{ "metadata": { "name": "", "signature": "sha256:8ba97a88271cd1d2b5d80041e07507751d72fc624fb17a1bd05c144cb53143e9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Checking Rank Estimates" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import numpy.linalg as la\n", "import matplotlib.pyplot as pt" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 29 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's make two particle collections: `sources` and `targets`" ] }, { "cell_type": "code", "collapsed": false, "input": [ "sources = np.random.randn(2, 200)\n", "targets = np.random.randn(2, 200) + 10\n", "\n", "pt.plot(sources[0], sources[1], \"go\")\n", "pt.plot(targets[0], targets[1], \"ro\")" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEACAYAAABBDJb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8VeWV979PLiThZmIEA6IGYvuqTWvBgRennXBaC6HG\n6/SCWiveOloR6OWtrQQ0FnmnA287BcSxHbWj46WdOq1F06aJpSFOvdEapQGsbTAoSERDuAgJIcnz\n/vHsfc7e5+ydnJNzknNhfT+ffHLO3s/ee51D+O2117PWepTWGkEQBCG9yUq2AYIgCEL8iJgLgiBk\nACLmgiAIGYCIuSAIQgYgYi4IgpABiJgLgiBkAFGJuVLqIaXUu0qpP3vs+6ZSql8pdXLizRMEQRCi\nIVrP/CfA/PCNSqnTgbnArkQaJQiCIMRGVGKutX4O6PTY9QPg9oRaJAiCIMTMkGPmSqnLgN1a660J\ntEcQBEEYAjlDOUgpNRpYhgmxBDcnxCJBEAQhZoYk5kAZUAq8ppQCmAL8SSk1S2u9zzlQKSXNXwRB\nEIaA1jpqJ3lIYRat9Z+11qdqradqracCu4EZ4ULuGJ9SP3fddVfSbUgXu8QmselEsCsVbYqVaFMT\nnwCeBz6slHpbKXV9uF7HfGVBEAQhYUQVZtFaXzXI/mmJMUcQBEEYCidkBWggEEi2CZ6kol1iU3SI\nTdGTinalok2xooYSm4npAkrp4b6GIAhCpqGUQg/3BKggCIKQWoiYC4IgZAAi5oIgCBmAiLkgCEIG\nIGIuCIKQAQy1nF8QBCFlaKqtpX7dOnKOHaM3L495S5ZQUVWVbLNGFBFzQRDSmqbaWn67dCmrWluD\n26qt1yeSoEueuSAIaYOXB16/bh331NdHjF1RWcnKurokWJkYYs0zF89cEIS0wM8DP1JQ4Dk+u7t7\npExLCWQCVBCEtKB+3TqXkAOsam1l7969nuP78vNHwqyUQTxzQRASwnBPQuYcO+a5vbCkhOrCQpfQ\nLysrY/7ixQm7djogYi4IQtyMxCRkb16e5/aJU6Ywd/FiVqxfT3Z3N335+cxfvPiEmvwEmQAVBCEB\nLK+s9JyEXFBczDnl5Qnx1L1uGMvKypi/dm1GCrdMgAqCMOL4hUDO6eigZvNmIH5P3T7uRPfA/Yha\nzJVSDwFVwD6t9UetbWuAi4EeoBW4Xmt9cDgMFQQhdfELgfQ5Xq9qbWXF+vVxiW9FVZWItw+xZLP8\nBJgftq0e+IjW+jzgDeCORBkmCEJ0NNXWsryykppAgOWVlTTV1o64DfOWLKG6rMy17RZgL9Dk2Jbo\ndMFU+OypQtSeudb6OaVUadi2Bsfbl4DPJcYsQRCiIVWqH+1rLbrzTg5v386Z3d1cDVQA1fYYEpsu\nmCqfPVVIZJ75DcCvE3g+QRAGwS/3umH9+hG3paKqiqJTTuGR7m5WYsQbYBXQgJmsnBtDuuBgXncq\nffZUICEToEqpaqBHa/241/6amprg60AgkBHr7QlCKuA38Zis6kc/e94qKuLGGLJOovG6U+2zx0tj\nYyONjY1DPj5uMVdKXQdcBFzoN8Yp5oIgJA7ficckVT/62XPGrFkxhT78vG7nBKrftXa0tFATCATT\nIe3zpXpHxXBH9+67747p+LjEXCk1H/gWMEdrnZ63Q0FIY+YtWUJ1a2vKVD/GY4+zgvRvW7fSRChU\nY+P0ur2udXNODos6Oqiw0iFv3LqVk4AftLcHxzg9/ExqnRtLauITwBzgFKXU28BdmOyVUUCDUgrg\nBa31rcNhqCAIkaRa7vVQ7fEMq9jndIxzPnGEX2tHS4sRcsf4Se3t3BN2LdvDBzJqAjWWbJarPDY/\nlEBbBEEYAsOZez1Uz9Wu+o62+tszrAKsICTmXh6+87PXBAJBj9zGT+Cyu7ujCuWkE1IBKgiCJ17e\n8i3PPcdj06Yx4bTTPIV9qOmCA02c3jx5Mgfa25lUUED9unW+5/KKoff6XK8vP58cn4nSdJ1AFTEX\nBMETL8/1/q4uVmzbxspt26hubaVlyxbeeeGFoOe+/733uM86pglTVZjb2sqGhQvh4Yd9Bd1vMjO3\ntJQxe/fyo44O6OiAlha+sXUrPPBAxLmcMXT72ltzc/knpfhxT09w3LKyMqbMns3me+/1vGa6ts4V\nMReEE5Bowie+qX/W71WtrSxYvZqfdXUF911rCWET8FtMqASAjg6qly4FvL1qv4nTnoMHXZOXYCYz\nF915Z8R57Pc3rVhB7o4d/Ft3Nxw/ThOwoKCASWVljDvtNKbMns2eRx9lUUcH1U4bSe/WuSLmgnCC\nEW0oxPaWbS83BxO2cErrOQ4hbwKOWSGKetwiCf7xaPvG8n5+PguKi5k0aRLjTjuN+YsX8+A113h+\nhg/efNNze0VVlVlGrrk5tA2o6OpixWmnsbKujuWVla7PvgJzg3q9uJhb07gDo4i5IJxgRDvxN2/J\nEm7cupWS9naXMH8DgmmDdiMt2xNfhMlCyfW59r7du1leWRl8Iph8wQXsefRRKltbqQcmATuOHuXD\nn/scFVVV3Ke8O8D2eG41DFZM5NxfQWiCtaa8PG2FHETMBSGtGUq2SbSVkxVVVfx00iRWhYc5MN7s\nYwUFfMnyzMM98Q1etgJq507u2bYtuO2W557jY11d7pBMVxe3rF5N08yZ6KIiqjs73aEQYExpqe/n\n23fokOf29w4fBlKv0CpRiJgLQpoy1MyRgcQs/ObQ1+PtA79VVMT/XrKEh3/0I+rb22kBLgdGA/2Y\ncMw3rG12iOZPWVk87QjLgJlQXQD8LOz893d1sejOOxl79CjthEIhfcBbhYX808qVvp+vByJj4cAx\nK00ylsKmdCoqEjEXhDQlljxppyjtP3SIG0tKeNDhcdsZHhGpiAUFnpWYZ8yaRfnMmfztRz9iHnAU\n47HbVANbgAOEilFq+vs9P4cCFgDHgEKgC1OduG/rVn7e20sTplGXTf7UqQMK6pTx4/k07hvAfGDT\n+PFA9IVN6daVUcRcENKUaMMlXqL0jZISrpw2jbz9++lRijHjx3Ng48ZgWqHN/V1dLCgooMLhUdte\nbP26dfygvZ3luIUcjFe8AHdVoV/Odw9QhNs7vwXY09tLjXXcPByx7fHjB/SYe/PyXLFwm4aw6tHB\nBDndiopEzAUhjXCK2I6WFk+vOTz26yVKP2hvZ0FBAQ/bIt3ZGUwrDCdLqYgsk4qqKjatWUMT8LaP\nrQVh7+fhHf74Gmby1PlZ7scsa1ZjvXeW9u8+dGhAjzlR/WrSrSujiLkgpAmeFZk5OdDbO2DJu+/6\nnGHx6zN8ROqso0dZefQo1YWFzHWEI3YfOsRvgdN97O0Ke2/beBEwi1D4owX4m/WzARNiuZXQzaAJ\nE4p5ENhQUEDewYOs2rnTdW6nx+wVRpkyezb169axac2aqGPf6TZRKmIuCGmCZ0Vmby9XFhezqbzc\nN/YbzfqcAJOBf1SKj2kdDG3UEVorMjzE0HPwIKswYhvucd8I7AYWAg87ttcBHybkcd8HbCUyxHIf\nJryyABiLEXIAurq49p13PD+P02N2ivpQY9+p1pFyMETMBSFN8POwzy4vpyZsUQNnOKb90CG+UVLi\nqqS82ZFWCEaQ9wC/cDTGugX4GO4wTnZ3N021tfx0xQqOvfkmyzGiX4nJMT8MnAmcj8kZ/wtwGVAC\nTMTcGOod59uMRyYLcAmmt3YDJjvmPuAdjGAd83mC8POYhxr7TrWOlIMhYi4IaUK0j/1enuiNJSUs\nmjGDCePG0Zefz3mzZ/PbRx+lwhrjVbF5P0aglxOq/tzx9tscX7rUNVFajRHzIkyYJKKU3xoz13rd\nDtwEPEBkXN3mJMxNZBOwElzpi03AV4B/d4z38pjtG9rul14K3nTCb0yDMZwdKRONiLkgpAnRPPY3\n1dayYeFCzunocAnYwvZ2Nhw/zoTycrTWlM+cSfnMmUGv8+2tW6GzM+Kah3EXAF28c2dkmT4mDTAH\nI7QbcHvbdsz7+8CpGBFvso7Z5/NZ7cwXOxR0jmOfLciXZGVRdu65rklZ5/cwWH90r7z6VM4jHwwR\nc0FIEwZ77LcF7GcdHcFjqjETjHvAbLf6fVe3tlK5di0r6+oAWF5ZCfXOAIjhTMfrJuBkH9vexgjz\ncdzC6/TSl0NwoQg7dfA+Ir3sm619ywjF68Pj+xXApv5++qx+K+EM1h/dL68+lfPIByMqMVdKPYTJ\nFNqntf6ote1kzA34TKAN+KLW+sAw2SkIAgM/9vsJmFeFZXjM2Mvr/0puLl8+fjx0fuAMH7tOB94j\nJNrOY2xP3ktsbgU+k5fHlWPH0r9/P0e15iim2KjQOv5fga97HNtHKIYf7l37zS+8DVxpNdRKtzzy\nwYjWM/8JsB54xLHtO0CD1nq1Uurb1vvvJNg+QRCixE/A/OLS4dkf4Pb69/zhD1Q4xDwH+DSRmSs3\nAFmEvHZnPrlTYPyKhgpzcznr/PP525Yt3N7ZyVO4i5BuyMnh3qwsKpw9yTFe+yM+OeedVrVnOKcD\n2VZDrU1r1niOSdU88sHIimaQ1vo5IDygdimhrKOHMW0YBEFIEn4TpB053j6bc+LU9m6zu7vpzctj\n7uLFnH7mmcE4M4TEuBOTcnglZiLz6LRpHBo1KtjJsAIzIboCeN1xvC3yTpYBB7u6uKe+nls7O9lA\nZDXpQ729fHD8OJ8HrsDkqR8FfjBqFO++/rqnd92DaUUQfq25js891DzyptpalldWUhMIsLyykqba\n2gHHjxTxxMxP1Vq/a71+FzO3IQhCkvCbIP3sNddQ/eij7uwWpdj7hz9wX00N5TNnenq3fePHB0U5\nG9iBCaX8yHHNG4Dsvj4O9vfTj8kvf5BQTPwGTMOtHxCaeFyASVscB7wFjOvr41ZM6mI23kzQmqmY\nG8pe4B+Bip4ervUZP2X8eCbefjsLVq/mnK6uYIFSnWPCeCh55Kncr0VFu+CqUqoUeNoRM+/UWhc5\n9u/XWkfMjyil9F133RV8HwgECAQC8VktCIInTbW1NDhCJXbFZlNtLQ8uXcrx1lbKMB5qBaaC9OgZ\nZ/BIWEUlwKIZMyg8eDAoXM4JTCcrrPM9DlyNyQ3PBrYBnwLKMRku4zFpiacCUzAx721AKSFvfKBr\n2H0SqzHe4wOYJ4MSQqmTdvbOispKVtbV+X4fg31ffiyvrOQej4li+3rx0NjYSKOjXuDuu+9Ga+3d\n0N2DeMT8dSCgtW5XSk0Cfq+1PtvjOB3tNQRBGD4WnHKKK9PF5os5OfxXb2REe2FhIUVTptD6+utM\n7u3lMEaww6nBCGm4CDcB3wMmAGMwDbUecOyrx0xInk5IhMNz1O1Ux0mYSlB73FXAVyEivn4jsBMo\nrajgJ1bmTjREm6JYEwhQ43HemjlzIgq34kUpFZOYxxNm2YgJnf2L9fupOM4lCMIwU+Ah2BDq8x3O\nGQcOsPKASVCrxj8E0kekkNii/GvHtq9a28G7qAhCoZirMJ58D+5MHHvcKMzNIDy+/iDGi29vauLb\nV1/NvzzudfsJszWG