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What’s the point of this class?
PDEs describe lots of things in nature:

Idea: Use them to
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Survey

▶ Home dept
▶ Degree pursued
▶ Longest program ever written

▶ in Python?

▶ Research area
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Class web page

https://bit.ly/numpde-s22

▶ Book Draft
▶ Notes, Class Outline
▶ Assignments (submission and return)
▶ Piazza
▶ Grading Policies/Syllabus
▶ Video
▶ Scribbles
▶ Demos (binder)
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Sources for these Notes
▶ Adler, James, Hans De Sterck, Scott MacLachlan, and Luke N. Olson.

Numerical Partial Differential Equations, 2022. (draft)
▶ Strikwerda, John C. Finite Difference Schemes and Partial Differential

Equations, Second Edition. Other Titles in Applied Mathematics.
Society for Industrial and Applied Mathematics, 2004.

▶ LeVeque, Randall J. Numerical Methods for Conservation Laws. 2nd
ed. Birkhäuser Basel, 1992.

▶ Braess, Dietrich. Finite Elements: Theory, Fast Solvers, and
Applications in Solid Mechanics. Cambridge University Press, 2007.

▶ Shu, Chi-Wang. Lecture Notes for AM257, Brown University, Fall
2006.

▶ Heuveline, Vincent. Lecture Notes for “Numerik für PDEs”.
Universität Karlsruhe, Summer 2005.

▶ Various prior bits of material by Luke Olson and Stephen Bond.
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Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numpde-notes

Copyright (C) 2020-22 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. 10
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PDEs: Example I

What does this do? ∂tu = ∂xu
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PDEs: Example II

What does this do? ∂2
xu + ∂2

yu = 0
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Some good questions

▶ What is a time-like variable? (Variables labeled t?)

▶ What if there are boundaries? (space/time)
▶ Existence and Uniqueness of Solutions?

▶ Depends on where we look (the function space)
▶ In the case of the two examples? (if there are no boundaries?)

Some general takeaways:
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PDEs: An Unhelpfully Broad Problem Statement

Looking for u : Ω → Rn where Ω ⊆ Rd so that u ∈ V and

F (u, ux , uy , uxx , uxy , uyy , . . . , x , y , . . . ) = 0

Notation
Used as convenient:

ux = ∂xu =
∂u

∂x
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Properties of PDEs
What is the order of the PDE?

When is the PDE linear?

When is the PDE quasilinear?

When is the PDE semilinear?
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Examples: Order, Linearity?

(xu2)uxx + (ux + y)uyy + u3
x + yuy = f

(x + y + z)ux + (z2)uy + (sin x)uz = f
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Properties of Domains
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Function Spaces: Examples

Name some function spaces with their norms.

May also influence existence/uniqueness of solutions!
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Solving PDEs
Closed-form solutions:
▶ If separation of variables applies to the domain: good luck with your

ODE
▶ If not: Good luck! → Numerics

General Idea (that we will follow some of the time)

▶ Pick Vh ⊆ V finite-dimensional
▶ h is often a mesh spacing

▶ Approximate u through uh ∈ Vh

▶ Show: uh → u (in some sense) as h → 0

Example
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About grand big unifying theories

Is there a grand big unifying theory of PDEs?

21



Collect some stamps

a(x , y)uxx+2b(x , y)uxy+c(x , y)uyy+d(x , y)ux+e(x , y)uy+f (x , y)u = g(x , y)

Discriminant value Kind Example
b2 − ac < 0 Elliptic Laplace uxx + uyy = 0
b2 − ac = 0 Parabolic Heat ut = uxx
b2 − ac > 0 Hyperbolic Wave utt = uxx

Where do these names come from?
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PDE Classification in Other Cases

Scalar first order PDEs?

First order systems of PDEs?
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Classification in higher dimensions

Lu :=
d∑

i=1

d∑
j=1

ai ,j(x)
∂2u

∂xi∂xj
+ lower order terms

Consider the matrix A(x) = (aij(x))i ,j . May assume A symmetric. Why?

What cases can arise for the eigenvalues?
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Elliptic PDE: Laplace/Poisson Equation

△u =
d∑

i=1

∂2u

∂x2
i

= ∇ · ∇u(x)
2D
= uxx + uyy = f (x) (x ∈ Ω)

Called Laplace equation if f = 0. With Dirichlet boundary condition

u(x) = g(x) (x ∈ ∂Ω).

Demo: Elliptic PDE Illustrating the Maximum Principle [cleared]
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Elliptic PDEs: Singular Solution

Demo: Elliptic PDE Radially Symmetric Singular Solution [cleared]

Given G (x) = C log(|x |) as the free-space Green’s function, can we
construct the solution to the PDE with a more general f ?

What can we learn from this?
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Elliptic PDEs: Justifying the Singular Solution

u(x) = (G ∗ f )(x) =
∫
Rd

G (x − y)f (y)dy

Why?
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Parabolic PDE: Heat Equation · Separation of Variables
ut = uxx ((x , t) ∈ [0, 1]× [0,T ])

u(x , 0) = g(x) (x ∈ [0, 1])
u(0, t) = u(1, t) = 0 (t ∈ [0,T ])
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Parabolic PDE: Solution Behavior

Demo: Parabolic PDE [cleared] What can we learn from analytic and
numerical solution?
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Hyperbolic PDE: Wave Equation

utt = c2uxx ((x , t) ∈ R× [0,T ])

u(x , 0) = g(x) (x ∈ R)

with g(x) = sin(πx).

Is this problem well-posed?

Can be rewritten in conservation law form:
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Hyperbolic Conservation Laws

qt(x , t) +∇ · F (q(x , t)) = s(x)
Why is this called a (system of) conservation law(s)?

F :? →?
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Wave Equation as a Conservation Law

Rewrite the wave equation in conservation law form:
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Solving Conservation Laws
Solve

ut = cvx

vt = cux .

Demo: Hyperbolic PDE [cleared]
33
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Hyperbolic: Solution Properties

Properties of the solution for hyperbolic equations:
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Interpolation and Vandermonde Matrices
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Numerical Differentiation: How?
How can we take derivatives numerically?

Demo: Taking Derivatives with Vandermonde Matrices [cleared]
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Finite Differences Numerically

Demo: Finite Differences [cleared]
Demo: Finite Differences vs Noise [cleared]
Demo: Floating point vs Finite Differences [cleared]
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Taking Derivatives Numerically
Why shouldn’t you take derivatives numerically?
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Differencing Order of Accuracy Using Taylor

Find the order of accuracy of the finite difference formula
f ′(x) ≈ [f (x + h)− f (x − h)]/2h.
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Truncation Error in Interpolation
If f is n times continuously differentiable on a closed interval I and
pn−1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {xi} (i = 1, ..., n) in that interval, then for each x in the
interval there exists ξ in that interval such that

f (x)− pn−1(x) =
f (n)(ξ)

n!
(x − x1)(x − x2) · · · (x − xn).

42



Truncation Error in Interpolation: cont’d.

Yx(t) = R(t)− R(x)

W (x)
W (t) where W (t) =

n∏
i=1

(t − xi )

43



Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev
interpolation?
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Error Result: Simplified Form
Boil the error result down to a simpler form.

▶ Demo: Interpolation Error [cleared]
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1D Advection Equation and Characteristics

ut + aux = 0, u(0, x) = g(x) (x ∈ R)
Solution?
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Solving Advection with Characteristics

ut + aux = 0, u(0, x) = g(x) (x ∈ R)
Find the characteristic curve for advection.

Generalize this to a solution formula.

Does the solution formula admit solutions that aren’t obviously allowed by
the PDE?

What is upwind, downwind?
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Finite Difference for Hyperbolic: Idea

x

t

{(xk , tℓ) : xk = khx , tℓ = ℓht}

If u(x , t) is the exact solution, want

uk,ℓ ≈ u(xk , tℓ).

Condition at each grid point?

What are explicit/implicit schemes?
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Designing Stencils
ETCS:

ITCS:

ETFS:

ETBS:

Terminology?

Write out ITCS:
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Crank-Nicolson

x

t

Crank-Nicolson

Write out Crank-Nicolson:
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Lax-Wendroff

x

t

Lax-
Wendroff

What’s the core idea behind Lax-Wendroff?

Write out Lax-Wendroff.
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Exploring Advection Schemes

Demo: Methods for 1D Advection [cleared]

▶ Which of the schemes “work”?
▶ Any restrictions worth noting?

