-(Fy—Fy) = 5 ({y}lhnx (-YT[E] - OZA' X [[H]])> '

or derive yourself: Demo: Finding Numerical Fluxes for DG [cleared] (Part
2)

Good news: Scheme mathematically complete.
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Discontinuous Galerkin Methods for Hyperbolic Problems

Implementation Concerns
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Implementing DG

Weak form:

oz/E qqudx—/E Fk-V¢dx+/ (F . n)*pdx

OEy

What do the DoFs mean?




Modes

Function spaces same as for FEM: PV, QN.

Numerically: better to use orthogonal polynomials with

/E_¢i¢j = 0j
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Nodes

Define set of interpolation nodes (fi)f\lz”l and /; their Lagrange basis.

Define generalized Vandermonde matrix

Vij = ¢;(&)

&; determine cond(V)!




In Matrix Form

o:/ q§¢dx—/ Fk-ngdeJr/ (FX - n)*¢dx
Ej |= OE

Write in matrix form:
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Explicit Time Integration

0 = M du* ZSka[F(u N+ > MEA®

ACOE

How can we do time integration on this weak form?

*
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Trick: Multiple face mass matrices

Applying multiple face mass matrices at once:
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Dealing with Nonlinearity

0= [ atoox— [ Fi(@): Vodx+ [ (FH(au)- ) odx
Ej Ej

OEy
What happens if F is nonlinear (in volume/surface)?

s "
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DG and Modern Computers: Possible Advantages

DG on modern processor architectures: Why?

342
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