0Ekq92uJyjNXSj2B6X9zCuYJ507gV8B/YbKV2vBJTRTPXBBSAz/PvGrsWD5+\n6qnu2DEmxuysmLwJEyJxivDN1u8DmGpRe/xA4RI9wL6VUY7bj/H4azz211g/n87K4u8/85lBvW2/\n0MlN06dTMmGC63ggQviXlZUxfxjWDh0Wz1xrfZXPrs9EeyFBEJLLnNtu45ZVq7jf4aHfnJND1Te/\n6aoGbfnTn1jywQcRrXXHEspS2ZGdTW9fH98gJOBfsX5X4C8sbwJn+eyzPX/7RrLJZ9zfgEOYcIoX\nfZgngKn9/S6R9vO2vVI6m4DcHTtcC0PbhVaVa9emZL+WqGPmQ76AeOaCkDLcV1ND0733kt/bS3dO\nDhW33catNTWuMb4efHY25OeTc+wYPX19/Mbj/3UV5vH9AObRPZzLMR73NwktJ2dPXP4/TPx8AeaG\ncAXwS49zfDYri9P6+7mWyHCNfSOox8er95io9PLMfZ8sEjDRGS0jGTMXBCEJxNNP5NaamgjxDj93\nT3c312Lip/aE4zKgG5h95AirMJNkXpyCmYR8mMjiopuys/lGXx9rgf/EXcJ/C0aEmzAeeQNwMC+P\nW7KyuN/R3fHmggLGTpjAlLfeCj4RfBHj1Z9FKDT0bz72eRUEeaUovpWfDx5jU7mgSMRcENKI4cxz\nts/9yyNHgtu+iin7vhZo7esL9i/f73OOHoxX/CChZlr2OpwfnHkmDR/6EL3PPsu/97m7rdxvjT0b\nE+9eVlZGzdq1tGzZ4soV/1JXF4+/9x67rePsfPZvA69iipS+hwkJeeE1UelV/Tp23z5whFgGOj5l\n0FoP64+5hCAIiaB63jytIeJneWXl8J0b9M35+Xop6M2glzl+O8fdAfpC0Nd6nEODvmvOHK211tcW\nFnrvB31lUZFeXlmpNz/zjNZa669On+459iKl9JdAV1u22Ne/3nrvaV9ZWfC8g7H5mWf0srKyIR+f\nCCztjFprxTMXhDQiUetSxtKc6q2iInJLSxnb3BzR99z2vP+E6Zh4J8aTd/ZAt0M1tlc7ZurUCK+3\nCXgJU7nZsW8fj6xYwWPf/jaHt2/3tGmm1sFMlhuBu4GpwHW4M3CuLC7m7PJy3jt8mGNas2nNGurX\nrRs0NJVuC1OAhFkEIa2Ip5+ILd67Dx1i/N69rpWHBmpONXbqVLTWbM3NZayj8ZYd4gATGtmCaber\nMAJuT3BuwNwAPn7yySyvrKSvp4fPZ2dzdl8fOZislA+A3wDs2gW7dlGNCZnkECpKci4u4QzSPEio\nWrXCEX6qKyvj1rVrgch0wmhCU+m0MAUgYRZBSCdiefzf/MwzunrePL20vFx/saAgGI6oDgs/bLa2\nXTpmjL65oMC172slJfqGkpLg+6/6hFCWg74c9Od8QhzXgZ6fnR283tfD9tuhG+e2K3zG3OExdml5\nud78zDN6eWWlvmvOHFeoZjhDU8MJEmYRhMzF+fh/eM8e9u7dS2F+PvXr1rn2D7TSjvM/vat8/sgR\nmoAFBQVMKitj3GmncXjfPh50hESuxGSe3O84h50O+AZmYQqvJeh+AlxpTXp6VW46F46w+ZjHmIsw\nC09vss5je+t73ngDIJg2aD+JbFqzhrdfew0vUjkzZSiImAtCmmELdnBVoY4O2LbNFToYaKUdZ3Z4\nuPBWABVdXSwaNYqVdXXUhDXFq8CEUv4RI7bBboSYxSR68RcVOxDktz+8XUD46kJgSvwfcLyvBn4M\nnNTTw4Nf/jL1M2cy+YIL2OPoErnc4zwAO1paqAkE0n65OJuo+pkLgpBa+K2S07B+PTDARCnuvuJ+\nwnp4+3aaams9Y/S3Yhai+It1vgaMoE+wzr3D55y2H+y3SIVTvG8gtAC0kw+FvV+Fibc/ADzc2ck9\n9fVsXb2aSsd349VH/eacHBZ1dFCzeTP31Nfz26VLU6Yv+VARMReENGSwrBbfiVKMd723pIRFM2bw\nelGR57gzu7tpWL/eFNSUlbn2LcPknZdhJidXWuechwnZzMGEYpx8RSl6CgsBEyYJ3/91TJ/yGkyV\n6PbsbB5R7uLHW/LzPQX+42Hv7+/qosHx3l4s46qiImrmzGFBcTFf6u11hXScN8J0RcIsgpCGDJbV\n4lXVeHNBAUybxoopU7jO0ef8q5//PP/miB/bMfDHdu+mft063s/PZ0FxMZMmTeL4qFF0v/MOFVYm\njL3wBBjR/HFhIQemTeNwRweX7NnD2FGj0AUFVNx2W7D/y19ffplbOzuDaY3vAceAQ9nZvDp6NOOy\ns3nqwIFg0dGu/HzGnXsuvVpT4VXI4/E9hIdsKoCGWbOosUJHFR5tbNM9hi5iLghpyGCr5HjlSX/J\nI0+6oqqKR845hxXNzcFKzfnWPrVzJ/ds2xYcW11YSOX3vhc8777du+n8619Z0dPDPkw/FnXkCFpr\nbt6wwTMGXVFVFRTT8EZeNZ/8JL15ecE+KcHUx+5uVkyYwNzFi6kOm9S93voJZ0dBATjaADi/m1Ru\nYxsP0mhLENKUWFfJGeg84ZkvCwoK+JlDDG2cjabsBlXhC0oAVJeVUWm1hQ0vUNr/3nvc5+Fhr6is\nJLu7e8DFH8I/86TZs12TnWCEe8o117D3xRc9v5vwz9sEbLAyeMZOnpwyk6HSaEsQThASVdTi5cVP\n2rMHWloixjpDEXbc3isVcVVrKyusGHT4jeLGkhK+UVLiKlqyPWc7xTIc22v2+sxNjva90VRqOj/v\nvt27UTt3mhtXSwu0tKTMmp6xImIuCEKESC6vrPQUc2cowg5X+KYadnd7Zt082N7OTdOns+K88zwF\n2Ct8NGX2bJZXVnp2ihzKTc0+ZnllpSuUBKEb0Qkn5kqpO4BrgH7gz8D1WmvvqXZBENKCaFaut8eo\nMLG26cvPJ8dnUnHK+PHUePQF93pKmOIRSkmU95yoXjcpQSzlouE/mIW1dwJ51vufAQvDxgxnxasg\nCMOEX3l8+Jgbp0/Xt+Tne7YYSEQpfTI6RV5ZVKSr580b0S6J4TDC5fyHMM3SRiul+oDRwJ44zykI\nQgoQTfjCHtNUW+sbtx7Mwx+M4fSePZ9AgK92dlJRX59W8fO4xFxrvV8p9X3gLaAL+K3W+tmEWCYI\nQtrgJ/yJaCU7nKmETvveeuklzjhwwLWQdWVrKxsWLmRTeXnKl/3HlZqolCoDngb+ATgI/Bx4Umv9\nmGOMvuuuu4LHBAIBAmH9HgRBOLEZaCk8r9TJZWVlzLdSHxNFTSDgSoscLOUy0TQ2NtLY2Bh8f/fd\nd8eUmhivmC8A5mqtb7LefxmYrbVe5Bij47mGIAiZjWeHxzDRTFRO/UCEL+yc7EWdRzrP/HVghVKq\nANNH5zPAy3GeUxCEEwi/pmHO9MCRWCgiPH4+UMplKhJvzPw1pdQjwB8xqYmvYDpSCoJwAjFQmGQw\nUiU9MDy+v6OlxbQXDiNVy/7jzjPXWq8GVifAFkEQ0hDPMEkMWSCp1CvF+QTQVFsb0Qsm1kyckUQq\nQAVBiItowiQDEU2BUjJIt0WdRcwFQYiLeMIkdnjmSEEBC4qLKSwpYeKUKSkjmum0qLOIuSAIcTHU\nMIlneKawcFgyVU4EZKUhQRDiwnM1orIy5g4SJhls6TshNsQzFwQhLoYaW06VLJZMQcRcEIS4GUps\nOZWyWDIBCbMIgpAUhhqeEbyRZeMEQUgaI1Gmn67EWs4vYi4IgpCCxCrmEmYRBEHIAETMBUEQMgAR\nc0EQhAxAxFwQBCEDEDEXBEHIAETMBUEQMoC4xVwpVaiUelIptUMptV0pNTsRhgmCIAjRk4hy/rXA\nr7XWn1dK5QBjEnBOQRAEIQbiXdD5JKBZaz1tgDFSNCQIghAjI100NBV4Tyn1E6XUK0qpf1dKjY7z\nnIIgCEKMxCvmOcAM4D6t9QzgCPCduK0SBEEQYiLemPluYLfWeov1/kk8xLympib4OhAIEAgE4rys\nIAhCZtHY2EhjY+OQj4+70ZZSqgm4SWv9hlKqBijQWn/bsV9i5oIgCDEy4l0TlVLnAQ8Ao4BW4Hqt\n9UHHfhFzQRCEGJEWuIIgCBmAtMAVBEE4ARExFwRByABEzAVBEDIAEXNBEIQMQMRcEAQhAxAxFwRB\nyABEzAVBEDIAEXNBEIQMQMRcEAQhAxAxFwRByABEzAVBEDIAEXNBEIQMQMRcEAQhAxAxFwRByABE\nzAVBEDIAEXNBEIQMICFirpTKVko1K6WeTsT5BEEQhNhIlGe+FNgOyJJCgiAISSBuMVdKTQEuwqwD\nGvUSR4IgCELiSIRn/q/At4D+BJxLEARBGAJxiblS6mJgn9a6GfHKBUEQkkZOnMf/PXCpUuoiIB8Y\nr5R6RGt9rXNQTU1N8HUgECAQCMR5WUEQhMyisbGRxsbGIR+vtE7MnKVSag7wf7TWl4Rt14m6hiAI\nwomCUgqtddQRj0TnmYtqC4IgJIGEeea+FxDPXBAEIWaS7ZkLgiAISUDEXBAEIQMQMRcEQcgARMwF\nQRAyABFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAyABFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAy\nABFzQRCEDEDEXBAEIQOId6WhtKO2oZZ1j6/jmD5GnspjydVLqJpblWyzgNS2TRCE1OaEEvPahlqW\nblhK6/TW4LbWDeb1SImmn2Cngm2CIKQvcS9OoZQ6HXgEmIhZaejHWut1jv0pszhF5fWV1JfWR27f\nVUndQ3XDfn0vwS5rLmPtorWse3xdUm0TBCG1iHVxikR45seBr2utX1VKjQX+pJRq0FrvSMC5E8ox\nfcxze3d/94hcf93j61xCDtA6vZX1T6xPum2CIKQ3cU+Aaq3btdavWq8/AHYAk+M973CQp/I8t+dn\n5Y/I9QcS7GTbJghCepPQbBalVCkwHXgpkedNFEuuXkJZc5lrW9krZSy+avGIXH8gwU62bYIgpDcJ\nmwC1QixPAkstDz1ITU1N8HUgECAQCCTqsjFhTySuf2I93f3d5Gfls/i2xSM2wbjk6iW0bmh1x8xf\nKXPZkCzbBEFILo2NjTQ2Ng75+LgnQAGUUrnAM8BvtNY/DNuXMhOgyaa2oZYVP1xB2742dLZm2qnT\n+O5t3xXBFgQhghGfAFVKKeBBYHu4kGc6seSFBzNZZoW88oPNB0fKVEEQMpxEpCZ+EmgCtmJSEwHu\n0FrXWfsz0jMfKM3QS9BdaZFtQCuQBcVHi3l41cPinQuC4GLEPXOt9f9wArYFGCjN0EuYg5ksbRgh\nv9C87aCDpRuWAsNTHBT+9HDBORfwwo4XpMpUEDKME6oCNJHEmhcezGRxCLnNQDcBL2yB3vPuHtrf\na2fSpElMLp4cIcwRTw9tsOm/N9F7UW/o2lJlKggZgYi5D4PFw2PNCw9msmS1eu6PtjgoKNBFrfAB\ncLHx7ltoCQozmCeHLS1b6Ly4M3RwKy4hh9hvJIIgpCYi5h5E0ydloDRDL+zjFlYvpIOOiP0t21sI\nXBcYMPRR21DLwmUL6RjTAX8DZrr3t05vZcnKJaiTlbHrzbAT+ATDpMpUENKfhKQmDniBNJwAjbaH\nS21DrTswq+W8AAAYc0lEQVQv/KrB88K9bhQ5tTn0TuiFw0AWjHp/FFOKptDb18s7ne8wavQodLem\n53gPfZP7oB8ow4RsyoBSxwWeAK6yXv8Od0gn/L3P5xIEIfnEOgF6wk1cRkO08fCquVXUPVTHt770\nLbTWrHlsDZXXV1LbUOt77qq5VaxdtJbKXZXMeXMOxbXFISG/EPgU9Hyhh50Hd/JW91v0XtnL0UuP\n0vXFLvpK+mCqNc4W8p1hF3D+i5ZhBNzxPufX7ocxqTIVhMxAwiweRMTD24BW+OPRP1J5faUrDBJt\n61q/GHz5ReV07OqAL4QZUUikF30hsAnjiduvnfftZ4Exjvel1u9NUHSsiFnnzmL252bz4usvSpWp\nIGQYIuYeLLl6CVvXbKX9E+2uVMIjHKGeetdE48JlC+m42B0DD59U9BP8Lc1b2Nm5E07xMMLvmUmF\nvX4f+D0mw/8sa/szwMXW61Io21/G2tu8898FQcgMRMw9qJpbxaQfTqJ9Uzt0EOE1t05vZcH/WUD/\n6H66xnR5nsMZkvHLSb/3yXvpqupyh0JsDmG2ZxGKkZcSKssCaAcuwB0zB3iNoNeesy+Ha667RoRc\nEDKcEzpmXttQS+X1lQSuC0TEusdPGA+fxttrxnjpXfO7jNB64ExR9IvB92ZZaYLjgKcdO9qs31YM\nPRgjfwqYZu17GkYdG0Xu9lz3SZ8FzsPY/inondDLo88/OmAcPxoG+q4EQUg+GeeZR9svZbBYdzBu\n7iPW9Fm/7UlGR3zbmaJY21BLy7YWI9BODxvo7+432w8DpwI/x/yLHAE+GXa9C4HHMemGO2H0kdFk\nn5RNX28f+meaorwiPuADuj7eFfLUnwXGQ+v+Vr684svMfHzmkCo+ZUk7QUh9Mio10avisaC5gLIz\nyiIqJP3SD6e/PJ0JEyfwTsc7tL7VasIox4BLHIOewhTsXEPwOuwEFIw7OI4nVj/hu64ndcAxyNW5\n9B3to7+nH4qAbEJxbjA3iLC0Q/XfinOnnEvXwS529eyi7+K+0M6NMKF/Ap3dnfSO7oWxmB87S8Zi\noP4xfiR7uT1BOBGJNTUxo8Tcs5mVj5AFrguweepm9wnaIP/1fLrnh+LdWRuz6M/vh05Cq5xOA17F\nTEBe5jj+WRjbOZbz/+588lQe73W8R3Nxc7CpVtAz34kJg7Rh4ttj8cz/ZpM1zqYWiinmYNdBeot6\nI3PMf46J79s3Ao/WATC4CIc/3bzT8Q4t57dEjJvz5hwa/6PR9zyCIAydZKwBmjK4YtOD9EDxLMdv\nxSXkAP2X9rsLcWxKgf+yfsYBecBZ8MGbHwRvErkv58IBIgt3jjhsvAyTjeKF85+xDuiFjsscmTP2\nxGmp9dv+17TTFodQ8en1NFHQXADnR46VJe0EIXXIKDF3CfQgQuZVjp97OJfjHI88KNvngtq6zjmE\nBNVRxHNcHXcLeZttBCZ98JD13i8uvxf4DeZGcQz3UwC4884BHG1Xxuwfw7HeY/T+vtfcPPqA8eZa\nh8Ydwg+vzJuu6V0U1BWYCV+LgVoXCIIw8mSUmLsEepAsE69l2p7vf95bzD020YYRyFHAFmAfRpzP\nIhTiUWHjw58Wnra2e0yi8pR1rsOYsE54nxUb+xq/As4MXat/bD+98x3q/jtM9Wgp7P3DXmobagdu\n1eukFKa9O40pu6ZIsZEgpCgZJeZOgd49djc763a6vMmCugJmXzHbNd6eqFz3+Dr6+vsiRfVZjJjb\n29swcW6Aqx3jngImY0T9XcyE6TOO/V7x60sIxbnBeNkHMJ74xwmV7L8AoxhFDz2RH7rdOkc/MMv6\nnM0FdF0Rlv/u8OLbP9HOwuqFlD9WHpHx49cNckrJFJnsFIQUJu48c6XUfKXU60qpvyqlvp0Io+LB\n7pfS8usWbr/idgqeKjAx6U3QdXZXRM61HSOuL63naNFRI56bCB7DWZhskw6M99uCmbAMD3lcDqN2\njYJdhDJf+gjFtcO/6TZCRUE/BxqtaxQAdij6QkzYJhd6snoii4uexRQNfcFcq+iZIqa/PJ2yM8q8\nvxzHk0LH6A42T91MfWk9SzcsDX4nS65eQlmz+3jp3yIIqU9cnrlSKhu4F/gMsAfYopTaqLXekQjj\n4uWFHS/QdbnbQ20tdZfau2LEzk6EVgbKqD+OYnTuaA6UHjBtZ6/Gd8IyNy+XnnEO73k8JrSxCVxd\nb9uI9NR/hSn2KbXeb8Q8ARwHeqzrtgG1mPh5IeZGU4oR9b+HztJOTm4+mfHHx3sbqL1fOyeGvcJP\nElIRhNQn3jDLLOBvWus2AKXUTzE+a0qIeTTdD11jSjFhkj8T9K576OHkP5zMdKbzlzF/4ShHfePx\no7JGcaT/SGhDv3XOUkKeuF3NGR5yuQz3ZOalGOHWGPG27bPPtRN4yfp9Vui41umtzHhlBmXNZe6J\nzGcJ9W5xvrZwfidOURcEIT2IN8xyGvC24/1ua1tKEM1qQBFjDuMuEMLEmCeeOpFPnmeVZYa3lsWE\nIkonlob2tQFdwC8cY8cBPyWUxRJOeEZpD3C5x7hSQvnnnyaiN8u4onGuNrszXpnB9PHTKdxRaEI6\nZ0UeI2mGgpDexOuZR1UNVFNTE3wdCAQIBAJxXjY6olkNKGLMACmN3/rSt9xjN0H+kXzOPe1cvnvb\ndwG4ac1NtI9rd3n3gJkMPYCpGvVqrAWR36adjDIK+BmmT4xdfPQerlREJ/lZ+Z7edeC6AJvVZvNk\nUBranvtMLvsm7vNc6Sja9giCIMRHY2MjjY2NQz4+XjHfA5zueH86xjt34RTzkSSa+G/4mJajLZ7L\nutkCaY/d07GHvV17KZlYwiknn8JjTz7GMy89w+HewyYsck3YCS7G9FYB71TEp4GPOt4/ixFxMKId\nXiX6K8xk6dO4bhrqV4rF/+I9WZmn8lw9zlHAUVDHFM2zmoPjnC1+pSeLIIwM4Y7u3XffHdPxcZXz\nK6VygL9gZOYd4GXgKucEaCotGxeNl+lZAVlXwO1X3E7N7TW+Y9gIlGDCNIeAKzwM+AXwj9brNoL9\nXNiD8banWO81pn1ADmYC9DjerW5/jlkH1D7P+8AHMO9T86L/bL/0SGPElPxrraUniyAkiREt59da\n9yqlbgN+i6mTfDBVMlnCibbzX9XcKrY0b2H1E6vpOqkLdCilcWbDTKrmVnlWSXIp7t4oXuQR8shL\nCWWifBKTufIOIQHPAz7nOLbOGmNVcVKGCbvY57H5OdSX1vt+NnA/qew5Yw8tRPZdGajkXxaAFoTU\nI6MabQ1EsAlXG67GV9PHTeeV2le8x4afw/JIPZt0gUlZ/BTeqYd1wNnW6z9gCozspl2l1nb7ZuBc\nKciJs/HW7zCdG8Pz3X8DfNZt70B4NifLguKjxZwx4QxX+CV4jHjmgjDsyILOPhzTx9wiay36sGP/\njoiFFgZLafTLkglOYJYSKj76OaHc8FLrJ9u6vkcmCr8Djvp8COc/64V4P1c5TIvGgw4WCbXh+m46\nqjrYe3wvJZtKXOOlgEgQUpMTRszzVJ5nfnf3/G7WP7E+cqwHdvreBedcELHKvWsVIAilDxZjJiqt\nOp6c2pzQxGY4xZZ9fT77wx9wwkPdz7ptiCbdsGpuFWsXraV4W3HEd9P+iXYmF04OpjhW7qqUtUQF\nIUU5YcR8ydVLyD/qLW7hHqyXWOfU5jD7bNPX5YUdL9B7bm+o7N/ujfJq2IltcVVQdKSI4tpiej/S\nCzMwYRevsWAmO58eYL/FmKwxzHhlBrm/zI3IH8+tzWXfu/uiWt6tam4V5eeWe+4bVzSOuofqaPyP\nRuoeqhMhF4QUJaMabflhZ7Hk9Hp/3HAP1iXWVnZJ70d6efH1FwErDGN1IARCk5q/wnWMLa4Frxbw\nn6v/kzWPrWFzqSPWvgk4CJyEu5CnFHgeV/ogH2CaJtg8Cx+e8mFOOfkUjs84bsIk24BXgEI4/pHj\nNJc2s3TDUmDwVMJoCqwEQUhdMl7MI7JYBliv0yZCrC263/SJmdt545MIdUxsw4R1tsBJY05yH2fv\ny8LkkE+z3r9JKFPlJMf5CzBtBhw3ihJVwsqvrWTNY2vMmFLrHE7NbnOv/3nBORfwwo4XPFMzoymw\nspFCIkFIPTJezF1phKXWxk1QdKyIWefO8mwiNZiX6hK+NoyIdmDa0X4I46E71vRsp51LvnMJeUfy\njCBPBuZbJ63HpBw6s1KexizwPMux7T+BLijKsuy+anEwTTKIHTRrs85p2dBJJ/Vt9Wz67030XhQq\nG3WmL7raB7fvpv39dgpKCoLnd1aEeqV4bmne4nujEARh+Ml4MY/ITCk1Px9782O+6XVeXmp+XT77\nTt4XXNRhS/MWVj+ymi664GSM8JZiPPTwxZkBfamme1O3WfXHTlFsw9wEwpekuwQj+jbPAv8A7ISP\nTXXbHbEgRxvm5hJeMdqKS8jB3S0RQoK9dMNSOqo66KCDFlpcou+VY986vdXk5Ts6VEqlqCCMLGkr\n5tE+6g8lFmyf585772T7nu10j+mm++zuYAx6S/MWHn3+Ubq+4EgnsQuFLgR+6XNiRUioSzHes0+W\nIwcxk6vvY1YQKgXejLQ7fEGOHS/toH9Bf2Sb3ijXA/UTa1v0/dI2u07q8j1GEIThJy3FPNpqTogt\nFuzE9kK7Z7jFrrWolVX/sYreBWFdrpzrcfo0wAqmFtr54j0Yr96LkzC56BD00gsOFvjmeGutOWXi\nKRS8W8ARjkS26R1kGT2buHPsPY4RBGH4ScvUxIG8x3DsPOqh5EpHCFsbJlwx0UetbZE+AmpjWOGW\nM7Xwfet3Np7tdPkV7jREBVkbs7h81uUuu2sbaplx6Qw+f8fnqW+tZ7PazJExVj/18POWYfrHOHCm\nW9pEM18QvhJRQV1BRNqk8xhBEIaftPTMo1l0wslQF1uIEDa76GiAFrY5tTlUf7WamdNncue9d/LK\nzleM9+1cFagHeAIj/qXWsc6UxgPWtbD2vw/9M/t5+d2XgzH74NPJ+a1wvjX2d5ie6c6MHXtd0WOE\nqlI90i1tBnuS8ervMvuK2Tz6/KO0lsb29CMIQuJISzEfrpzo8Dj8BedcQOvzHr3OPVrYqo2KMcfG\n8M1rvxnsrlg1t4qa1TX88yP/TM/BHrMy0HGM4F6G8fTrMJktpdaJ6oA5hCZTX8V0Rix1L3nn2ezL\nDvWUQdYTWehRGl2kTZHSm7izYyzsdEubaNsGh98cZzbMlKXmBCGJpKWYDzUOPhC1DbXcdM9NtOv2\nYBOurTu3cnPVzbz4+ovuXuel1kGWl1t8tJiHv/ewp3jV3F7DzOkhoXt759vs3LsztJhzLyas0odZ\n1/NsQue/ENPXpTR0Pvvpw+/pxPb2+3f2wzRTsFTWUcbeo3t9+7SHM5QnGVlqThCSS1qK+XAsOrzi\nhyuMkDu87fbftbNx88ZgV0XXxGspUGpuImurB47BO4WutqGWL9z5BbouDMuEOYLp5dJGSOj7iejT\nYovvgBOR9hqfpdBV2sVpu07je4u/FzFpLKEQQcgc0lLMIfGeYNu+tsi2sxdC2zNtrmvCwDcRr5RJ\nILitZVsLXReHdci60IRF+tv6Tay8jFCF6FHMkh+z3OLr9XSiNiq01nAeEd78cNwABUFIHU6YfuaD\nUTS7iAOfPRC5/TdF7H9xf1Tn8EqZLPlDCRyD9k+3mw12z/Mwztx8Jvv276NreldEd0e1UfHxko+z\n8msrI24cTnHe9+6+mPuPO28+h/Yfgj4YP2G8VHEKQpIZ0ZWGlFJrMP5sD0aCrtdaH4znnMli6sSp\nNBMphFNPnRr1ObwmJds/0e6u5vTJ9z679GzGjR1HS2tLRCtafalm4q6JEcIa/nTidTMZKJQSMX4q\nJsQzETPhKlWcgpA2xJtnXg98RGt9HvAGcEf8JiWHlYtXGi/aQcn/lPDd274b9TkGnJS08cgrtxd8\nmFw8edBKzdqGWiqvryRwXYDK6ytdLW5jzan3zYjZaV765e4LgpB6xLsGaIPj7Uu4V61MK6rmVvEA\nD7hjyrfHFlOOqjqy1Pwqri2m/NzyiNj1c996zvR7CSM/Kz+qytdY5hKiuflIFacgpAeJnAC9AVMK\nk7bEO6nqNSlJHaZgx0HZ/jLWror0mKvmVnH71bez+per6ZofEnQ7VDJY35RYiebmI1WcgpAeDCrm\nSqkGoMRj1zKt9dPWmGqgR2v9uNc5ampqgq8DgQCBQGAotqYMfk2+nBkjL21/iQN5B0IdEh056V5C\nbhOel+703IO9y8MYqvfsefOx0xqR1EVBGEkaGxtpbGwc8vFxZ7Mopa4DvgJcqLWOUJV0yWaJFs9J\nxuYy1i5aG9VkZDxraFZeX0l9aX3k9gGyVQbDmRFzuPMwulczfsJ4cxO5SlIXBSFZxJrNEpeYK6Xm\nA98H5mit3/cZk1FiHoughqcOxiuOw3GDEAQhNRnR1ERgPWat+QalFMALWutb4zxnShNLk69EFzZJ\n4Y8gCH7Em83yoUQZki4M1uRruNfHlB4ogiB4kbbl/MlioCZfsSyaIQiCkEiknH8I+MXCh2OCUhCE\nE5ORjpmfkPiFOmJdNEMQBCFRpOWycanKcC2aIQiCMBgi5gnEa31Mu++KIAjCcCIx8wST6NxyQRBO\nTEa0aCiqC5xgYi4IgpAIYhVzCbMIgiBkACLmgiAIGYCIuSAIQgYgYi4IgpABiJgLgiBkACLmgiAI\nGYCIuSAIQgYgYi4IgpABxC3mSqlvKqX6lVInJ8IgQRAEIXbiEnOl1OnAXGBXYswZGeJZNHU4SUW7\nxKboEJuiJxXtSkWbYiVez/wHwO2JMGQkSdV/uFS0S2yKDrEpelLRrlS0KVaGLOZKqcuA3VrrrQm0\nRxAEQRgCAy5OoZRqAEo8dlUDdwDznMMTaJcgCIIQA0PqmqiUKgd+Bxy1Nk0B9gCztNb7wsZKy0RB\nEIQhMOItcJVSbwLna633x30yQRAEIWYSlWcu3rcgCEISGfbFKQRBEIThZ0QrQFOpwEgptUYptUMp\n9ZpS6hdKqZOSaMt8pdTrSqm/KqW+nSw7HPacrpT6vVJqm1KqRSm1JNk22SilspVSzUqpp5Nti41S\nqlAp9aT197RdKTU7BWy6w/r3+7NS6nGlfFYbH14bHlJKvauU+rNj28lKqQal1BtKqXqlVGEK2JR0\nLfCyy7EvKt0cMTFPwQKjeuAjWuvzgDcw2TkjjlIqG7gXmA+cC1yllDonGbY4OA58XWv9EWA2sCgF\nbLJZCmwntUJ7a4Ffa63PAT4G7EimMUqpUuArwAyt9UeBbODKJJjyE8zftZPvAA1a6w9jkii+kwI2\npYIWeNkVk26OpGeeUgVGWusGrXW/9fYlTEZOMpgF/E1r3aa1Pg78FLgsSbYAoLVu11q/ar3+ACNO\nk5NpE4BSagpwEfAAKZIKa3lx/6C1fghAa92rtT6YZLMOYW7Io5VSOcBoTLbZiKK1fg7oDNt8KfCw\n9fph4PJk25QKWuDzXUEMujkiYp4GBUY3AL9O0rVPA952vN9tbUsJLC9vOuaPPNn8K/AtoH+wgSPI\nVOA9pdRPlFKvKKX+XSk1OpkGWVll3wfeAt4BDmitn02mTQ5O1Vq/a71+Fzg1mcZ4kEwtcBGrbiZM\nzK042J89fi7FPLbc5RyeqOsO0aZLHGOqgR6t9eMjYZMHqRQucKGUGgs8CSy1PPRk2nIxsE9r3UyK\neOUWOcAM4D6t9QzgCCMfOnChlCoDvgaUYp6oxiqlvpRMm7zQJvsiZf7+U0ALnLaMBpYRg24OWAEa\nC1rruT5GlWO8l9eUUmAeYf6klIooMEo0fjY5bLsO89h+4XDaMQh7gNMd70/HeOdJRSmVC/w38KjW\n+qlk2wP8PXCpUuoiIB8Yr5R6RGt9bZLt2o3xnrZY758kyWIO/B3wvNa6A0Ap9QvM9/dYUq0yvKuU\nKtFatyulJgHDqgHRkiJa4KQMczOOWjeHPcyitW7RWp+qtZ6qtZ6K+eOfMdxCPhhKqfmYR/bLtNbd\nSTTlj8CHlFKlSqlRwAJgYxLtQZm/ngeB7VrrHybTFhut9TKt9enW39CVwKYUEHK01u3A20qpD1ub\nPgNsS6JJAK8Ds5VSBda/5Wcwk8apwEZgofV6IZB0RyGFtCCI1vrPsepmMhanSJXHqvXAWKDBSnW7\nLxlGaK17gduA32L+w/1Ma53UbAjgE8A1wKes76bZ+oNPJVLl7whgMfCYUuo1TDbL/02mMVrr14BH\nMI6CHW/98UjboZR6Ange+F9KqbeVUtcD3wPmKqXeAD5tvU+mTTeQAlrgsOvDju/KyaB/71I0JAiC\nkAHIsnGCIAgZgIi5IAhCBiBiLgiCkAGImAuCIGQAIuaCIAgZgIi5IAhCBiBiLgiCkAGImAuCIGQA\n/x9awfm/69/pVwAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's our convergence ratio $\\rho$:\n", "$$\n", "\\rho=\\frac{d(c,\\text{furthest target})}{d(c,\\text{closest source})}?\n", "$$\n", "\n", "Well, what should $c$ be, really? (Technically, we can use any $c$, so we're free to choose whichever we think is best.)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "c = np.sum(targets, axis=1) / targets.shape[1]\n", "c" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 21, "text": [ "array([ 10.05952737, 10.01047655])" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "pt.plot(sources[0], sources[1], \"go\")\n", "pt.plot(targets[0], targets[1], \"ro\")\n", "pt.plot(c[0], c[1], \"bo\")" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 22, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEACAYAAABBDJb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8VeWV979PLiThZmIEA6IGYvuqZWrBgRennXBaC2GM\nt04vqLXiraMVgV7e2kpAYynvdOCdTgFxbOtltF7q1GktmjYmlglx6o3WKA2X2gaDgsRouENCSPK8\nfzx7n7P3OXsn5+Sc5FxY388nn5yzL89e5xB+e+31rLUepbVGEARBSG+ykm2AIAiCED8i5oIgCBmA\niLkgCEIGIGIuCIKQAYiYC4IgZAAi5oIgCBlAVGKulHpIKfW+UupPHvu+pZTqU0qdmnjzBEEQhGiI\n1jN/GJgXvlEpdSYwB9iVSKMEQRCE2IhKzLXWLwL7PXb9ELgjoRYJgiAIMTPomLlS6gpgt9Z6SwLt\nEQRBEAZBzmBOUkqNBJZiQizBzQmxSBAEQYiZQYk5UAaUAm8qpQAmAX9USs3UWrc7D1RKSfMXQRCE\nQaC1jtpJHlSYRWv9J6316VrryVrrycBuYHq4kDuOT6mfu+++O+k2pItdYpPYdDLYlYo2xUq0qYlP\nAi8BH1VKvauUuiFcr2O+siAIgpAwogqzaK2vHmD/lMSYIwiCIAyGk7ICNBAIJNsET1LRLrEpOsSm\n6ElFu1LRplhRg4nNxHQBpfRQX0MQBCHTUEqhh3oCVBAEQUgtRMwFQRAyABFzQRCEDEDEXBAEIQMQ\nMRcEQcgABlvOLwiCkDI01tRQt3YtOceP05OXx9zFiymvrEy2WcOKiLkgCGlNY00Nzy9ZwsqWluC2\nKuv1ySTokmcuCELa4OWB161dy/fr6iKOXV5RwYra2iRYmRhizTMXz1wQhLTAzwM/WlDgeXx2V9dw\nmZYSyASoIAhpQd3atS4hB1jZ0sLevXs9j+/Nzx8Os1IG8cwFQUgIQz0JmXP8uOf2wpISqgoLXUK/\ntKyMeYsWJeza6YCIuSAIcTMck5A9eXme28dPmsScRYtYvm4d2V1d9ObnM2/RopNq8hNkAlQQhASw\nrKLCcxJyfnEx502dmhBP3euGsbSsjHlr1mSkcMsEqCAIw45fCOS8jg6qN20C4vfU7fNOdg/cj6jF\nXCn1EFAJtGut/8bathq4FOgGWoAbtNYHh8JQQRBSF78QSK/j9cqWFpavWxeX+JZXVop4+xBLNsvD\nwLywbXXAx7TWFwBvAXcmyjBBEKKjsaaGZRUVVAcCLKuooLGmZthtmLt4MVVlZa5ttwJ7gUbHtkSn\nC6bCZ08VovbMtdYvKqVKw7bVO96+Cnw+MWYJghANqVL9aF9r4V13cXjbNs7u6uIaoByoso8hsemC\nqfLZU4VE5pnfCPwmgeMJgjAAfrnX9evWDbst5ZWVFJ12Go92dbECI94AK4F6zGTlnBjSBQfyulPp\ns6cCCZkAVUpVAd1a6ye89ldXVwdfBwKBjFhvTxBSAb+Jx2RVP/rZ805RETfFkHUSjdedap89Xhoa\nGmhoaBj0+XGLuVLqeuAS4GK/Y5xiLghC4vCdeExS9aOfPWfNnBlT6MPP63ZOoPpda3tzM9WBQDAd\n0h4v1Tsqhju699xzT0znxyXmSql5wLeB2Vrr9LwdCkIaM3fxYqpaWlKm+jEee5wVpH/dsoVGQqEa\nG6fX7XWtW3JyWNjRQbmVDnnTli2cAvywrS14jNPDz6TWubGkJj4JzAZOU0q9C9yNyV4ZAdQrpQBe\n1lrfNhSGCoIQSarlXg/WHs+wij2m4zjnE0f4tbY3Nxshdxw/oa2N74ddy/bwgYyaQI0lm+Vqj80P\nJdAWQRAGwVDmXg/Wc7WrvqOt/vYMqwDLCYm5l4fv/OzVgUDQI7fxE7jsrq6oQjnphFSACoLgiZe3\nfOuLL/L4lCmMO+MMT2EfbLpgfxOnt0ycyIG2NiYUFFC3dq3vWF4x9B6f6/Xm55PjM1GarhOoIuaC\nIHji5bne39nJ8q1bWbF1K1UtLTRv3sx7L78c9Nz3ffAB91nnNGKqCnNbWli/YAE88oivoPtNZuaW\nljJq715+3NEBHR3Q3Mw3t2yBBx6IGMsZQ7evvSU3l39Sip90dwePW1pWxqRZs9h0772e10zX1rki\n5oJwEhJN+MQ39c/6vbKlhfmrVvFUZ2dw33WWEDYCz2NCJQB0dFC1ZAng7VX7TZx2HzzomrwEM5m5\n8K67Isax39+8fDm527fz711dcOIEjcD8ggImlJUx5owzmDRrFnsee4yFHR1UOW0kvVvnipgLwklG\ntKEQ21u2vdwcTNjCKa3nOYS8EThuhSjqcIsk+Mej7RvLh/n5zC8uZsKECYw54wzmLVrEg9de6/kZ\njrz9tuf28spKs4xcU1NoG1De2cnyM85gRW0tyyoqXJ99OeYGtaO4mNvSuAOjiLkgnGREO/E3d/Fi\nbtqyhZK2NpcwfxOCaYN2Iy3bE1+IyULJ9bl2++7dLKuoCD4RTLzoIvY89hgVLS3UAROA7ceO8dHP\nf57yykruU94dYLs9txoGKiZy7i8nNMFaPXVq2go5iJgLQlozmGyTaCsnyysr+fmECawMD3NgvNnH\nCwr4suWZh3vi671sBdTOnXx/69bgtltffJGPd3a6QzKdndy6ahWNM2agi4qo2r/fHQoBRpWW+n6+\n9kOHPLd/cPgwkHqFVolCxFwQ0pTBZo70J2bhN4febm8f+J2iIv734sU88uMfU9fWRjNwJTAS6MOE\nY75pbbNDNH/MyuJZR1gGzITqfOCpsPHv7+xk4V13MfrYMdoIhUJ6gXcKC/mnFSt8P183RMbCgeNW\nmmQshU3pVFQkYi4IaUosedJOUdp36BA3lZTwoMPjtjM8IlIRCwo8KzHPmjmTqTNm8Ncf/5i5wDGM\nx25TBWwGDhAqRqnu6/P8HAqYDxwHCoFOTHVi+5Yt/KKnh0ZMoy6b/MmT+xXUSWPH8hncN4B5wMax\nY4HoC5vSrSujiLkgpCnRhku8ROmbJSVcNWUKefv20a0Uo8aO5cCGDcG0Qpv7OzuZX1BAucOjtr3Y\nurVr+WFbG8twCzkYr3g+7qpCv5zvbqAIt3d+K7Cnp4dq67y5OGLbY8f26zH35OW5YuE29WHVowMJ\ncroVFYmYC0Ia4RSx7c3Nnl5zeOzXS5R+2NbG/IICHrFFev/+YFphOFlKRWSZlFdWsnH1ahqBd31s\nLQh7Pxfv8MfXMZOnzs9yP2ZZs2rrvbO0f/ehQ/16zInqV5NuXRlFzAUhTfCsyMzJgZ6efkvefdfn\nDItfn+UjUuccO8aKY8eoKixkjiMcsfvQIZ4HzvSxtzPsvW3jJcBMQuGPZuCv1s96TIjlNkI3g0ZM\nKOZBYH1BAXkHD7Jy507X2E6P2SuMMmnWLOrWrmXj6tVRx77TbaJUxFwQ0gTPisyeHq4qLmbj1Km+\nsd9o1ucEmAj8o1J8XOtgaKOW0FqR4SGG7oMHWYkR23CP+yZgN7AAeMSxvRb4KCGP+z5gC5Ehlvsw\n4ZX5wGiMkAPQ2cl1773n+XmcHrNT1Acb+061jpQDIWIuCGmCn4d97tSpVIctauAMx7QdOsQ3S0pc\nlZS3ONIKwQjyHuCXjsZYtwIfxx3Gye7qorGmhp8vX87xt99mGUb0KzA55oeBs4ELMTnjfwauAEqA\n8ZgbQ51jvE14ZLIAl2F6a9djsmPuA97DCNZxnycIP495sLHvVOtIORAi5oKQJkT72O/lid5UUsLC\n6dMZN2YMvfn5XDBrFs8/9hjl1jFeFZv3YwR6GaHqz+3vvsuJJUtcE6VVGDEvwoRJIkr5rWPmWK/b\ngJuBB4iMq9ucgrmJbARWgCt9sRH4KvBTx/FeHrN9Q9v96qvBm074jWkghrIjZaIRMReENCGax/7G\nmhrWL1jAeR0dLgFb0NbG+hMnGDd1Klprps6YwdQZM4Je57tbtsD+/RHXPIy7AOjSnTsjy/QxaYA5\nGKFdj9vbtmPe/wqcjhHxRuucdp/Pame+2KGg8xz7bEG+LCuLsvPPd03KOr+Hgfqje+XVp3Ie+UCI\nmAtCmjDQY78tYE91dATPqcJMMO4Bs93q913V0kLFmjWsqK0FYFlFBdQ5AyCGsx2vG4FTfWx7FyPM\nJ3ALr9NLXwbBhSLs1MH7iPSyb7H2LSUUrw+P75cDG/v66LX6rYQzUH90v7z6VM4jH4ioxFwp9RAm\nU6hda/031rZTMTfgs4FW4Eta6wNDZKcgCPT/2O8nYF4VluExYy+v/6u5uXzlxInQ+MBZPnadCXxA\nSLSd59ievJfY3AZ8Ni+Pq0aPpm/fPo5pzTFMsVGhdf6/Ad/wOLeXUAw/3Lv2m194F7jKaqiVbnnk\nAxGtZ/4wsA541LHtu0C91nqVUuo71vvvJtg+QRCixE/A/OLS4dkf4Pb69/z+95Q7xDwH+AyRmSs3\nAlmEvHZnPrlTYHqAGkazlnM5zijyOMpidlCYC+dceCF/3byZO/bv5xncRUg35uRwb1YW5c6e5Biv\n/VGfnPP9VrVnOGcC2VZDrY2rVw/4vaQTUYm51vpFpVRp2ObLMSmhYLKPGhAxF4Sk4TdB2mHloofj\nnDiN8G4XLaJ9926qtm4NCrc9wn5MyuFxTNrgsSlT6Nu9G2WJrR2TXg78xXG9MYzmWi7hgOM54TXm\nc/bRWp6uq/OMtwM81NPDJUrxBYw3fhyT3vjDESPo3bGDB8Ly5Ve2tHDztGncWlDA/c7KVcwNwK4E\nHWweearG2eOJmZ+utX7fev0+Zm5DEIQk4TdB+g/XXkvVY4+5s1uUYu/vf8991dVMnTHD07vtHTuW\nCkI9TrZjQik/dlzzRiC7t5eDfX30YfLLHyQUE78R03Drh8BGznUJOcABnmKEnsFt/IHxhBa+CGec\n1kzG3FD2Av8IlHd3c53P8ZPGjmX8HXcwf9UqzuvsDBYo1TomjAeTR57K/VoSMgGqtdZKKd+VW6ur\nq4OvA4EAgUAgEZcVBMFBfxOkjTNmsGDJEk60tFAGLNCa8iNHuHXlSl456ywe9aioXDh9Os+XlQWF\nyzmBafMQsHzXLm4BngCuIST+W4FPA1MxcfstjPK0O5dR3Ge9XuZ5hInVV1uvqzDx3nJgBO7USTt7\npzc/n9usG1W99X3Uh00YDyaPfCjj7A0NDTSE1QvEgop29WwrzPKsYwJ0BxDQWrcppSYA/621Ptfj\nPB3tNQRBGDrmn3aaK9PF5ks5OfynRxhmQWEhRZMm0bJjBxN7ejiMEexwqjFCGi70jcAPgHHAKGAD\nf8seNkecP4UZPMwfKCcyR90OvUzAhHRssb4a+BpExNdvAnYCpeXlPGxl7kRDtKGT6kCAao9xq2fP\njijcihelFFpr79U5PIjHM9+ACZ39i/X7mTjGEgRhiCnwEGwI9fkO56wDB1hxwCSoVeEfAuklUkhs\nUf6NY1srO9DM5z1HqKWML7GGHTxvvbfj7VcDYzEdFZ2BGTtXfAQm0yW8W+ODmCeDtsZGvnPNNfzL\nE163nzBbYwidpHK/lqg8c6XUk5jJztMw8fG7gF8D/4l5AmrFJzVRPHNBSA38PPPK0aP5xOmnu2PH\nmBizs2LyZszEmDOT5Rbr9wFMtah9vFdIBuAqRrOZczmTUeRzlEXsoJIjgBFhe8mJ5YD2GWM5sA/j\n8Vd77K+2fj6TlcXfffazA3rbyyoq+L5Hjv3N06ZRMm6c63wgQviXlpUxbwjWDh0Sz1xrfbXPrs9G\neyFBEJLL7Ntv59aVK7nf4aHfkpND5be+5aoGbf7jH1l85EhEa93REJwQ3Z6dTU9vL98kJOBftX6X\n4y8sORzhK/zBU4Rtz9++kWz0GeOvwCFMOMWLXsyTweS+PpdI+3nbXimdjUDu9u2uhaHtQquKNWtS\nsl9L1DHzQV9APHNBSBnuq66m8d57ye/poSsnh/Lbb+c2R4IC9OPBZ2dDfj45x4/T3dvLbz3+X1di\nHt8PYB7dw7kS43F/i9BycvbE5f/D5IHPx9wQPgf8ymOMf8jK4oy+Pq4jsgeMfSOow8err6iIqBj1\n8sz9niy8zh8qhjNmLghCEognz/m26uoI8Q4fu7uri+sw8VN7wnEp0AXMOnqUlZhJMi9Ow0xCPkJk\ncdHN2dl8s7eXNcDPcJfw34oR4UaMR14PHMzL49asLFeu+C0FBYweN45J77wTfCL4EsarP4dQaOjf\nfezzKgjySlF8Jz8fPI5N5YIiEXNBSCOGMs/ZHvtXR48Gt30NkwZ4HdDS2xvsX77PZ4xujFf8IKFm\nWvY6nEfOPpv6j3yEnhde4Ke97m4r91vHnouJdy8tK6N6zRqaN2925Yp/ubOTJz74gN3WeXY++3eA\nN4AdmAya0T72eU1UeqUojm5vB0eIpb/zUwat9ZD+mEsIgpAIqubO1RoifpZVVAzd2KBvyc/XS0Bv\nAr3U8dt53J2gLwZ9nccYGvTds2drrbW+rrDQez/oq4qK9LKKCr3puee01lp/bdo0z2MvUUp/GXSV\nZYt9/Rus9572lZUFxx2ITc89p5eWlQ36/ERgaWfUWiueuSCkEYlalzKW5lTvFBWRW1rK6KamiL7n\ntuf9R0zHxLswnrxfIQ/AqMmTI7zeRuBVTOVmR3s7jy5fzuPf+Q6Ht23ztGmG1sFJ1JuAe4DJwPW4\nM3CuKi7m3KlT+eDwYY5rzcbVq6lbu3bA0FS6LUwBEmYRhLQiEf1Edh86xNi9e10rD/XXnGr05Mlo\nrdmSm8toR+MtO8QBJjSyGdNuV2EE3J7gXI+5AXzi1FNZVlFBb3c3X8jO5tzeXnIwWSlHgN8C7NoF\nu3ZRhQmZ5BAqSnIuLuEM0jwILJw+ncKDB4OLbYAp3b9tzRogMp0wmtBUOi1MAUiYRRDSiVge/zc9\n95yumjtXL5k6VX+poCAYjqgKCz9ssrZdPmqUvqWgwLXv6yUl+saSkuD7r/mEUJaBvhL0531CHNeD\nnpedHbzeN8L226Eb57bP+Rxzp8exS6ZO1Zuee04vq6jQd8+e7QrVDGVoaihBwiyCkLk4H/8P79nD\n3r17KczPp27tWtf+/lbacf6nd5XPHz1KIzC/oIAJZWWMOeMMDre386AjJHIVJvPkfscYdjrgW5iF\nKbyWoHsYuMqa9PSq3HQuHGHzcY9jLsEsPL3RGsf21ve89RZAMG3QfhLZuHo17775Jl6kcmbKYBAx\nF4Q0wxbs4KpCHR2wdasrdNDfSjvO7PBw4S0Hyjs7WThiBCtqa6kOa4pXjgml/CNGbIPdCDGLSfTg\nLyp2IMhvf3i7gPDVhcCU+D/geF8F/AQ4pbubB7/yFepmzGDiRRexx9El0q951/bmZqoDgZRqYxsP\nWck2QBCE2PHr3le/bh3Qz0QpocUjwF9YD2/bRmNNjWeM/jbMQhR/tsarxwj6OGvs7T5j2n6wd4cY\nt3jfSGgBaCcfCXu/EhNvfwB4ZP9+vl9Xx5ZVq6hwfDfOz2tzS04OCzs6qN60ie/X1fH8kiU01tT4\nWJYeiJgLQhoyUFaL70QpxrveW1LCwunT2VFU5Hnc2V1d1K9bZwpqyspc+5Zi8s7LMJOTK6wx52JC\nNrMxoRgnX1WK7sJCwIRJwvd/A9OnvBpTJbotO5tHlbv48db8fE+B/0TY+/s7O6l3vC/HtCG4uqiI\n6tmzmV9czJd7elwhHeeNMF2RMIsgpCEDZbV4VTXeUlAAU6awfNIkrrf7nNfU8LUvfIF/d8SP7Rj4\n47t3U7d2LR/m5zO/uJgJEyZwYsQIut57j3IrE8ZeeAKMaP6ksJADU6ZwuKODy/bsYfSIEeiCAspv\nvz3Y/+Uvr73Gbfv3B9MaP8CsHnQoO5s3Ro5kTHY2zxw4ECw62pWfz5jzz6dHa8q9Cnk8vofwkE05\nUD9zJtVW6Kjco41tusfQRcwFIQ0ZaJUcrzzpL3vkSZdXVvLoeeexvKkpWKk5z9qndu7k+1u3Bo+t\nKiyk4gc/CI7bvns3+//yF5Z3d9OO6ceijh5Fa80t69d7xqDLKyuDYhreyKv6U5+iJy8v2CclmPrY\n1cXyceOYs2gRVWGTujdYP+FsLygA55Jxju8mldvYxoM02hKENKWxpia4ik5vfj5zBlnU4pX5Mr+g\ngKfC1tYEd6Mpu0FV+IISAFVlZVRYbWHDC5T2ffAB93l42MsrKsju6up38Yfwzzxh1izXZCcY4Z50\n7bXsfeUVz+8m/PM2AuutDJ7REyemzGSoNNoShJOERBW1eHnxE/bsgebmiGOdoQg7bu+VimgvpQaR\nBTs3lZTwzZISV9GS7TnbKZbh2F6z12dudLTvjaZS0/l523fvRu3caW5czc3Q3Jwya3rGioi5IAgR\nIrmsosJTzJ2hCDtc4Ztq2NXlmXXzYFsbN0+bxvILLvAUYK/w0aRZs1hWUeHZKXIwNzX7nGUVFa5Q\nEiRuTc/hJm4xV0rdCVwL9AF/Am7QWntPtQuCkBZEs3K9fYwKE2ub3vx8cnwmFSeNHUu1R19wr6eE\nSR6hlER5z4nqdZMSxFIuGv4DlGJaK+RZ758CFoQdM5QVr4IgDBF+5fHhx9w0bZq+NT/fs8VAIkrp\nk9Ep8qqiIl01d+6wdkkMh2Eu5z+EaZY2UinVC4wE9sQ5piAIKUA04Qv7mMaaGt+49UAe/kAMpffs\n+QQCfG3/fsrr6tIqfh6XmGut9yml/hV4B+gEntdav5AQywRBSBv8hD8RrWSHMpXQad87r77KWQcO\nuBayrmhpYf2CBWycOjXly/7jSk1USpUBzwJ/DxwEfgE8rbV+3HGMvvvuu4PnBAIBAmH9HgRBOLnp\nbyk8r9TJpWVlzLNSHxNFdSDgSoscKOUy0TQ0NNDQ0BB8f88998SUmhivmM8H5mitb7befwWYpbVe\n6DhGx3MNQRAyG88Oj2Gimaic+v4IX9g52Ys6D3ee+Q5guVKqANNH57PAa3GOKQjCSYRf0zBneuBw\nLBQRHj/vL+UyFYk3Zv6mUupR4A+Y1MTXMR0pBUE4iegvTDIQqZIeGB7f397cbNoLh5GqZf9x55lr\nrVcBqxJgiyAIaYhnmCSGLJBU6pXifAJorKmJ6AUTaybOcCIVoIIgxEU0YZL+iKZAKRmk26LOIuaC\nIMRFPGESOzxztKCA+cXFFJaUMH7SpJQRzXRa1FnEXBCEuBhsmMQzPFNYOCSZKicDstKQIAhx4bka\nUVkZcwYIkwy09J0QG+KZC4IQF4ONLadKFkumIGIuCELcDCa2nEpZLJmAhFkEQUgKgw3PCN7IsnGC\nICSN4SjTT1diLecXMRcEQUhBYhVzCbMIgiBkACLmgiAIGYCIuSAIQgYgYi4IgpABiJgLgiBkACLm\ngiAIGUDcYq6UKlRKPa2U2q6U2qaUmpUIwwRBEIToSUQ5/xrgN1rrLyilcoBRCRhTEARBiIF4F3Q+\nBWjSWk/p5xgpGhIEQYiR4S4amgx8oJR6WCn1ulLqp0qpkXGOKQiCIMRIvGKeA0wH7tNaTweOAt+N\n2ypBEAQhJuKNme8GdmutN1vvn8ZDzKurq4OvA4EAgUAgzssKgiBkFg0NDTQ0NAz6/LgbbSmlGoGb\ntdZvKaWqgQKt9Xcc+yVmLgiCECPD3jVRKXUB8AAwAmgBbtBaH3TsFzEXBEGIEWmBKwiCkAFIC1xB\nEISTEBFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAyABFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAy\nABFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAyABFzQRCEDEDEXBAEIQMQMRcEQcgAEiLmSqlspVST\nUurZRIwnCIIgxEaiPPMlwDZAlhQSBEFIAnGLuVJqEnAJZh3QqJc4EgRBEBJHIjzzfwO+DfQlYCxB\nEARhEMQl5kqpS4F2rXUT4pULgiAkjZw4z/874HKl1CVAPjBWKfWo1vo650HV1dXB14FAgEAgEOdl\nBUEQMouGhgYaGhoGfb7SOjFzlkqp2cD/0VpfFrZdJ+oagiAIJwtKKbTWUUc8Ep1nLqotCIKQBBLm\nmfteQDxzQRCEmEm2Zy4IgiAkARFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAyABFzQRCEDEDEXBAE\nIQMQMRcEQcgARMwFQRAyABFzQRCEDEDEXBAEIQMQMRcEQcgARMwFQRAyABFzQRCEDCDelYbSjpr6\nGtY+sZbj+jh5Ko/F1yymck5lss0CUts2QRBSm5NKzGvqa1iyfgkt01qC21rWm9fDJZp+gp0KtgmC\nkL7EvTiFUupM4FFgPGaloZ9ordc69qfM4hQVN1RQV1oXuX1XBbUP1Q759b0Eu6ypjDUL17D2ibVJ\ntU0QhNQi1sUpEuGZnwC+obV+Qyk1GvijUqpea709AWMnlOP6uOf2rr6uYbn+2ifWuoQcoGVaC+ue\nXJd02wRBSG/ingDVWrdprd+wXh8BtgMT4x13KMhTeZ7b87Pyh+X6/Ql2sm0TBCG9SWg2i1KqFJgG\nvJrIcRPF4msWU9ZU5tpW9noZi65eNCzX70+wk22bIAjpTcImQK0Qy9PAEstDD1JdXR18HQgECAQC\nibpsTNgTieueXEdXXxf5Wfksun3RsE0wLr5mMS3rW9wx89fLXDYkyzZBEJJLQ0MDDQ0Ngz4/7glQ\nAKVULvAc8Fut9Y/C9qXMBGiyqamvYfmPltPa3orO1kw5fQrfu/17ItiCIEQw7BOgSikFPAhsCxfy\nTCeWvPBgJsvMkFd+sOngcJkqCEKGk4jUxE8BjcAWTGoiwJ1a61prf0Z65v2lGXoJuistshVoAbKg\n+Fgxj6x8RLxzQRBcDLtnrrX+H07CtgD9pRl6CXMwk6UVI+QXm7cddLBk/RJgaIqDwp8eLjrvIl7e\n/rJUmQpChnFSVYAmkljzwoOZLA4ht+nvJuCFLdB73t9D2wdtTJgwgYnFEyOEOeLpoRU2/tdGei7p\nCV1bqkwFISMQMfdhoHh4rHnhwUyWrBbP/dEWBwUFuqgFjgCXGu++meagMIN5ctjcvJn9l+4PndyC\nS8gh9huJIAipiYi5B9H0SekvzdAL+7wFVQvooCNif/O2ZgLXB/oNfdTU17Bg6QI6RnXAX4EZ7v0t\n01pYvGIjRNCvAAAYlklEQVQx6lRl7Ho7bACfYJhUmQpC+pOQ1MR+L5CGE6DR9nCpqa9x54VfPXBe\nuNeNIqcmh55xPXAYyIIRH45gUtEkenp7eG//e4wYOQLdpek+0U3vxF7oA8owIZsyoNRxgSeBq63X\nv8Md0gl/7/O5BEFIPrFOgJ50E5fREG08vHJOJbUP1fLtL38brTWrH19NxQ0V1NTX+I5dOaeSNQvX\nULGrgtlvz6a4pjgk5BcDn4buL3az8+BO3ul6h56rejh2+TE6v9RJb0kvTLaOs4V8Z9gFnP+iZRgB\nd7zP+Y37YUyqTAUhM5AwiwcR8fBWoAX+cOwPVNxQ4QqDRNu61i8GP/WSqXTs6oAvhhlRSKQXfTGw\nEeOJ26+d9+0XgFGO96XW741QdLyImefPZNbnZ/HKjlekylQQMgwRcw8WX7OYLau30PbJNlcq4VGO\nUkeda6JxwdIFdFzqjoGHTyr6Cf7mps3s3L8TTvMwwu+ZSYW9/hD4b0yG/znW9ueAS63XpVC2r4w1\nt3vnvwuCkBmImHtQOaeSCT+aQNvGNuggwmtumdbC/P8zn76RfXSO6vQcwxmS8ctJv/fpe+ms7HSH\nQmwOYbZnEYqRlxIqywJoAy7CHTMHeJOg157TnsO1118rQi4IGc5JHTOvqa+h4oYKAtcHImLdY8eN\nhc/g7TVjvPTOeZ1GaD1wpij6xeB7sqw0wTHAs44drdZvK4YejJE/A0yx9j0LI46PIHdbrnvQF4AL\nMLZ/GnrG9fDYS4/1G8ePhv6+K0EQkk/GeebR9ksZKNYdjJv7iDW91m97ktER33amKNbU19C8tdkI\ntNPDBvq6+sz2w8DpwC8w/yJHgU+FXe9i4AlMuuFOGHl0JNmnZNPb04t+SlOUV8QRjtD5ic6Qp/4C\nMBZa9rXwleVfYcYTMwZV8SlL2glC6pNRqYleFY8FTQWUnVUWUSHpl3447bVpjBs/jvc63qPlnRYT\nRjkOXOY46BlMwc61BK/DTkDBmINjeHLVk77relILHIdcnUvvsV76uvugCMgmFOcGc4MISztU/6U4\nf9L5dB7sZFf3Lnov7Q3t3ADj+saxv2s/PSN7YDTmx86Sseivf4wfyV5uTxBORmJNTcwoMfdsZuUj\nZIHrA2yavMk9QCvk78ina14o3p21IYu+/D7YT2iV0ynAG5gJyCsc578Ao/eP5sK/vZA8lccHHR/Q\nVNwUbKoV9Mx3YsIgrZj49mg887/ZaB1nUwPFFHOw8yA9RT2ROea/wMT37RuBR+sAGFiEw59u3ut4\nj+YLmyOOm/32bBr+o8F3HEEQBk8y1gBNGVyx6QF6oHiW47fgEnKAvsv73IU4NqXAf1o/Y4A84Bw4\n8vaR4E0i97VcOEBk4c5Rh41XYLJRvHD+M9YCPdBxhSNzxp44LbV+2/+adtriICo+vZ4mCpoK4MLI\nY2VJO0FIHTJKzF0CPYCQeZXj5x7O5QQnIk/K9rmgtq5zHiFBdRTxnFAn3ELeahuBSR88ZL33i8vv\nBX6LuVEcx/0UAO68cwBH25VR+0ZxvOc4Pf/dY24evcBYc61DYw7hh1fmTee0TgpqC8yEr0V/rQsE\nQRh+MkrMXQI9QJaJ1zJtL/W95C3mHptoxQjkCGAz0I4R53MIhXhU2PHhTwvPWts9JlF5xhrrMCas\nE95nxca+xq+Bs0PX6hvdR888h7r/DlM9Wgp7f7+Xmvqa/lv1OimFKe9PYdKuSVJsJAgpSkaJuVOg\nd4/ezc7anS5vsqC2gFmfm+U63p6oXPvEWnr7eiNF9QWMmNvbWzFxboBrHMc9A0zEiPr7mAnT5xz7\nveLXlxGKc4Pxsg9gPPFPECrZfxlGMIJuuiM/dJs1Rh8w0/qcTQV0fi4s/93hxbd9so0FVQuY+vjU\niIwfv26Qk0omyWSnIKQwceeZK6XmKaV2KKX+opT6TiKMige7X0rzb5q543N3UPBMgYlJb4TOczsj\ncq7tGHFdaR3Hio4Z8dxI8BzOwWSbdGC832bMhGV4yONKGLFrBOwilPnSSyiuHf5NtxIqCvoF0GBd\nowCwQ9EXY8I2udCd1R1ZXPQCpmjoi+ZaRc8VMe21aZSdVeb95TieFDpGdrBp8ibqSutYsn5J8DtZ\nfM1iyprc50v/FkFIfeLyzJVS2cC9wGeBPcBmpdQGrfX2RBgXLy9vf5nOK90eakupu9TeFSN2diK0\nMlBG/GEEI3NHcqD0gGk7ew2+E5a5ebl0j3F4z2MxoY2N4Op620qkp/5rTLFPqfV+A+YJ4ATQbV23\nFajBxM8LMTeaUoyo/x3sL93PqU2nMvbEWG8Dtfdr58SwV/hJQiqCkPrEG2aZCfxVa90KoJT6OcZn\nTQkxj6b7oeuYUkyY5E8Evetuujn196cyjWn8edSfOcYx33j8iKwRHO07GtrQZ41ZSsgTt6s5w0Mu\nV+CezLwcI9waI962ffZYO4FXrd/nhM5rmdbC9NenU9ZU5p7IfIFQ7xbnawvnd+IUdUEQ0oN4wyxn\nAO863u+2tqUE0awGFHHMYdwFQpgY8/jTx/OpC6yyzPDWsphQROn40tC+VqAT+KXj2DHAzwllsYQT\nnlHaDVzpcVwpofzzzxDRm2VM0RhXm93pr09n2thpFG4vNCGdcyLPkTRDQUhv4vXMo6oGqq6uDr4O\nBAIEAoE4Lxsd0awGFHFMPymN3/7yt93HboT8o/mcf8b5fO/27wFw8+qbaRvT5vLuATMZegBTNerV\nWAsiv007GWUE8BSmT4xdfPQBrlREJ/lZ+Z7edeD6AJvUJvNkUBranvtcLu3j2z1XOoq2PYIgCPHR\n0NBAQ0PDoM+PV8z3AGc63p+J8c5dOMV8OIkm/ht+TPOxZs9l3WyBtI/d07GHvZ17KRlfwmmnnsbj\nTz/Oc68+x+GewyYscm3YAJdiequAdyris8DfON6/gBFxMKIdXiX6a8xk6bO4bhrq14pF/+I9WZmn\n8lw9zlHAMVDHFU0zm4LHOVv8Sk8WQRgewh3de+65J6bz4yrnV0rlAH/GyMx7wGvA1c4J0FRaNi4a\nL9OzArK2gDs+dwfVd1T7HsMGoAQTpjkEfM7DgF8C/2i9biXYz4U9GG97kvVeY9oH5GAmQE/g3er2\nF5h1QO1xPgSOwNxPz43+s/3KI40RU/KvtZaeLIKQJIa1nF9r3aOUuh14HlMn+WCqZLKEE23nv8o5\nlWxu2syqJ1fReUon6FBK44z6GVTOqfSskuRy3L1RvMgj5JGXEspE+RQmc+U9QgKeB3zecW6tdYxV\nxUkZJuxij2PzC6grrfP9bOB+Utlz1h6aiey70l/JvywALQipR0Y12uqPYBOuVlyNr6aNmcbrNa97\nHxs+huWRejbpApOy+Gm8Uw9rgXOt17/HFBjZTbtKre32zcC5UpATZ+Ot32E6N4bnu/8W+Ae3vf3h\n2ZwsC4qPFXPWuLNc4ZfgOeKZC8KQIws6+3BcH3eLrLXow/Z92yMWWhgopdEvSyY4gVlKqPjoF4Ry\nw0utn2zr+h6ZKPwOOObzIZz/rBfj/VzlMC0aDzpYJNSK67vpqOxg74m9lGwscR0vBUSCkJqcNGKe\np/I887u75nWx7sl1kcd6YKfvXXTeRRGr3LtWAYJQ+mAxZqLSquPJqckJTWyGU2zZ1+uzP/wBJzzU\n/YLbhmjSDSvnVLJm4RqKtxZHfDdtn2xjYuHEYIpjxa4KWUtUEFKUk0bMF1+zmPxj3uIW7sF6iXVO\nTQ6zzjV9XV7e/jI95/eEyv7t3ihvhA1si6uCoqNFFNcU0/OxHpiOCbt4HQtmsvPZfvZbjMoaxfTX\np5P7q9yI/PHcmlza32+Panm3yjmVTD1/que+MUVjqH2olob/aKD2oVoRckFIUTKq0ZYfdhZLTo/3\nxw33YF1ibWWX9Hysh1d2vAJYYRirAyEQmtT8Na5zbHEteKOAn636GasfX82mUkesfSNwEDgFdyFP\nKfASrvRBjmCaJti8AB+d9FFOO/U0Tkw/YcIkW4HXgUI48bETNJU2sWT9EmDgVMJoCqwEQUhdMl7M\nI7JY+lmv0yZCrC263vaJmdt54xMIdUxsxYR1NsMpo05xn2fvy8LkkE+x3r9NKFPlFMf4BZg2A44b\nRYkqYcXXV7D68dXmmFJrDKdmt7rX/7zovIt4efvLnqmZ0RRY2UghkSCkHhkv5q40wlJr40YoOl7E\nzPNnejaRGshLdQlfK0ZEOzDtaD+C8dAda3q20cZl372MvKN5RpAnAvOsQeswKYfOrJRnMQs8z3Rs\n+xnQCUVZlt1XLwqmSQaxg2at1piWDfvZT11rHRv/ayM9l4TKRp3pi672wW27afuwjYKSguD4zopQ\nrxTPzU2bfW8UgiAMPRkv5hGZKaXm5+Nvf9w3vc7LS82vzaf91Pbgog6bmzaz6tFVdNIJp2KEtxTj\noYcvzgzoyzVdG7vMqj92imIr5iYQviTdZRjRt3kB+HtgJ3x8stvuiAU5WjE3l/CK0RZcQg7ubokQ\nEuwl65fQUdlBBx000+wSfa8c+5ZpLSYv39GhUipFBWF4SVsxj/ZRfzCxYHucu+69i217ttE1qouu\nc7uCMejNTZt57KXH6PyiI53ELhS6GPiVz8CKkFCXYrxnnyxHDmImVz/ErCBUCrwdaXf4ghzbX91O\n3/y+yDa9Ua4H6ifWtuj7pW12ntLpe44gCENPWop5tNWcEFss2InthXZNd4tdS1ELK/9jJT3zw7pc\nOdfj9GmAFUwttPPFuzFevRenYHLRIeilFxws8M3x1lpz2vjTKHi/gKMcjWzTO8AyejZx59h7nCMI\nwtCTlqmJ/XmP4dh51IPJlY4QtlZMuGK8j1rbIn0U1Iawwi1nauGH1u9sPNvp8mvcaYgKsjZkceXM\nK11219TXMP3y6Xzhzi9Q11LHJrWJo6Osfurh45Zh+sc4cKZb2kQzXxC+ElFBbUFE2qTzHEEQhp60\n9MyjWXTCyWAXW4gQNrvoqJ8Wtjk1OVR9rYoZ02Zw17138frO14337VwVqBt4EiP+pda5zpTGA9a1\nsPZ/CH0z+njt/deCMfvg08mFLXChdezvMD3TnRk79rqixwlVpXqkW9oM9CTj1d9l1udm8dhLj9FS\nGtvTjyAIiSMtxXyocqLD4/AXnXcRLS959