54
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A Matrix View of Two-Level Stencil Schemes
Numerical solution vectors:

v ℓ =

 u1,ℓ
...

uNx ,ℓ

 , v =

 v1
...

vNt

 .
True solution vectors:

uℓ =

 u(x1, tℓ)
...

u(xNx , tℓ)

 u =

 u1
...

uNt

 .
Definition (Two-Level Finite Difference Scheme)

A finite difference scheme that can be written as

is called a two-level linear finite difference scheme.
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Rewriting Schemes in Matrix Form (1/2)

Phv ℓ+1 = Qhv ℓ + htbℓ

Find Ph and Qh for ETCS:
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Rewriting Schemes in Matrix Form (2/2)

Find Ph and Qh for Crank-Nicolson:
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Truncation Error

Definition (Truncation Error)

Demo: Truncation Error Analysis via sympy [cleared]
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Error and Error Propagation
Express definition of truncation error in our two-level framework:

Define eℓ = uℓ − v ℓ. Understand the error as accumulation of truncation
error:
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Discrete and Continuous Norms
To measure properties of numerical solutions we need norms. Define a
discrete L∞ norm.

Define a discrete L2 norm.

Important features:
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Consistency and Convergence
Assume u, (∂qxx )u, (∂qtt )u ∈ L2(R× [0, t∗]).

Definition (Consistency)

A two-level scheme is consistent in the L2-norm with order qt in time and
qx in space if

Definition (Convergence)

A two-level scheme is convergent in the L2-norm with order qt in time and
qx in space if

Is consistency sufficient for convergence?
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Analyzing ETFS (1/2)

uk,ℓ+1 − uk,ℓ
ht

+ a
uk+1,ℓ − uk,ℓ

hx
= 0

Let’s understand more precisely what happens for this scheme. Assume
a > 0.
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Analyzing ETFS (2/2)

uk,ℓ+1 = (1 + λ)uk,ℓ − λuk+1,ℓ

Consider u(x , 0) = 1[−1,0](x). Predict solution behavior.

Demo: Methods for 1D Advection [cleared] (Revisit ETFS) 64

https://mybinder.org/v2/gh/inducer/numpde-notes/main?filepath=demos/fd-tdep/Methods for 1D Advection.ipynb
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Stability

Phv ℓ+1 = Qhv ℓ

Write down a matrix product to bring v0 to v ℓ:

Definition (Stability)

A two-level scheme is stable in the L2-norm if there exists a constant c > 0
independent of ht and hx so that∥∥∥(P−1

h Qh)
ℓP−1

h

∥∥∥ ≤ c

for all ℓ and ht such that ℓht ≤ t∗.
65



Lax Convergence Theorem
Theorem (Lax Convergence)

If a two-level FD scheme is
▶ consistent in the L2-norm with order qt in time and qx in space, and
▶ stable in the L2-norm, then

it is convergent in the L2-norm with order qt in time and qx in space.
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Lax Convergence: Proof (1/2)
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Lax Convergence: Proof (2/2)

eℓ = ht

ℓ∑
m=1

(P−1
h Qh)

ℓ−mP−1
h τm−1.
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Conditions for Stability ∥∥∥(P−1
h Qh)

ℓP−1
h

∥∥∥ ≤ c

Give a simpler, sufficient condition:

How can we show bounds on these matrix norms?
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Stability of ETBS (1/3)
Theorem (Gershgorin)

For a matrix A ∈ CN×N = (ai ,j),

σ(A) ⊂
N⋃
j=1

B̄

aj ,j ,
∑
k ̸=j

|aj ,k |

 .

ETBS:
uk,ℓ+1 − uk,l

ht
+ a

uk,ℓ − uk−1,ℓ

hx
= 0

Analyze stability of ETBS:
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Stability of ETBS (2/3)
Ph = I and Qh = tridiag(λ, 1 − λ, 0).
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Stability of ETBS (3/3)
Summarize ETBS stability:

Comments?
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Discrete (Space) Fourier Transform

Assume x infinitely long. Define:

x̂(θ) =
∑
k∈Z

xke
−iθk

When is this well-defined?
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Inverting the Fourier Transform

To recover x :
xk =

1
2π

∫ π

−π
x̂(θ)e iθkdθ.

Proof?
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Getting to L2

▶ Fourier Transform well defined for x ∈ ℓ1.
▶ Problem: We care about L2, not ℓ1.

Theorem (Parseval)

If ∥x∥2 <∞, then

∥x∥2
2 =

1
2π

∫ π

−π
|x̂(θ)|2 dθ <∞.

Impact?
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Toeplitz Operators

Definition (Toeplitz Operator)

An operator T is a Toeplitz operator if (Tx)j =
∑

k xkpj−k . In this case,
p is called the Toeplitz vector.

Example: ETCS

Let λ = aht/2hx . Then

uk,ℓ+1 = λuk−1,ℓ + uk,ℓ − λuk+1,ℓ.

Is ETCS Toeplitz?
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Is ETCS Toeplitz?
(Phuℓ+1)j = uj ,ℓ+1

!
=
∑

k uk,ℓ+1pj−k

(Qhuℓ)j = λuj−1,ℓ + uj ,ℓ − λuj+1,ℓ
!
=
∑

k uk,ℓqj−k
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Fourier Transforms of Toeplitz Operators (1/3)

yj =
∑
k

xkpj−k
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Fourier Transforms of Toeplitz Operators (2/3)

ŷ(θ) =
1
2π

∫ π

−π
x̂(φ)

∑
j

(∑
k

e iφ(k−j)pj−k

)
e i(φ−θ)jdφ.
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Fourier Transforms of Toeplitz Operators (3/3)

ŷ(θ) =
∫ π

−π
x̂(φ)p̂(φ)

1
2π

∑
j

e i(φ−θ)jdφ.
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Fourier Transforms of Inverse Toeplitz Operators
Recall (Px)j =

∑
k pj−kxk .

What is the Fourier transform ẑ(θ) of P−1
h x?

Fourier transform P−1
h Qhy?
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Bounding the Operator Norm
Bound

∥∥P−1
h Qh

∥∥2
2 using Fourier:

Is the upper bound attained?
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von Neumann Stability
Two-level finite difference scheme

Phv ℓ+1 = Qhv ℓ + htbℓ,

where Ph and Qh are Toeplitz operators with vectors p and q.

Definition (Symbol of a Two-Level Finite Difference Scheme)

Let
p̂(θ) =

∑
k

pke
−iφk , q̂(θ) =

∑
k

qke
−iφk .

Then the symbol of the two-level FD method is s(φ) = q̂(φ)/p̂(θ).

Definition (Von Neumann Stability)

If

max
φ

|s(φ)| ≤ 1, max
φ

∣∣∣∣ 1
p̂(φ)

∣∣∣∣ ≤ c

for some constant c > 0, we say the scheme is von Neumann stable. 84



Comparison with Lax-Richtmyer Stability
Need

∥∥(P−1
h Qh)

ℓP−1
h

∥∥ ≤ c .

Why is bounding the symbol the most salient part?

Main restriction of von Neumann stability?

85



von Neumann Stability: ETBS (1/2)
ETBS: Let λ = aht/hx . uk,ℓ+1 = λuk−1,ℓ + (1 − λ)uk,ℓ.

86



von Neumann Stability: ETBS (2/2)
Found: |s(φ)|2 = 1 + 2(λ− λ2)(cosφ− 1).
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von Neumann Stability: ETCS
Let λ = aht/hx . Then

uk,ℓ+1 =
λ

2
uk−1,ℓ + uk,ℓ −

λ

2
uk+1,ℓ.

88



von Neumann Stability: Crank-Nicolson

Let λ = aht/(4hx)

−λuk−1,ℓ+1 + uk,ℓ+1 + λuk+1,ℓ+1 = λuk−1,ℓ + uk,ℓ − λuk+1,ℓ.
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Studying Solutions of the PDE

Saw numerically: interesting dispersion/dissipation behavior.
Want: theoretical understanding.

Consider linear, continuous (not yet discrete) differential operators

L1u = ut + aux ,

L2u = ut − Duxx + aux (D > 0)
L3u = ut + aux − µuxxx .

What could we use as a prototype solution?

91



A Prototype Solution of the PDE

Observation: all these operators are diagonalized by complex exponentials.
Come up with a ‘prototype complex exponential solution’.

What type of function is this?

92



Wave-like Solutions of the PDE

z(x , t) = z0e
i(kx−ωt)

L2u = ut − Duxx + aux (D > 0). Plug in z .

Observations in connection with L?

What is the dispersion relation?
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Picking Apart the Dispersion Relation
Consider ω(k) = α(k) + iβ(k). Rewrite the wave solution with this.

How can we recognize dissipation?

What is the phase speed? How can we recognize dispersion?
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Dispersion Relation: Examples
In each case, find the dispersion relation and identify properties.
L1u = ut + aux

L2u = ut − Duxx + aux (D > 0)

L3u = ut + aux − µuxxx
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Numerical Dissipation/Dispersion Analysis

Goal: Want discrete finite difference scheme to match
dissipation/dispersion behavior of continuous PDE.

Define a discrete wave-like function:

We want z to solve Phzℓ+1 = Qhzℓ. How can we connect the operators to
the wave solution?
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Toeplitz and Waves

zj ,ℓ = z0e
i(kjhx−ωℓht).

Theorem (Waves Diagonalize Toeplitz Operators)

Let T be a Toeplitz operator. Then Tzℓ = λ(k)zℓ = t̂(khx)zℓ.
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Waves and Two-Level Schemes
Since Ph and Qh are Toeplitz, we must have

Phzℓ+1 = λP(k)zℓ+1, Qhzℓ = λQ(k)zℓ.

What does that mean?

Seen before?
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Discrete Dispersion Relation (1/2)

So zℓ is a solution of the finite difference scheme if ω = ω(khx) satisfies

e−iω(κ)ht = s(κ),

where we let κ = khx . Interpret κ.

Let s(κ) = |s(κ)| e iφ(κ) = e log|s(κ)|+iφ(κ). ω(κ)?
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Discrete Dispersion Relation (2/2)

ω(κ) =
−φ(κ) + i log |s(κ)|

ht
.

Plug that into the wave-like solution:

Criterion for stability?
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Numerical Dispersion/Dissipation
Finite difference scheme Phuℓ+1 = Qhuℓ with symbol s(k).

zj ,ℓ = z0e
log|s(κ)|ℓe

ik
(
jhx−−φ(κ)

kht
ℓht

)
When is the scheme dissipative?

What is the phase speed?

Dispersion?
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Dispersion/Dissipation Analysis of ETBS
Let λ = aht/hx . Shown earlier: s(khx) = 1 − λ(1 − e−ikhx ).
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Dispersion/Dissipation Analysis of ETBS: Fine Grid

e−iω(κ)ht = 1 − λ(1 − e−ikhx )
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Dispersion/Dissipation: Demo

▶ Demo: Experimenting with Dispersion and Dissipation [cleared]
▶ Demo: Dispersion and Dissipation [cleared]
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Heat Equation
Heat equation (D > 0):

ut = Duxx , (x , t) ∈ R× (0,∞),

u(x , 0) = g(x) x ∈ R.

Fundamental solution (g(x) = δ(x)):

Why is this a weird model?
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Schemes for the Heat Equation

Cook up some schemes for the heat equation.

Explicit Euler:

Implicit Euler:
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Von Neumann Analysis of Explicit Euler for Heat (1/2)
Let λ = Dht/h

2
x .

uk,ℓ+1 = uk,ℓ + λ(uk+1,ℓ − 2uk,ℓ + uk−1,ℓ).
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Von Neumann Analysis of Explicit Euler for Heat (2/2)

−2 ≤ 2λ(cos(φ)− 1) ≤ 0.

Comment on the stability region found regarding speeds of propagation.
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Von Neumann Analysis of Implicit Euler for Heat
Let λ = Dht/h

2
x .

uk,ℓ+1 − λ(uk+1,ℓ+1 − 2uk,ℓ+1 + uk−1,ℓ+1) = uk,ℓ

Does the type of system we need to solve for implicit+parabolic correspond
to another PDE?
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Conservation Laws: Recap

ut + f (u)x = 0,

where u is a function of x and t ∈ R+
0 .

Rewrite in integral form:

Recall: Characteristic Curve: a function x(t) so that u(x(t), t) = u(x0, 0).{ dx(t)
dt = f ′(u(x(t), t)),

x(0) = x0.

What assumption underlies all this?
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Going Nonlinear: Burgers’ Equation
Make a simple modification to advection ut + aux = 0 to make it nonlinear.

Is that a sensible modification?

Is that still a conservation law?
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Burgers’ Equation: Try FD Numerics

Demo: ETBS for Volume Burgers [cleared]

What do you think of these results?
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Burgers’ Equation {
ut +

(
u2

2

)
x
= 0,

u(x , 0) = g(x) = sin(x).

Interpret Burgers’ equation.

Consider the characteristics at π/2 and 3π/2.
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Weak Solutions

d
dt

∫ b

a
u(x , t)dx = f (u(a, t))− f (u(b, t))

Define a weak solution:
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Rankine-Hugoniot Condition (1/2)
Consider: Two C 1 segments separated by a curve x(t) with no regularity.
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Rankine-Hugoniot Condition (2/2)

(d/dt)Ga(x(t), t) = u(x(t), t)x ′(t)− (f (u(x(t), t))− f (u(a, t))).
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Rankine-Hugoniot and Weak Solutions

Theorem (Rankine-Hugoniot and Weak Solutions)

If u is piecewise C 1 and is discontinuous only along isoated curves, and if u
satisfies the PDE when it is C 1, and the Rankine-Hugoniot condition holds
along all discontinuous curves, then u is a weak solution of the
conservation law.
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Riemann Problems: Example 1

Consider the following Riemann problem:

ut +

(
u2

2

)
x

= 0,

u(x , 0) =

{
1 x < 0,
−1 x ≥ 0.
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Riemann Problems: Example 2

ut +

(
u2

2

)
x

= 0,

u(x , 0) =

{
−1 x < 0,
1 x ≥ 0.

(IC sign flip compared to previous slide)
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Bad Shocks and Good Shocks

In the shock version of the ‘ambiguous’ Riemann problem, where do the
characteristics go?

Comment on the stability of that situation.
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Ad-Hoc Idea: Ban Bad Shocks
Recall: what is f ′(u)?

Devise a way to ban unstable shocks.
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Vanishing Viscosity Solutions
Goal: neither uniqueness nor existence poses a problem.

How?
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Entropy-Flux Pairs

What are features of (physical) entropy?

Definition (Entropy/Entropy Flux)

An entropy η(u) and an entropy flux ψ(u) are functions so that η is convex
and

η(u)t + ψ(u)x = 0

for smooth solutions of the conservation law.
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Finding Entropy-Flux Pairs
η(u)t + ψ(u)x = 0. Find conditions on η and ψ.

Come up with an entropy-flux pair for Burgers.
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Back to Vanishing Viscosity (1/2)

ut + f (u)x = εuxx

What’s the evolution equation for the entropy?
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Back to Vanishing Viscosity (2/2)

η(u)t + ψ(u)x = ε(η′(u)ux)x − εη′′(u)u2
x .

Integrate this over [x1, x2]× [t1, t2], with x1, x2 on either side of jump.
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Entropy Solution

Definition (Entropy solution)

The function u(x , t) is the entropy solution of the conservation law if for all
convex entropy functions and corresponding entropy fluxes, the inequality

η(u)t + ψ(u)x ≤ 0

is satisfied in the weak sense.
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Entropy Solution vs Entropy Condition
Relate entropy solutions η(u)t + ψ(u)x ≤ 0 back to the entropy condition.
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Conservation of Entropy?
What can you say about conservation of entropy in time?
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Total Variation

TV(u) = lim sup
ε→0

1
ε

∫
|u(x + ε)− u(x)| dx .

Simpler form if u is differentiable?

Hiking analog?
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Total Variation and Conservation Laws
Theorem (Total Variation is Bounded [Dafermos 2016, Thm. 6.2.6])

Let u be a solution to a conservation law with f ′′(u) ≥ 0. Then:

TV(u(t +∆t, ·)) ≤ TV(u(t, ·)) for ∆t ≥ 0.

Theorem (L1 contraction [Dafermos 2016, Thm. 6.3.2])

Let u, v be viscosity solutions of the conservation law. Then

∥u(t +∆, ·)− v(t +∆t, ·)∥L1(R) ≤ ∥u(t, ·)− v(t, ·)∥L1(R) for ∆t ≥ 0.
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Finite Difference for Conservation Laws? (1/2)
ut +

(
u
2

)2
x
= 0

u(x , 0) =

{
1 x < 0,
0 x ≥ 0.

Entropy Solution?

Rewrite the PDE to ‘match’ the form of advection ut + aux = 0:

Equivalent?
136



Finite Difference for Conservation Laws? (2/2)
Recall the upwind scheme for ut + aux = 0:

Write the upwind FD scheme for ut + uux = 0:

137



Schemes in Conservation Form
Definition (Conservative Scheme)

A conservation law scheme is called conservative iff it can be written as

where f ∗. . .

Theorem (Lax-Wendroff)

If the solution {uj ,ℓ} to a conservative scheme converges (as ∆t,∆x → 0)
boundedly almost everywhere to a function u(x , t), then u is a weak
solution of the conservation law.

138



Lax-Wendroff Theorem: Proof
Summation by parts: With ∆+ak = ak+1 − ak and ∆−ak = ak − ak−1:

N∑
k=1

ak(∆
−φk) +

N∑
k=1

φk(∆
+ak) = −a1φ0 + φNaN+1.
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Finite Volume Schemes

Finite volume: Idea?
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Developing Finite Volume

∫ tℓ+1

tℓ

∫ xj+1/2

xj−1/2

(ut + f (u)x)dxdt = 0
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Flux Integrals?

1
hx

∫ tℓ+1

tℓ

f (uj+1/2)dt?
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The Godunov Scheme
Altogether:

ūj ,ℓ+1 = ūj ,ℓ −
ht
hx

(f (uj+1/2,ℓ)− f (uj−1/2,ℓ)).

Overall algorithm?

Heuristic time step restriction?
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Riemann Problem 
ut + f (u)x = 0,

u(x , 0) =

{
ul x < 0,
ur x ≥ 0

Exact solution in the Burgers case?
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Riemann Solver for a General Conservation Law
To complete the scheme: Need f ∗(u−, u+). For Burgers: already known.
For a general convex (f ′′(u) > 0) conservation law?

Equivalent to
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More Riemann Solvers

Downside of Godunov Riemann solver?
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Back to Advection
Consider only f (u) = au for now. Riemann solver inspiration from FD?
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Side Note: First Order Upwind, Rewritten

uj ,ℓ+1 − uj ,ℓ
ht

+
f ∗(uj ,ℓ, uj+1,ℓ)− f ∗(uj−1,ℓ, uj ,ℓ)

hx

with

f ∗(u− , u+) =
au− + au+

2
− |a|

2
(u+ − u−).
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Lax-Friedrichs
Generalize linear upwind flux for a nonlinear conservation law:

f ∗(u− , u+) =
au− + au+

2
− |a|

2
(u+ − u−).

Demo: Finite Volume Burgers [cleared] (Part I)
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Improving Accuracy
Consider our existing discrete FV formulation:

ūj ,ℓ+1 = ūj ,ℓ −
ht
hx

(f (uj+1/2,ℓ)− f (uj−1/2,ℓ)).

What obstacles exist to increasing the order of accuracy?

What order of accuracy can we expect?
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Improving the Order of Accuracy
Improve temporal accuracy.

What’s the obstacle to higher spatial accuracy?

How can we improve the accuracy of that approximation?
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Increasing Spatial Accuracy
Temporary Assumptions:
▶ f ′(u) ≥ 0
▶ f ∗j+1/2(u

−, u+) = f (u−) (e.g. Godunov in this situation)

Reconstruct uj+1/2 using {ūj−1, ūj , ūj+1}. Accuracy? Names?

Compute fluxes, use increments over cell average:
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Demos: Spatial Accuracy

▶ Demo: Higher-Order Reconstruction [cleared]
▶ Demo: Finite Volume Burgers [cleared] (Part II)
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Lax-Wendroff
Another scheme for high-order. For ut + aux , from finite difference:

f ∗(u−, u+) =
au− + au+

2
− a2

2
· ∆t

∆x
(u+ − u−).

Taylor in time: uℓ+1 = uℓ + ∂tuℓ · ht + ∂2
t uℓ · h2

t /2 + O(h3
t ).

Then use central differences to discretize derivatives:

uj ,ℓ+1 − uj ,ℓ
ht

+
f (uj+1,ℓ)− f (uj−1,ℓ)

2hx

=
ht
2hx

[
f ′(uj+1/2,ℓ)

f (uj+1,ℓ)− f (uj ,ℓ)

hx
− f ′(uj−1/2,ℓ)

f (uj ,ℓ)− f (uj−1,ℓ)

hx

]
As Riemann solver: f ∗(u−, u+) =

f (u−) + f (u+)

2
− ht
hx

[f ′(u◦)(f (u+)−f (u−))].
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Monotone Schemes

Definition (Monotone Scheme)

A scheme

uj ,ℓ+1 = uj ,ℓ − λ(f ∗(uj−p, . . . , uj+q)− f ∗(uj−p−1, . . . , uj+q−1))

=: G (uj−p−1, . . . , uj+q)

is called a montone scheme if G is a monotonically nondecreasing function
G (↑, ↑, . . . , ↑) of each argument.
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Monotonicity for Three-Point Schemes
Three-Point Scheme:

G (uj−1, uj , uj+1) = uj − λ[f ∗(uj , uj+1)− f ∗(uj−1, uj)].

When is this monotone?
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Lax-Friedrichs is Monotone

f ∗(u− , u+) =
f (u−) + f (u+)

2
− α

2
(u+ − u−).

Show: This is monotone.
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Monotone Schemes: Properties

Theorem (Good properties of monotone schemes)

▶ Local maximum principle:

min
i∈stencil around j

ui ≤ G (u)j ≤ max
i∈stencil around j

ui .

▶ L1-contraction:

∥G (u)− G (v)∥L1 ≤ ∥u − v∥L1 .

▶ TVD:
TV (G (u)) ≤ TV (u).

▶ Solutions to monotone schemes satisfy all entropy conditions.
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Godunov’s Theorem

Theorem (Godunov, see also Harten/Hyman/Lax/Keyfitz ‘76)

Monotone schemes are at most first-order accurate.

What now?
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Linear Schemes
Definition (Linear Schemes)

A scheme is called a linear scheme if it is linear when applied to a linear
PDE:

ut + aux = 0,

where a is a constant.

Write the general case of a linear scheme for ut + ux = 0:
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Linear + TVD = ?

Theorem (TVD for linear Schemes)

For linear schemes, TVD ⇒ monotone.

What does that mean?

Now what?
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Harten’s Lemma

Theorem (Harten’s Lemma)

If a scheme can be written as

ūj ,ℓ+1 = ūj ,ℓ + λ(Cj+1/2∆+ūj − Dj−1/2∆−ūj)

with Cj+1/2 ≥ 0, Dj+1/2 ≥ 0, 1 − λ(Cj+1/2 + Dj+1/2) ≥ 0 and λ = ht/hx ,
then it is TVD.

As a matter of notation, we have

∆+uj = uj+1 − uj ,

∆−uj = uj − uj−1.

We have omitted the time subscript for the time level ℓ.
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Harten’s Lemma: Proof
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Minmod Scheme
Still assume f ′(u) ≥ 0.

f
∗,(1)
j+1/2 = f

(
ūj +

1
2
(ūj+1 − ūj)︸ ︷︷ ︸

ũ
(1)
j

)
, f

∗,(2)
j+1/2 = f

(
ūj +

1
2
(ūj − ūj−1)︸ ︷︷ ︸

ũ
(2)
j

)
.

Design a ‘safe’ thing to use for ũ:
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Minmod is TVD
Show that Minmod is TVD:
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Minmod: CFL restriction?

Derive a time step restriction for Minmod.
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What about Time Integration?

u(1) = uℓ + htL(uℓ), uℓ+1 =
uℓ
2

+
1
2
(u(1) + htL(u

(1))).

Above: A version of RK2 with L the ODE RHS. Will this cause wrinkles?
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Total Variation is Convex

Show: TV(·) is a convex functional.
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TVD and High Order
Can TVD schemes be high order everywhere? (aside from near shocks)
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High Order at Smooth Extrema

▶ TVB Schemes [Shu ‘87]
▶ ENO [Harten/Engquist/Osher/Chakravarthy ‘87]

▶ Define Wj = w(xj+1/2) =
∫ xj+1/2
x1/2

u(ξ, t)dξ = hx
∑j

i=1 ūi

▶ Observe uj+1/2 = w ′(xj+1/2).
▶ Approximate by interpolation/numerical differentiation.

▶ Start with the linear function p(1) through Wj−1 and Wj

▶ Compute divided differences on (Wj−2,Wj−1,Wj)
▶ Compute divided differences on (Wj−1,Wj ,Wj+1)
▶ Use the one with the smaller magnitude (of the divided differences) to

extend p(1) to quadratic
▶ (and so on, adding points on the side with the lowest magnitude of the

divided differences)

▶ WENO [Liu/Osher/Chan ‘94]
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Systems of Conservation Laws
Linear system of hyperbolic conservation laws, A ∈ Rm×m:

ut + Aux = 0,
u(x , 0) = u0(x).

Assumptions on A?
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Linear System Solution

v = R−1u, v t + Λv x = 0.

Write down the solution.

What is the impact on boundary conditions? E.g. (λp) = (−c , 0, c) for a
BC at x = 0 for [0, 1]?
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Characteristics for Systems (1/2)

Consider system ut + f (u)x = 0. Write in quasilinear form:

When hyperbolic?
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Characteristics for Systems (2/2)

What about characteristics/shock speeds?

Are values of u still constant along characteristics?
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Shocks and Riemann Problems for Systems

ut + Aux = 0,

u(x , 0) =

{
u l x < 0,
ur x > 0.

Solution? (Assume strict hyperbolicity with λ1 < λ2 < · · · < λm.)
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Shock Fans (1/2)
What does the solution look like?

Jump across the characteristic associated with λp?
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Shock Fans (2/2)
Do those jumps satisfy Rankine-Hugoniot?

How can we find intermediate values of u?
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Two Dimensions
ut + f (u)x + g(u)y = 0. Finite volume methods generalize in principle:

However:
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Function Spaces

Consider

fn(x) =


−1 x ≤ − 1

n ,
3n
2 x − n3

2 x3 − 1
n < x < 1

n ,

1 x ≥ 1/n.

Converges to the step function. Problem?
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Norms

Definition (Norm)

A norm ∥ · ∥ maps an element of a vector space into [0,∞). It satisfies:
▶ ∥x∥ = 0 ⇔ x = 0
▶ ∥λx∥ = |λ|∥x∥
▶ ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
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Convergence

Definition (Convergent Sequence)

xn → x :⇔ ∥xn − x∥ → 0 (convergence in norm)

Definition (Cauchy Sequence)
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Banach Spaces

Definition (Complete/“Banach” space)

What’s special about Cauchy sequences?

Counterexamples?
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More on C 0

Let Ω ⊆ Rn be open. Is C 0(Ω) with ∥f ∥∞ := supx∈Ω |f (x)| Banach?

Is C 0(Ω̄) with ∥f ∥∞ := supx∈Ω |f (x)| Banach?
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Cm Spaces
Let Ω ⊆ Rn.

Consider a multi-index k = (k1, . . . , kn) ∈ Nn
0 and define the symbols

Definition (Cm Spaces)
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Lp Spaces
Let 1 ≤ p <∞.

Definition (Lp Spaces)

Lp(Ω) :=

{
u : (u : R → R) measurable,

∫
Ω
|u|p dx <∞

}
,

∥u∥p :=

(∫
Ω
|u|p dx

)1/p

.

Definition (L∞ Space)

L∞(Ω) := {u : (u : R → R), |u(x)| <∞ almost everywhere} ,

∥u∥∞ = inf {C : |u(x)| ≤ C almost everywhere} .
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Lp Spaces: Properties

Theorem (Hölder’s Inequality)

For 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and measurable u and v ,

Theorem (Minkowski’s Inequality (Triangle inequality in Lp))

For 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω),
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Inner Product Spaces
Let V be a vector space.

Definition (Inner Product)

An inner product is a function ⟨·, ·⟩ : V × V → R such that for any
f , g , h ∈ V and α ∈ R

⟨f , f ⟩ ≥ 0,
⟨f , f ⟩ = 0 ⇔ f = 0,
⟨f , g⟩ = ⟨f , g⟩ ,

⟨αf + g , h⟩ = α ⟨f , h⟩+ ⟨g , h⟩ .

Definition (Induced Norm)

∥f ∥ =
√

⟨f , f ⟩.
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Hilbert Spaces
Definition (Hilbert Space)

An inner product space that is complete under the induced norm.

Let Ω be open.

Theorem (L2)

L2(Ω) equals the closure of (set of all limits of Cauchy sequences in)
C∞

0 (Ω) under the induced norm ∥·∥2.

Theorem (Hilbert Projection (e.g. Yosida ‘95, Thm. III.1))
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Weak Derivatives
Define the space L1

loc of locally integrable functions.

Definition (Weak Derivative)

v ∈ L1
loc(Ω) is the weak partial derivative of u ∈ L1

loc(Ω) of multi-index
order k if

In this case, Dk
wu := v .
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Weak Derivatives: Examples (1/2)
Consider all these on the interval [−1, 1].

f1(x) = 4(1 − x)x

f2(x) =

{
2x x ≤ 1/2,
2 − 2x x > 1/2.
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Weak Derivatives: Examples (2/2)

f3(x) =

√
1
2
−
√

|x − 1/2|
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Sobolev Spaces
Let Ω ⊂ Rn, k ∈ N0 and 1 ≤ p <∞.

Definition ((k , p)-Sobolev Norm/Space)
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More Sobolev Spaces
W 0,2?

W s,2?

H1
0 (Ω)?
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An Elliptic Model Problem
Let Ω ⊂ Rn open, bounded, f ∈ H1(Ω).

−∇ · ∇u + u = f (x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω).

Let V := H1
0 (Ω). Integration by parts? (Gauss’s theorem applied to ab):

Weak form?
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Motivation: Bilinear Forms and Functionals∫
Ω
∇u · ∇v +

∫
Ω
uv =

∫
fv .

This is the weak form of the strong-form problem. The task is to find a
u ∈ V that satisfies this for all test functions v ∈ V .

Recast this in terms of bilinear forms and functionals:
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Dual Spaces and Functionals
Bounded Linear Functional
Let (V , ∥·∥) be a Banach space. A linear functional is a linear function
g : V → R. It is bounded (⇔ continuous) if there exists a constant C so
that |g(v)| ≤ C ∥v∥ for all v ∈ V .

Dual Space

Let (V , ∥·∥) be a Banach space. Then the dual space V ′ is the space of
bounded linear functionals on V .

Dual Space is Banach (cf. e.g. Yosida ‘95 Thm. IV.7.1)

V ′ is a Banach space with the dual norm
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Functionals in the Model Problem
Is g from the model problem a bounded functional? (In what space?)

That bound felt loose and wasteful. Can we do better?
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Riesz Representation Theorem (1/3)
Let V be a Hilbert space with inner product ⟨·, ·⟩.

Theorem (Riesz)

Let g be a bounded linear functional on V , i.e. g ∈ V ′. Then there exists
a unique u ∈ V so that g(v) = ⟨u, v⟩ for all v ∈ V .
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Riesz Representation Theorem: Proof (2/3)

Have w ∈ N(g)⊥ \ {0}, α = g(w) ̸= 0, and z := v − (g(v)/α)w ⊥ w .
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Riesz Representation Theorem: Proof (3/3)

Uniqueness of u?
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Back to the Model Problem

a(u, v) = ⟨∇u,∇v⟩L2 + ⟨u, v⟩L2

g(v) = ⟨f , v⟩L2

a(u, v) = g(v)

Have we learned anything about the solvability of this problem?
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Poisson
Let Ω ⊂ Rn open, bounded, f ∈ H−1(Ω).

This is called the Poisson problem (with Dirichlet BCs).

Weak form?
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Ellipticity
Let V be Hilbert space.

V -Ellipticity

A bilinear form a(·, ·) : V × V → R is called coercive if there exists a
constant c0 > 0 so that

and a is called continuous if there exists a constant c1 > 0 so that

If a is both coercive and continuous on V , then a is said to be V -elliptic.
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Lax-Milgram Theorem
Let V be Hilbert space with inner product ⟨·, ·⟩.

Lax-Milgram, Symmetric Case

Let a be a V -elliptic bilinear form that is also symmetric, and let g be a
bounded linear functional on V .
Then there exists a unique u ∈ V so that a(u, v) = g(v) for all v ∈ V .
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Back to Poisson
Can we declare victory for Poisson?

Can this inequality hold in general, without further assumptions?
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Poincaré-Friedrichs Inequality (1/3)
Theorem (Poincaré-Friedrichs Inequality)

Suppose Ω ⊂ Rn is bounded and u ∈ H1
0 (Ω). Then there exists a constant

C > 0 such that
∥u∥L2 ≤ C ∥∇u∥L2 .
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Poincaré-Friedrichs Inequality (2/3)
Prove the result in C∞

0 (Ω).
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Poincaré-Friedrichs Inequality (3/3)

Prove the result in H1
0 (Ω).
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Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

Draw a conclusion on Poisson:
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Ritz-Galerkin
Some key goals for this section:
▶ How do we use the weak form to compute an approximate solution?
▶ What can we know about the accuracy of the approximate solution?

Can we pick one underlying principle for the construction of the
approximation?

216



Galerkin Orthogonality

a(u, v) = g(v) for all v ∈ V , a(uh, vh) = g(vh) for all vh ∈ Vh.

Observations?
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Céa’s Lemma
Let V ⊂ H be a closed subspace of a Hilbert space H.

Céa’s Lemma
Let a(·, ·) be a coercive and continuous bilinear form on V . In addition, for
a bounded linear functional g on V , let u ∈ V satisfy

a(u, v) = g(v) for all v ∈ V .

Consider the finite-dimensional subspace Vh ⊂ V and uh ∈ Vh that satisfies

a(uh, vh) = g(vh) for all vh ∈ Vh.

Then
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Céa’s Lemma: Proof

Recall Galerkin orthgonality: a(uh − u, vh) = 0 for all vh ∈ Vh. Show the
result.
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Elliptic Regularity
Definition (H s Regularity)

Let m ≥ 1, Hm
0 (Ω) ⊆ V ⊆ Hm(Ω) and a(·, ·) a V -elliptic bilinear form.

The bilinear form a(u, v) = ⟨f , v⟩ for all v ∈ V is called Hs regular, if for
every f ∈ Hs−2m there exists a solution u ∈ Hs(Ω) and we have with a
constant C (Ω, a, s),

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H1
0 -elliptic bilinear form with sufficiently smooth coefficient

functions.
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Elliptic Regularity: Counterexamples
Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?
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Estimating the Error in the Energy Norm
Come up with an idea of a bound on ∥u − uh∥H1 .

What’s still to do?
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L2 Estimates
Let H be a Hilbert space with the norm ∥·∥H and the inner product ⟨·, ·⟩.
(Think: H = L2, V = H1.)

Theorem (Aubin-Nitsche)

Let V ⊆ H be a subspace that becomes a Hilbert space under the norm
∥·∥V . Let the embedding V → H be continuous. Then we have for the
finite element solution u ∈ Vh ⊂ V :

if with every g ∈ H we associate the unique (weak) solution φg of the
equation (also called the dual problem)
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Aubin-Nitsche: Proof
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L2 Estimates using Aubin-Nitsche

∥u − uh∥H ≤ c1 ∥u − uh∥V sup
g∈H

[
1

∥g∥H
inf

vh∈Vh

∥φg − vh∥V

]
,

If u ∈ H1
0 (Ω), what do we get from Aubin-Nitsche?

So does Aubin-Nitsche give us an L2 estimate?
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Finite Elements in 1D: Discrete Form
Ω := [α, β]. Look for u ∈ H1

0 (Ω), so that a(u, φ) = ⟨f , φ⟩ for all
φ ∈ H1

0 (Ω). Choose Vh = span{φ1, . . . , φn} and expand
uh =

∑n
i=1 u

i
hφi ∈ Vh. Find the discrete system.
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Grids and Hats
Let Ii := [αi , βi ], so that Ω̄ =

⋃N
i=0 Ii and I ◦i ∩ Ij = ∅ for i ̸= j . Consider a

grid
α = x0 < · · · < xN < xN+1 = β,

i.e. αi = xi , βi = xi+1 for i ∈ {0, . . . ,N}. The {xi} are called nodes of the
grid. hi := xi+1 − xi for i ∈ {0, . . . ,N} and h := maxi hi . Vh? Basis?
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Degrees of Freedom and Matrices
Define something more general than basis coefficients to solve for.

Define shape functions and assemble the stiffness matrix:
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A Matrix Property for Efficiency

(Ah)i ,j = a(φ̂j , φ̂i ).

Anything special about the matrix?

230



Error Estimation

According to Céa, what’s our main missing piece in error estimation now?
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Interpolation Error (1D-only)
For v ∈ H2(Ω),

If v ∈ H1(Ω) \ H2(Ω),

In general (not just 1D), is I 1h defined for v ∈ H2? for v ∈ H1 \ H2?
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Interpolation Error: Towards an Estimate

Provide an a-priori estimate.

What’s the relationship between I 1h u and uh?

233



Local-to-Global

Is there a simple way of constructing the polynomial basis?
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Local-to-Global: Math
Construct a polynomial basis using this approach.
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Demo

Demo: Developing FEM in 1D [cleared]
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Going Higher Order
Ω ⊂ R with a grid as above.

Possible extension:

Higher Order Approximation

Let 0 ≤ ℓ ≤ k . Then for v ∈ Hℓ+1(Ω),
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High-Order: Degrees of Freedom
Define some degrees of freedom (or DoFs) for high-order 1D FEM.
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High-Order: Local Basis

Define local form functions for high-order 1D FEM.
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High-Order: Global Basis

Obtain the global shape functions for high-order 1D FEM.
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A Boundary Value Problem
Consider the following elliptic PDE

−∇ · (κ (x)∇u) = f (x) for x ∈ Ω ⊂ R2,

u (x) = 0 when x ∈ ∂Ω.

Weak form?
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Weak Form: Bilinear Form and RHS Functional
Hence the problem is to find u ∈ V , such that

a (u, v) = g (v) , for all v ∈ V = H1
0 (Ω)

where. . .

Is this symmetric, coercive, and continuous?
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Triangulation: 2D
Suppose the domain is a union of triangles Em, with vertices xi .

Ω

Em

Ω̄ =
M⋃
i=1

Em.
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Elements and the Bilinear Form

If the domain, Ω, can be written as a disjoint union of elements, Ek ,

Ω = ∪M
m=1Em with E ◦

i ∩ E ◦
j = ∅ for i ̸= j ,

what happens to a and g?
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Basis Functions

Expand

uN (x) =
Np∑
i=1

uiφi ,

and plug into the weak form.
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Global Lagrange Basis

Approximate solution uh: Piecewise linear on Ω

Ω

uh

The Lagrange basis for Vh consists of piecewise linear φi , with. . .
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Basis Functions Features

Features of the basis?

→
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Local Basis

What basis functions exist on each triangle?
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Local Basis Expressions

Write expressions for the nodal linear basis in 2D.
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Higher-Order, Higher-Dimensional Simplex Bases
What’s an n-simplex?

Give a higher-order polynomial space on the n-simplex:

Give nodal sets (on the △) for PN and dimPN in general.
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Finding a Nodal/Lagrange Basis in General

Given a nodal set (ξi )
Np

i=1 ⊂ Ê (where Ê is the reference element) and a
basis (φj)

Np

j=1 : Ê → R, find a Lagrange basis.
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Higher-Order, Higher-Dimensional Tensor Product Bases
What’s a tensor product element?

Give a higher-order polynomial space on the n-simplex:

Give the nodal sets (on the quad) for QN .
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Tensor Product Elements: Lagrange Basis

Lagrange Basis for Tensor Product Elements?
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Element Mappings

Ê Em

Tm

Construct a mapping Tm : Ê → Em. Reference element Ê , global △ Em.

What is the Jacobian of Tm?
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More on Mappings
Is an affine mapping sufficient for a tensor product element?

How might we accomplish curvilinear elements using the same idea?
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Constructing the Global Basis
Construct a basis on the element Em from the reference basis
(φ̂j)j : Ê → R.

What’s the gradient of this basis?
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Assembling a Linear System

Express the matrix and vector elements in

Np∑
j=1

uja(φj , φi ) = g(φi ) for i = 1, . . . ,Np.
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Integrals on the Reference Element
Evaluate ∫

E
κ(x)∇xφi (x)T∇xφj(x)dx .

And now the RHS functional.

259



Inhomogeneous Dirichlet BCs
Handle an inhomogeneous boundary condition u(x) = η(x) on ∂Ω.
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Demo

▶ Demo: Meshing and Connectivity for FEM in 2D [cleared]
▶ Demo: Developing FEM in 2D [cleared]
▶ Demo: 2D FEM Using Firedrake [cleared]
▶ Demo: Rates of Convergence [cleared]
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Conditions on the Mesh
Let Ω be a polygonal domain.

Admissibility (Braess, Def. II.5.1)

A partition (mesh) T = {E1, . . . ,EM} of Ω into triangular or quadrilateral
elements is called admissible if

Give an example of a non-admissible partition.
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Mesh Resolution, Shape Regularity
Definition (Diameter)

Mesh Resolution

Definition (Shape Regularity (Braess, Def. II.5.1))

A family of partitions {Th} is called shape regular if
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Cone Conditions
Definition (Lipschitz Domain)

A bounded domain Ω ⊂ Rn is called a Lipschitz domain provided that. . .

Lipschitz domains satisfy a cone condition:

Theorem (Rellich Selection Theorem (Braess, Thm. II.1.9))

Let m ≥ 0, let Ω be Lipschitz. Then the imbedding Hm+1(Ω) → Hm(Ω) is
compact, i.e. any bounded sequence in the range of the imbedding has a
convergent subsequence.
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The Interpolation Operator
Theorem (Interpolation Operator (Braess, Lemma II.6.2))

Let Ω ⊂ R2 be Lipschitz. Let t ≥ 2, and z1, z2, . . . , zs are s := t(t + 1)/2
prescribed points in Ω̄ such that the interpolation operator I : Ht → Pt−1

is well-defined. Then there exists a constant c so that for u ∈ Ht(Ω)

Theorem (Approx. for Congruent △ (Braess, Remark II.6.5))

Let Eh := hÊ , i.e. a scaled version of a reference triangle, with h ≤ 1.
Then, for 0 ≤ m ≤ t, there exists a C so that
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Approximation for Congruent Triangles: Proof (1/2)
Set up a function on Eh and Ê . Work out the scaling for the derivative.

Work out the scaling for the Sobolev seminorm.

Work out the scaling for the Sobolev norm. Recall h ≤ 1.
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Approximation for Congruent Triangles: Proof (1/2)

∥u − Iu∥Hm(Eh)
≤ Cht−m |u|Ht(Eh)

(0 ≤ m ≤ t)

▶ |v |2
Hℓ(Ê)

= |u|2Hℓ(Eh)

▶ ∥u∥2
Hm(Eh)

≤ C ′h−2m+2 ∥v∥2
Hm(Ê)

Prove the estimate.
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Hm Polynomial Approximation on Meshes
Definition (Broken Norm)

Given a partition Th = {Ei}Mi=1 and a function u such that u ∈ Hm(Ei ),

Approximation Theorem (Braess, Theorem II.6.4)

Let t ≥ 2, suppose Th is a shape-regular triangulation of Ω. Then there
exists a constant c such that, for 0 ≤ m ≤ t and u ∈ Ht(Ω),

where Ih denotes interpolation by a piecewise polynomial of degree t − 1.
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Weak Forms as Minimization Problems
Let V be a linear space, and a : V × V → R a bilinear form, and g ∈ V ′.

Theorem (Solutions of Weak Forms are Quadratic Form Minimizers)

If a is SPD, then

attains its minimum over V at u iff a(u, v) = g(v) for all v ∈ V .
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Example: Lagrange Multipliers in R2

f (x , y) = x2 + y2 → min!

g(x , y) = x + y = 2

Write down the Lagrangian.

Write down a necessary condition for a constrained minimum.
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Saddle Point Problems
X , M Hilbert spaces. a : X × X → R and b : X ×M → R continuous
bilinear forms, f ∈ X ′, g ∈ M ′. Minimize

J(u) =
1
2
a(u, u)− ⟨f , u⟩ subject to b(u, µ) = ⟨g , µ⟩ (µ ∈ M).

Apply the method of the Lagrange multipliers.
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Example: Saddle Point Problem in R2

f (x , y) = x2 + y2 → min!

g(x , y) = x + y = 2

Lagrangian: L(x , y , λ) = f (x , y) + λg(x , y) = x2 + y2 + λ(x + y − 2).

Show that x = y = 1, λ = −2 is a saddle point.
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Stokes Equation

∆u +∇p = −f (x ∈ Ω),

∇ · u = 0 (x ∈ Ω),

u = u0 (x ∈ ∂Ω).

What are the pieces?
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Stokes: Properties

∆u +∇p = −f (x ∈ Ω),

∇ · u = 0 (x ∈ Ω),

u = u0 (x ∈ ∂Ω).

Can we choose any u0?

Does Stokes fully determine the pressure?
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Stokes: Variational Formulation
∆u +∇p = −f , ∇ · u = 0 (x ∈ ∂Ω).

Choose some function spaces (for homogeneous u0 = 0).

Derive a weak form.

277



Solvability of Saddle Point Problems

The Stokes weak form is clearly in saddle-point form.
Do all saddle point problems have unique solutions?
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The inf-sup Condition
a(u, v) + b(v , λ) = ⟨f , v⟩ (v ∈ X ),

b(u, µ) = ⟨g , µ⟩ (µ ∈ M).

Theorem (Brezzi’s splitting theorem (Braess, III.4.3))

The saddle point problem has a unique solution if and only if
▶ The bilinear form a(·, ·) is V -elliptic, where

V = {u : b(u, µ) = 0for all µ ∈ M}, i.e. there exists c0 > 0 so that

▶ There exists a constant c2 > 0 so that (inf-sup or LBB condition):
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Interpreting the inf-sup Condition[
A BT

B 0

]
= M

[
A

−BA−1BT

]
MT

a(v , v) ≥ c0 ∥v∥2
X , inf

µ∈M
sup
v∈X

b(v , µ)

∥v∥X ∥µ∥M
≥ c2.

For any given v , can we expect b(v , µ) to be nonzero for all µ?

What is the inf-sup condition saying?

Why does it suffice for a to be V -elliptic?
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inf-sup and Stokes

a(u, v) =

∫
Ω
Ju : Jv , where A : B = tr(ABT ),

b(v , q) =

∫
Ω
∇ · vq.

Find (u, p) ∈ X ×M so that

a(u, v) + b(v , p) = ⟨f , v⟩L2 (v ∈ X ),

b(u, q) = 0 (q ∈ M).

Theorem (Existence and Uniqueness for Stokes (Braess, III.6.5))

There exists a unique solution of this system when f ∈ H−1(Ω)n.

(based on results due to Ladyšenskaya, Nečas)
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Discretizations for Stokes

Demo: 2D Stokes Using Firedrake [cleared] (P1-P1)

Give a heuristic reason why P1-P1 might not be great.

Demo: Bad Discretizations for 2D Stokes [cleared]
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Establishing a Discrete inf-sup Condition
Suppose b : X ×M → R satisfies inf-sup. Subspaces Xh ⊆ X , Mh ⊆ M.

Fortin’s Criterion ([Fortin 1977])

Suppose there exists a bounded projector Πh : X → Xh so that

If ∥Πh∥ ≤ c for some constant c independent of h, then b satisfies the
inf-sup-condition on Xh ×Mh.
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H1-Boundedness of the L2-Projector
Assume H2-regularity and a uniform triangulations Th. (Not in general!)

H1-Boundedness of the L2-Projector (Braess Corollary II.7.8)

Let π0
h be the L2-projector onto a finite element space Vh ⊂ H1(Ω). Then,

for an h-independent constant c ,

Ingredients?
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H1-Boundedness of the L2-Projector

Does H1 boundedness of the H1 projector hold?

How would this break down without the uniformity assumption?
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Bubbles and the MINI Element
What is a bubble function?

Let B3 be the span of the bubble function and Th the triangulation.

Define the MINI variational space Xh ×Mh.

Computational impact of the bubble DOF?
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The Bubble in Pictures
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MINI Satisifies an inf-sup Condition (1/4)
MINI satisifes inf-sup (Braess Theorem III.7.2)

Assume Ω is convex or has a smooth boundary. Then the MINI variational
space satisfies an inf-sup condition for every variational form that itself
satisfies one.
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MINI Satisifies an inf-sup Condition (2/4)
Create a projector onto the bubble space B3.

What does this bubble projector do?

Do we have an estimate for the bubble projector?
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MINI Satisifies an inf-sup Condition (3/4)
Make an overall projector Πh onto Xh.

Show Fortin’s criterion for Πh.
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MINI Satisifies an inf-sup Condition (4/4)

▶
∥∥π0

hv
∥∥
H1 ≤ c1 ∥v∥H1 for L2 projector π0

h : H1
0 → Mh.

▶
∥∥v − π0

hv
∥∥
L2 ≤ c2h |v |H1 .

▶
∥∥π1

hv
∥∥
L2 ≤ c3 ∥v∥L2 .

Show H1-boundedness of Πh.
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Demo

Demo: 2D Stokes Using Firedrake [cleared] (MINI and Taylor-Hood)
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Lax-Milgram, General Case
Let V be Hilbert space with inner product ⟨·, ·⟩.

Theorem (Lax-Milgram, General Case)

Let a be a V -elliptic bilinear form, and let g be a bounded linear functional
on V .
Then there exists a unique u ∈ V so that a(u, v) = g(v) for all v ∈ V .
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Lax-Milgram Proof (2/5)

a(u, v) = ⟨v ,Tu⟩. Show linearity of T .

Show boundedness ⇔ continuity of T .
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Lax-Milgram Proof (3/5)
a(u, v) = ⟨v ,Tu⟩. Show that T has closed range. (Needed for Hilbert
projection, which is needed for onto.)
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Lax-Milgram Proof (4/5)

a(u, v) = ⟨v ,Tu⟩. Show that T is onto V .
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Lax-Milgram Proof (5/5)

Show existence of the solution u.

Show uniqueness of the solution u.
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Conservation laws
Goal: Solve conservation laws on bounded domain Ω ⊂ Rn:

qt +∇ · F (q) = 0

Example: Maxwell’s Equations

∂tD −∇× H = −j , ∂tB +∇× E = 0,
∇ · D = ρ, ∇ · B = 0.

What do we do with the divergence constraints?
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Rewriting Maxwell’s
Let q = (Dx ,Dy ,Dz ,Bx ,By ,Bz)

T . Consider D = ϵE and B = µH .

∂tD −∇× H = −0, ∂tB +∇× E = 0.

Assume ϵ, µ constant. Rewrite in conservation law form: qt +∇·F (q) = 0

Could we also define q = (Ex ,Ey ,Ez ,Hx ,Hy ,Hz)
T ?
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Solving qt + aqx = 0: Finite Differences

D−
t + aD−

x = 0

D+
t f :=

f (t +∆t)− f (t)

∆t
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Solving qt + aqx = 0: Finite Volume

q̄k :=

∫ (k+1/2)∆x

(k−1/2)∆x
q(x)dx

∆x∂t q̄k+f k+1/2−f k−1/2 = 0

f k±1/2: flux “reconstructions”
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Solving qt + aqx = 0: Finite Elements

∫
Ω
qNt ϕ+ aqNx ϕdx = 0

for ϕ in a test space.
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Do we really want high order?Any advantage to high-order ?

Observation: Significant potential for savings without 
impacting accuracy by using high-order

Example - High-order makes the difference

0 50 100 150 200 250
0
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40

50

C
PU

 ti
m

e

Integration time [wave periods]

h−version (P=2)
p−version (K=20)
p−version (K=10)

Figure: Optimized CPU-time vs. integration time for a fixed relative error
in amplitude of 5%.

! Conclusion: a significant improvement in performance can be
achieved using high-order elements over long times of
integration. 36 / 41

Test: Time to compute 
solution at 5% error

Friday, July 23, 2010

Figure from talk by Jan Hesthaven

Time to compute solution at 5%
error

Big assumption?
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Summarizing

Want flexibility of finite elements without the drawbacks.

308



Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems
Case Study: Maxwell’s as a Conservation Law
Evaluating Schemes for Advection
Developing DG
Fluxes and Stability
Implementation Concerns

309



Developing the Scheme

Ω

Em

What do do about unbounded domains?
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Dealing with the Mesh, Part I
For each cell Ek , find a ref-to-global map Tk :

Ê Ek

Tk

Tk : Ê → Ek

x = (x , y , z) = Tk(r , s, t) = Tk(r)

▶ Tk affine for straight-sided simplices: Tk(r) = Ar + b
▶ Curved elements also possible: iso/sub/super-parametric
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Dealing with the Mesh, Part II
Based on knowledge of how to do this on Ê :

Can now integrate on Ω:

and differentiate on Ω:

Jacobian of T−1
k ?
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Dealing with the Mesh, Part III

Approximation basis set on Ek?

What function space do we get if Tk is non-affine?
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Going Galerkin∫
Ek

qkt ϕ+ (∇ · F k)ϕdx = 0

Integrate by parts:

Problem?
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Strong-Form DG

Weak form:

0 =

∫
Ek

qkt ϕdx −
∫
Ek

F k · ∇ϕdx +

∫
∂Ek

(F k · n̂)∗ϕdx

Integrate by parts again:
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Accuracy and Stabillity

In DG: what provides accuracy? what provides stability?

Following slides based on material by Tim Warburton
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Stability: Basic Setup (1/2)

0 =

∫
Ek

qkt ϕdx −
∫
Ek

F k · ∇ϕdx +

∫
∂Ek

(F k · n̂)ϕdSx
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Stability: Basic Setup (2/2)

∂t∥qk∥2
2,Ek

2
=

∫
Ek

aqk∂xqkdx −
∫
∂Ek

(aqknx)
∗qkdSx
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Stability: Going Global

∂t∥qk∥2
2,Ek

2
=

∫
∂Ek

a(qk)
2nx

2
− (aqknx)

∗qkdSx
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Gather up
∂t∥qk∥2

2,Ω

2
=

∑
f ∈faces

(∫
f

a(q+k )
2n+x

2
− (aqknx)

∗
+q

+
k dSx

+

∫
f

a(q−k )
2n−x

2
− (aqknx)

∗
−q

−
k dSx

)
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Picking a Flux
Want:

(∗) =
(
an−x

q−k + q+k
2

− (aqknx)
∗
−

)
(q−k − q+k )

!
≤ 0

Ideas?
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Picking a flux, attempt two
Want:

(∗) =
(
an−x

q−k + q+k
2

− (aqknx)
∗
−

)
(q−k − q+k )

!
≤ 0

More ideas?
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Comparing Fluxes (1/3)

Central

Back to the example

Central flux Upwind flux

2.2 Basic elements of the schemes 29
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Fig. 2.2. On the left we compare the solution to the wave equation, computed
using an N = 1, K = 12 discontinuous Galerkin method with a central flux. On the
right the same computation employs an upwind flux. In both cases, the dashed line
represents the exact solution.

and K = 12 elements, we show the solution at T = 2π, computed using a
central flux. We note in particular the discontinuous nature of the solution,
which is a characteristic of the family of methods discussed here. To contrast
this, we show on the right of Fig. 2.2 the same solution computed using a
pure upwind flux. This leads to a solution with smaller jumps between the
elements. However, the dissipative nature of the upwind flux is also apparent.
An important lesson to learn from this is that a visually smoother solution
is not necessarily a more accurate solution, although in the case considered
here, the global errors are comparable.

Many of the observations made in the above example regarding high-order
methods can be put on firmer ground through an analysis of the phase errors.
Although we will return to some of this again in Chapter 4, other insightful
details can be found in [155, 159, 208, 307].

The example illustrates that to solve a given problem to a specific accuracy,
one is most likely best off by having the ability to choose the element size, h,
as well as the order of the scheme, N , independently, and preferably in a local
manner. The ability to do this is one of the main advantages of the family of
schemes discussed in this text.

2.2.2 An alternative viewpoint

Before we continue, it is instructive to consider an alternative derivation. The
main dilemma posed by the choice of a piecewise polynomial representation
of uh with no a priori assumptions about continuity is how to evaluate a
gradient. Starting with a solution defined on each of the elements of the grid,
uk

h, we can imagine continuing the function from the boundaries and beyond
the element. In the one-dimensional case, this is achieved by adding two scaled
Heaviside functions, defined as

Friday, July 23, 2010

Upwind

Back to the example

Central flux Upwind flux
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Fig. 2.2. On the left we compare the solution to the wave equation, computed
using an N = 1, K = 12 discontinuous Galerkin method with a central flux. On the
right the same computation employs an upwind flux. In both cases, the dashed line
represents the exact solution.

and K = 12 elements, we show the solution at T = 2π, computed using a
central flux. We note in particular the discontinuous nature of the solution,
which is a characteristic of the family of methods discussed here. To contrast
this, we show on the right of Fig. 2.2 the same solution computed using a
pure upwind flux. This leads to a solution with smaller jumps between the
elements. However, the dissipative nature of the upwind flux is also apparent.
An important lesson to learn from this is that a visually smoother solution
is not necessarily a more accurate solution, although in the case considered
here, the global errors are comparable.

Many of the observations made in the above example regarding high-order
methods can be put on firmer ground through an analysis of the phase errors.
Although we will return to some of this again in Chapter 4, other insightful
details can be found in [155, 159, 208, 307].

The example illustrates that to solve a given problem to a specific accuracy,
one is most likely best off by having the ability to choose the element size, h,
as well as the order of the scheme, N , independently, and preferably in a local
manner. The ability to do this is one of the main advantages of the family of
schemes discussed in this text.

2.2.2 An alternative viewpoint

Before we continue, it is instructive to consider an alternative derivation. The
main dilemma posed by the choice of a piecewise polynomial representation
of uh with no a priori assumptions about continuity is how to evaluate a
gradient. Starting with a solution defined on each of the elements of the grid,
uk

h, we can imagine continuing the function from the boundaries and beyond
the element. In the one-dimensional case, this is achieved by adding two scaled
Heaviside functions, defined as
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Figure from talk by Jan Hesthaven

Upwind penalizes jumps!
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Comparing Fluxes (2/3)

Central fluxes v. Upwind fluxes

27

Inter-element jumps are better controlled for this example by upwinding.

Red: central fluxes (alpha=0)
Blue: upwind fluxes (alpha=1)

Wednesday, January 26, 2011

Figure from lecture by Tim Warburton
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Comparing Fluxes (3/3)

Central Fluxes v. Upwind Fluxes

26

Red: central fluxes (alpha=0)
Blue: upwind fluxes (alpha=1)

Peak errors are not quite so peaky for upwind fluxes.

Wednesday, January 26, 2011

Figure from lecture by Tim Warburton
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Stability Analysis

Clif notes on flux choice?

Swept under the rug: Boundary conditions

Element coupling (and BCs) done weakly
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Accuracy

Stability: (preliminary version) done!
Accuracy: Depends on approximation properties!
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Systems of Conservation Laws

What to do about systems?
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What about multiple dimensions?

We’ve dealt with 1D systems.

How about the move to multiple dimensions?
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Simultaneous Diagonalization

2D second-order wave equation across a boundary with normal n:

Demo: Finding Numerical Fluxes for DG [cleared] (Part 1)
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Jumps and Averages

Jump and average of a scalar quantity:

Jump and average of a vector quantity:
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A Flux for Maxwell’s

Wanted to solve Maxwell’s equation in the time domain. Numerical flux?

Either look in the literature:

n̂ · (FN − F ∗
N) :=

1
2

(
{Z}−1n̂ × (Z+ JHK − αn̂ × JEK)
{Y }−1n̂ × (−Y+ JEK − αn̂ × JHK)

)
.

or derive yourself: Demo: Finding Numerical Fluxes for DG [cleared] (Part
2)

Good news: Scheme mathematically complete.
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Implementing DG

Weak form:

0 =

∫
Ek

qkt ϕdx −
∫
Ek

F k · ∇ϕdx +

∫
∂Ek

(F k · n)∗ϕdx

What do the DoFs mean?
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Modes

Function spaces same as for FEM: PN , QN .

Numerically: better to use orthogonal polynomials with∫
Ê
ϕiϕj = δi ,j
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Nodes
Define set of interpolation nodes (ξi )

Np

i=1 and ℓi their Lagrange basis.

Define generalized Vandermonde matrix

Vij := ϕj(ξi )

ξi determine cond(V )!
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In Matrix Form

0 =

∫
Ek

qkt ϕdx −
∫
Ek

F k · ∇ϕdx +

∫
∂Ek

(F k · n)∗ϕdx

Write in matrix form:

338



Explicit Time Integration

0 = Mk∂tu
k −

∑
ν

Sk,∂ν [F (uk)] +
∑

A⊂∂Ek

Mk,A(n̂ · F )∗

How can we do time integration on this weak form?
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Trick: Multiple face mass matrices

Applying multiple face mass matrices at once:
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Dealing with Nonlinearity

0 =

∫
Ek

qkt ϕdx −
∫
Ek

F k(qk) · ∇ϕdx +

∫
∂Ek

(F k(qk) · n)∗ϕdx

What happens if F is nonlinear (in volume/surface)?
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DG and Modern Computers: Possible Advantages
DG on modern processor architectures: Why?
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