Dr3aGGrNihGHR/Ft677VrC7YuWcSqpXVfPPj/4z3Qe7\nzcpAJzCCewXG06/FZLaUWgPVArMJTaa+gemMWOpe8s6z2Zcd6imDrCez0CM0ukibIqW3cWfHWNjp\nljbRtg0OvznOqJ8hS80JQhJJSzEfbBy8P2rqa7j5+zfTptuCTbi27NzCLZW38MqOV9y9zkutkywv\nt/hYMY/84BFP8aq+o5oZ00JC9+7Od9m5d2doMeceTFilF7Ou57mExr8Y09elNDSe/fTh93Rie/t9\nO/tgiilYKusoY++xvb592sMZzJOMLDUnCMklLcV8KBYdXv6j5UbIHd522+/a2LBpQ7CromvitRQo\nNTeRNVX9x+CdQldTX8MX7/oinReHZcIcxfRyaSUk9H1E9GmxxbffiUh7jc9S6Czt5IxdZ/CDRT+I\nmDSWUIggZA5pKeaQeE+wtb01su3sxdD6XKvrmtD/TcQrZRIIbmve2kznpWEdsi42YZG+1j4TKy8j\nVCF6DLPkx0y3+Ho9nagNCq01XECENz8UN0BBEFKHk6af+UAUzSriwD8ciNz+2yL2vbIvqjG8UiZL\nfl8Cx6HtM21mg93zPIyzN51N+752Oqd1RnR3VBsUnyj5BCu+viLixuEU5/b322PuP+68+Rzadwh6\nYey4sVLFKQhJZlhXGlJKrcb4s90YCbpBa30wnjGTxeTxk2kiUggnnz456jG8JiXbPtnmrub0yfc+\nt/RcxoweQ3NLc0QrWn25Zvyu8RHCGv504nUz6S+UEnH8ZEyIZzxmwlWqOAUhbYg3z7wO+JjW+gLg\nLeDO+E1KDisWrTBetIOS/ynhe7d/L+ox+p2UtPHIK7cXfJhYPHHASs2a+hoqbqggcH2AihsqXC1u\nY82p982I2Wle+uXuC4KQesS7Bmi94+2ruFetTCsq51TyAA+4Y8p3xBZTjqo6stT8Kq4pZur5UyNi\n1y9++0XT7yWM/Kz8qCpfY5lLiObmI1WcgpAeJHIC9EZMKUzaEu+kqtekJLWYgh0HZfvKWLMy0mOu\nnFPJHdfcwapfraJzXkjQ7VDJQH1TYiWam49UcQpCejCgmCul6oESj11LtdbPWsdUAd1a6ye8xqiu\nrg6+DgQCBAKBwdiaMvg1+XJmjLy67VUO5B0IdUh05KR7CblNeF6603MP9i4PY7Des+fNx05rRFIX\nBWE4aWhooKGhYdDnx53NopS6HvgqcLHWOkJV0iWbJVo8JxmbylizcE1Uk5HxrKFZcUMFdaV1kdv7\nyVYZCGdGzOH9h9E9mrHjxpqbyNWSuigIySLWbJa4xFwpNQ/4V2C21vpDn2MySsxjEdTw1MF4xXEo\nbhCCIKQmw5qaCKzDrDVfr5QCeFlrfVucY6Y0sTT5SnRhkxT+CILgR7zZLB9JlCHpwkBNvoZ6fUzp\ngSIIghdpW86fLPpr8hXLohmCIAiJRMr5B4FfLHwoJigFQTg5Ge6Y+UmJX6gj1kUzBEEQEkVaLhuX\nqgzVohmCIAgDIWKeQLzWx7T7rgiCIAwlEjNPMInOLRcE4eRkWIuGorrASSbmgiAIiSBWMZcwiyAI\nQgYgYi4IgpABiJgLgiBkACLmgiAIGYCIuSAIQgYgYi4IgpABiJgLgiBkACLmgiAIGUDcYq6U+pZS\nqk8pdWoiDBIEQRBiJy4xV0qdCcwBdiXGnOEhnkVTh5JUtEtsig6xKXpS0a5UtClW4vXMfwjckQhD\nhpNU/YdLRbvEpugQm6InFe1KRZtiZdBirpS6Atittd6SQHsEQRCEQdDv4hRKqXqgxGNXFXAnMNd5\neALtEgRBEGJgUF0TlVJTgd8Bx6xNk4A9wEytdXvYsdIyURAEYRAMewtcpdTbwIVa631xDyYIgiDE\nTKLyzMX7FgRBSCJDvjiFIAiCMPQMawVoKhUYKaVWK6W2K6XeVEr9Uil1ShJtmaeU2qGU+otS6jvJ\nssNhz5lKqf9WSm1VSjUrpRYn2yYbpVS2UqpJKfVssm2xUUoVKqWetv6etimlZqWATXda/35/Uko9\noZTPauNDa8NDSqn3lVJ/cmw7VSlVr5R6SylVp5QqTAGbkq4FXnY59kWlm8Mm5ilYYFQHfExrfQHw\nFiY7Z9hRSmUD9wLzgPOBq5VS5yXDFgcngG9orT8GzAIWpoBNNkuAbaRWaG8N8But9XnAx4HtyTRG\nKVUKfBWYrrX+GyAbuCoJpjyM+bt28l2gXmv9UUwSxXdTwKZU0AIvu2LSzeH0zFOqwEhrXa+17rPe\nvorJyEkGM4G/aq1btdYngJ8DVyTJFgC01m1a6zes10cw4jQxmTYBKKUmAZcAD5AiqbCWF/f3WuuH\nALTWPVrrg0k26xDmhjxSKZUDjMRkmw0rWusXgf1hmy8HHrFePwJcmWybUkELfL4riEE3h0XM06DA\n6EbgN0m69hnAu473u61tKYHl5U3D/JEnm38Dvg30DXTgMDIZ+EAp9bBS6nWl1E+VUiOTaZCVVfav\nwDvAe8ABrfULybTJwela6/et1+8DpyfTGA+SqQUuYtXNhIm5FQf7k8fP5ZjHlrudhyfquoO06TLH\nMVVAt9b6ieGwyYNUChe4UEqNBp4GllgeejJtuRRo11o3kSJeuUUOMB24T2s9HTjK8IcOXCilyoCv\nA6WYJ6rRSqkvJ9MmL7TJvkiZv/8U0AKnLSOBpcSgm/1WgMaC1nqOj1FTMd7Lm0opMI8wf1RKRRQY\nJRo/mxy2XY95bL94KO0YgD3AmY73Z2K886SilMoF/gt4TGv9TLLtAf4OuFwpdQmQD4xVSj2qtb4u\nyXbtxnhPm633T5NkMQf+FnhJa90BoJT6Jeb7ezypVhneV0qVaK3blFITgCHVgGhJES1wUoa5GUet\nm0MeZtFaN2utT9daT9ZaT8b88U8faiEfCKXUPMwj+xVa664kmvIH4CNKqVKl1AhgPrAhifagzF/P\ng8A2rfWPkmmLjdZ6qdb6TOtv6CpgYwoIOVrrNuBdpdRHrU2fBbYm0SSAHcAspVSB9W/5WcykcSqw\nAVhgvV4AJN1RSCEtCKK1/lOsupmMxSlS5bFqHTAaqLdS3e5LhhFa6x7gduB5zH+4p7TWSc2GAD4J\nXAt82vpumqw/+FQiVf6OABYBjyul3sRks/zfZBqjtX4TeBTjKNjx1p8Mtx1KqSeBl4D/pZR6Vyl1\nA/ADYI5S6i3gM9b7ZNp0IymgBQ67Pur4rpwM+PcuRUOCIAgZgCwbJwiCkAGImAuCIGQAIuaCIAgZ\ngIi5IAhCBiBiLgiCkAGImAuCIGQAIuaCIAgZgIi5IAhCBvD/AVKxBemNfXdeAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 22 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assemble the interaction matrix" ] }, { "cell_type": "code", "collapsed": false, "input": [ "all_distvecs = sources.reshape(2, 1, -1) - targets.reshape(2, -1, 1)\n", "dists = np.sqrt(np.sum(all_distvecs**2, axis=0))\n", "interaction_mat = np.log(dists)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 24 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimate the rank depending on precision $\\varepsilon$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, obtain an idea of what $\\rho$ is:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "dist_tgt_to_c = np.sqrt(np.sum((c.reshape(2, 1) - targets)**2, axis=0))\n", "dist_src_to_c = np.sqrt(np.sum((c.reshape(2, 1) - sources)**2, axis=0))\n", "\n", "rho = np.max(dist_tgt_to_c) / np.min(dist_src_to_c)\n", "rho" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 28, "text": [ "0.26574750307862688" ] } ], "prompt_number": 28 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then plot the numerical rank depending on epsilon:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "_, sigma, V = la.svd(interaction_mat)\n", "pt.semilogy(sigma)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 33, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD7CAYAAACIYvgKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF2dJREFUeJzt3X+sHOV97/H3J8c2NARqG4ixnYOWUFu1W6smIXalJGIk\nkt6DAnH4ceu6CkrdQhpuTNpcpfGNSiF/3DbObSOixE1vU7CVOFzbQSFgWlwXmkxjxVXrkwBxrn/E\nblnp2IBxU5BwoLGP+faPXTfr5fzYszO7M7vn85JW7Dy7+8zXo+V89pl5ZkYRgZmZTW9vKLoAMzMr\nnsPAzMwcBmZm5jAwMzMcBmZmhsPAzMyAGUUXMBZJnu9qZtaGiFA7nyvtyCAi/Mjpcc899xReQ788\nvC29Pcv8yKK0YWBmZt3jMDAzM4fBdJAkSdEl9A1vy3x5e5aHsu5n6gRJUca6zMzKTBLRbweQzcys\nexwGZmbW/fMMJK0C3gdcBNwfEY93uwYzMztXYccMJM0G/iwibhvjNR8zMDObosKPGUjaJOm4pH1N\n7UOSDko6LGl908fuAjbmsX4zM8smr2MGm4GhxgZJA9T+2A8BS4E1kpao5rPAzoh4Kqf1m5lZBrkc\nM4iI3ZIqTc0rgCMRUQWQtA1YBbwHuBa4SNIvRMRf5lGDmZm1r5MHkBcCIw3LR4GVEXEn8MXJPpwk\nCZVKhUqlQpIkPjnFzKxJmqakaUq1WqVarWbqq5NhkOkIcJqmOZVhZtafmn8oS20dOwY6e57BMWCw\nYXmQ2uigJadP516PmZmNo5NhMAwsklSRNAtYDexo9cMnT3asLjMza5LX1NKtwB5gsaQRSWsjYhRY\nB+wC9gPbI+JAq306DMzMuqe0F6rbvz9YsqToSszMekfhJ511wssvF12Bmdn0Udow8G4iM7PuKW0Y\neGRgZtY9pQ0DjwzMzLqntGHgkYGZWfeUNgw8MjAz6x6HgZmZlTcMvJvIzKx7ShsGHhmYmXVPacPA\nIwMzs+4pbRh4ZGBm1j2lDQOPDMzMuqe0YeCRgZlZ9zgMzMysvGHg3URmZt3TyXsgv46kC4AvAT8F\n0oj4f+O91yMDM7Pu6fbI4Cbg6xHxYeD9E73x5Eko4X13zMz6UuYwkLRJ0nFJ+5rahyQdlHRY0vp6\n80JgpP78zET9zpwJ//EfWaszM7NW5DEy2AwMNTZIGgA21tuXAmskLQGOAoOtrHvOHPjHf8yhOjMz\nm1TmMIiI3cCLTc0rgCMRUY2I08A2YBXwEHCzpC8BOybqd/NmWL0aHnssa4VmZjaZTh1AbtwdBLUR\nwcqIeAX47VY6+MxnEpYtq3D77RUeeCAhSZIOlGlm1rvSNCVNU6rVKtVqNVNfnQqDzId+0zTl0CG4\n/npwDpiZvV6SnPtDWVLbfXVqNtExfnZsgPrzo1PtZM4ceLF5B5SZmeWuU2EwDCySVJE0C1jNJMcI\nxjJnDrz0kqeYmpl1Wh5TS7cCe4DFkkYkrY2IUWAdsAvYD2yPiANT7XvmTDj/fJ+AZmbWaYoS/uyW\nFGfrGhyE734XLr+84KLMzEpOEhHR1oGD0l6b6CwfNzAz6zyHgZmZlT8MZs92GJiZdVrpw8AjAzOz\nznMYmJmZw8DMzBwGZmZGj4TBSy8VXYWZWX/riTDwyMDMrLMcBmZmVv4w8HkGZmadV/ow8MjAzKzz\neiYMSng9PTOzvlH6MDj/fBgYgFdeKboSM7P+VfowAO8qMjPrtK6HgaRVkr4saZuk97byGYeBmVln\nzej2CiPiEeARSbOBPwMen+wzDgMzs85qe2QgaZOk45L2NbUPSToo6bCk9RN0cRewsZV1zZ7ts5DN\nzDopy26izcBQY4OkAWp/4IeApcAaSUsk3SrpXkkLVPNZYGdEPNXKijwyMDPrrLbDICJ2A81/olcA\nRyKiGhGngW3AqojYEhEfj4hngTuBa4FbJP1uK+uaPx++8x1PLzUz65S8jxksBEYalo8CKxvfEBFf\nAL4wWUdJklCpVKhUKrzrXQl/+IcJGzbApz6Vb8FmZr0qTVPSNKVarVKtVjP1pcjwc1tSBXg0IpbV\nl28GhiLi9vryB4GVEXHnFPuN5rqefRZ+6Zfghz+EhQvbLtnMrG9JIiLUzmfznlp6DBhsWB6kNjrI\nbMECqFTg+efz6M3MzBrlHQbDwCJJFUmzgNXAjrw6v+QS+PGP8+rNzMzOyjK1dCuwB1gsaUTS2ogY\nBdYBu4D9wPaIOJBPqXDxxQ4DM7NOaPsAckSsGad9J7Cz7Yom4DAwM+uMnrg20VkXXwz/9m9FV2Fm\n1n96Kgx8zMDMrDN6Kgy8m8jMrDMcBmZm5jAwM7MeC4NLLvEBZDOzTuipMPDIwMysM3oqDC68EH76\nUzh1quhKzMz6S0+FgQRz53p0YGaWt54KA/CuIjOzTui5MPBBZDOz/PVcGHhkYGaWP4eBmZk5DMzM\nrAfDwBerMzPLX8+FgS9jbWaWv0LCQNIFkvZKet9UP+vdRGZm+StqZPBJYHs7H5w/H/buhT//czh5\nMueqzMymqSz3QN4k6bikfU3tQ5IOSjosaf0Yn3svtfsjn2hnvVdfDX/1V/C1r9UCwczMsmv7HsjA\nZuCLwFfPNkgaADYC7wGOAXsl7QCuBt4G/ClwDXABsBR4VdJjERGtrlSCG26AI0egWs1QvZmZ/Ze2\nwyAidkuqNDWvAI5ERBVA0jZgVURsALbU33NX/bUPASemEgSNLr0Uhofb+aSZmTXLMjIYy0JgpGH5\nKLByrDdGxFcm6ihJEiqVCpVKhSRJSJLknNcvvRROtLWjycysP6RpSpqmVKtVqhl3leQdBm39yh9L\nmqYTvu4wMLPprvmHsqS2+8p7NtExYLBheZDa6CB3DgMzs/zkHQbDwCJJFUmzgNXAjpzXAdTORD5x\nAto74mBmZo2yTC3dCuwBFksakbQ2IkaBdcAuatNHt0fEgXxKPdfP/RzMnAkvv9yJ3s3Mphe1OZmn\noyS1NMnoiivgiSfgyiu7UJSZWclJIiLaOnDQc9cmauTjBmZm+XAYmJlZ74eBr2BqZpZdz4eBRwZm\nZtk5DMzMzGFgZmYOAzMzo8fD4OxZyGZmlk1Ph4FHBmZm+XAYmJlZb4fBhRfC6dPw6qtFV2Jm1tt6\nOgwkePOb4Zlniq7EzKy39XQYAHz0o3DHHXDmTNGVmJn1rp4Pgz/4AxgYgM98puhKzMx6V09fwvqs\np56C1avh0KEOFmVmVnJZLmGd9z2QJ6XaTTr/N3AhMBwRX83a5+CgZxWZmWVRxG6iDwALgVPkdH/k\nOXNqdzw7dSqP3szMpp8st73cJOm4pH1N7UOSDko6LGn9GB9dDHw3Ij4B3NHu+hu94Q21s5F9OWsz\ns/ZkGRlsBoYaGyQNABvr7UuBNZKWSLpV0r2SFlAbDbxU/8hrGdZ/jnnz4PjxvHozM5te2j5mEBG7\nJVWamlcARyKiCiBpG7AqIjYAW+ptDwFflPRuIG13/c3e/GZ44YW8ejMzm17yPoC8EBhpWD4KrGx8\nQ0S8Ctw2WUdJklCpVKhUKiRJQpIkE77fYWBm002apqRpSrVapVqtZuor7zDIbZ5qmqZTer/DwMym\nm+YfyrXJmu3JezbRMWCwYXmQnGYMTcZhYGbWvrzDYBhYJKkiaRawGtiR8zrG5DAwM2tflqmlW4E9\nwGJJI5LWRsQosA7YBewHtkfEgXxKnZjDwMysfVlmE60Zp30nsLPtitrkMDAza1/PX6juLIeBmVn7\n+i4MSnjdPTOz0uubMHjjG2HGDDh5suhKzMx6T9+EAXhXkZlZuxwGZmbWf2Hgi9WZmU1d34WBRwZm\nZlPXV2Fw+eXw/e8XXYWZWe/pi3sgn3XiBCxdCt/6Fixb1oHCzMxKLMs9kPtqZHDppfDpT8Odd/p8\nAzOzqeirkQHAmTNw5ZXw138Nv/zLORdmZlZiHhk0GBiARYvg2LGiKzEz6x19FwYA8+fDc88VXYWZ\nWe9wGJiZWf+GwbPPFl2FmVnv6HoYSHqLpIck3S9pfSfWsWCBRwZmZlNRxMhgGfCNiPgd4KpOrMC7\niczMpibLbS83STouaV9T+5Ckg5IOj/PLfw/wYUl/D/xtu+ufiMPAzGxq2j7PQNK7gZPAVyNiWb1t\nADgEvAc4BuwF1gBXA28D/hT4deB7EbFb0oMR8d/H6Lvt8wwAfvITuPhiePVVUFszbs3Mek8h5xlE\nxG7gxabmFcCRiKhGxGlgG7AqIrZExMcj4lngW8DvSfoL4Jl21z+RCy6A886Dl17qRO9mZv1nRs79\nLQRGGpaPAisb3xARPwBumayjJEmoVCpUKhWSJCFJkikVcnZX0Zw5U/qYmVnPSNOUNE2pVqtUq9VM\nfeUdBrld2yJN00yfPxsGS5fmU4+ZWdk0/1BWhv3iec8mOgYMNiwPUhsddJ3PNTAza13eYTAMLJJU\nkTQLWA3syHkdLfG5BmZmrcsytXQrtWmiiyWNSFobEaPAOmAXsB/YHhEH8il1ajy91MysdW0fM4iI\nNeO07wR2tl1RTubPh717i67CzKw39OW1icDHDMzMpqJvw+DKK+HQIXjttaIrMTMrv74Ng8svr52F\nPDxcdCVmZuXXt2EAcP31tdtfmpnZxPo6DG64AR59tOgqzMzKr+0L1XVS1gvVnTU6CvPmwdNPw1ve\nkkNhZmYlVsiF6nrBjBlw3XXwN39TdCVmZuXW12EA8Pa3w4FCTnszM+sdfR8Gl10Gzz9fdBVmZuXW\n92Hgy1KYmU2u78PAIwMzs8k5DMzMrP/D4Od/Hk6dgldeKboSM7Py6vswkDw6MDObTN+HATgMzMwm\n09EwkHSFpPskPVhfvkDSVyR9WdJvdnLdjRwGZmYT62gYRMQzEXFbQ9NNwNcj4sPA+zu57kaXXebp\npWZmE2kpDCRtknRc0r6m9iFJByUdlrS+ha4WAiP152emWGvbPDIwM5tYqyODzcBQY4OkAWBjvX0p\nsEbSEkm3SrpX0oIx+jkKDE5x3ZnNn+8wMDObSEt/kCNiN/BiU/MK4EhEVCPiNLANWBURWyLi4xHx\nrKS5kv4vcFV95PAQcLOkLwE7cvx3TMgjAzOzic3I8NnGXT5Q+9W/svENEfHvwEeaPvfbrXSeJAmV\nSoVKpUKSJCRJ0nahPmZgZv0oTVPSNKVarVKtVjP1lSUMOnojhDRNc+vLIwMz60fNP5Sltm5lAGTb\nb3+Mn+3/p/78aIb+OmbePHjhBXjttaIrMTMrpyxhMAwsklSRNAtYTRePA0zFeefBhRfCj39cdCVm\nZuXU6tTSrcAeYLGkEUlrI2IUWAfsAvYD2yOitLeRWbAAMu5SMzPrW319D+RGv//7MHcu3H13rt2a\nmZWG74HcghtvhG9+s+gqzMzKadqEwbveBceOeVeRmdlYpk0YDAzADTfAww8XXYmZWflMmzAA+MAH\nHAZmZmOZVmHwjnfA/v1FV2FmVj7TZjYRwJkzcP75tVtgzpyZe/dmZoXybKIWDQzAJZfAiRNFV2Jm\nVi7TKgzA1ykyMxuLw8DMzBwGZmbmMDAzM6ZpGPhGN2Zm55qWYeCRgZnZuRwGZmbmMDAzM4eBmZnR\nhTCQdIWk+yQ9WF9eJenLkrZJem+n19/sootgdBROnuz2ms3MyqvjYRARz0TEbQ3Lj0TEh4GPULtv\ncldJtdHB8ePdXrOZWXm1HAaSNkk6LmlfU/uQpIOSDktaP4V13wVsnML7c+NdRWZm55rKyGAzMNTY\nIGmA2h/0IWApsEbSEkm3SrpX0oLmTlTzWWBnRDyVofa2zZ/vMDAzazSj1TdGxG5JlabmFcCRiKgC\nSNoGrIqIDcCWettc4E+A5ZL+F/AT4FrgIkm/EBF/mfUfMVUeGZiZnavlMBjHQmCkYfkosLLxDRHx\n79SODzT64mQdJ0lCpVKhUqmQJAlJkmQs9WcWLIAjR3LrzsysEGmakqYp1WqVasYbvE/p5jb1kcGj\nEbGsvnwzMBQRt9eXPwisjIg7MxXVoZvbnPWv/worVsCBA3DppR1bjZlZVxV5c5tjwGDD8iC10UGp\nvfWtsGYN/PEfF12JmVk5ZA2DYWCRpIqkWdSmiu7IXlbn3XUXbNkC//IvRVdiZla8qUwt3QrsARZL\nGpG0NiJGgXXALmA/sD0iDnSm1HzNmwfr18NHPgIlvA20mVlXTemYQbd0+pjBWaOjtWMHH/sY/NZv\ndXx1ZmYdleWYwbQOA4Ann4Rrr4VKBd7xDrjySli71geWzaz3OAwyOnUK9u6Fp5+u/ffb34ZvfAPe\n/vaulWBmlpnDIGcPPgh33AFvehPcdBPcfTfMnl1YOWZmLXEYdMBrr8GPfgSf/zw8/DBcfz287W21\nx/LlcP75hZZnZvY6DoMO278f/uEf4Pvfh+99D44erc1CuvVWWLSo6OrMzGocBl126BB84Qu1EcOc\nOfDAA/Arv1J0VWY23TkMChIB27bVpqbedx+sWlV0RWY2nTkMCjY8DNddB0884RGCmRWnyGsTGXD1\n1bXdRjffDC+8UHQ1ZmZTl/US1la3Zk3tstjLl8PnPle7GJ6ZWV4uugh+8Rdrt+7tBO8mytl3vgP3\n3AOvvFJ0JWbWT55/Hs47DzZsqJ3/NBYfMzAz63MRtR+bt9wCjz9e2wvRzMcMzMz6nATXXAMbN9aO\nT37ta7UbdeXWfxl/gXtkYGY2vs2bYdeu2gjhuedg1qxau3cTmZlNQ+98J/zRH8HQUG25tLuJJF0h\n6T5JDza0XSBpr6T3dXLdZmb97qab4KGH8umro2EQEc9ExG1NzZ8EtndyvXauNE2LLqFveFvmy9sz\nmxtvhEcegTNnsvfVUhhI2iTpuKR9Te1Dkg5KOixpfQv9vJfa7TFPtFeutcP/w+XH2zJf3p7ZvPWt\nMH8+7NmTva9WRwabgaHGBkkDwMZ6+1JgjaQlkm6VdK+kBWP0cw3wq8BvArdLnTp9wsxserjpJnjs\nsez9tHQGckTsllRpal4BHImIKoCkbcCqiNgAbKm3zQX+BFguaX1E3FVv/xBwwkeJzcyy+cQnaiej\nZdXybKJ6GDwaEcvqy7cA/y0ibq8vfxBYGRF3Zi5KckiYmbWh3dlEWa5N1LE/2O3+Y8zMrD1ZZhMd\nAwYblgeBo9nKMTOzImQJg2FgkaSKpFnAamBHPmWZmVk3tTq1dCuwB1gsaUTS2ogYBdYBu6hNF90e\nEQeyFDPVqar2epKqkn4g6UlJ/1xvmyvpcUk/kvR3kmYXXWdZjTWNeqLtJ+lT9e/rQUm/VkzV5TTO\ntvy0pKP17+eTkq5reM3bcgKSBiV9W9L/l/RDSR+rt+fz/YyIUjyAAeAIUAFmAk8BS4quq9cewDPA\n3Ka2/wN8sv58PbCh6DrL+gDeDVwF7Jts+1GbUv1U/ftaqX9/31D0v6Esj3G25T3A/xzjvd6Wk2/P\ny4Dl9edvAg4BS/L6fpbpqqX/NVU1Ik4D2wDfVbg9zQfg3w98pf78K8AHultO74iI3cCLTc3jbb9V\nwNaIOB21KdZHqH2PjXG3Jbz++wnelpOKiOcj4qn685PAAWAhOX0/yxQGC4GRhuWj9TabmgCekDQs\n6fZ627yIOF5/fhyYV0xpPWu87beAcydN+DvbmjslPS3p/oZdGt6WU1Cf6n8V8E/k9P0sUxj43IJ8\nvDMirgKuAz4q6d2NL0Zt/Oht3aYWtp+37cT+ArgCWA48B3xugvd6W45B0puAbwC/FxEvN76W5ftZ\npjDwVNUcRMRz9f+eAL5JbVh4XNJlAJLmAy8UV2FPGm/7NX9n31Jvs3FExAtRB9zHz3ZbeFu2QNJM\nakGwJSIerjfn8v0sUxh4qmpGkt4o6cL68wuAXwP2UduOH6q/7UPAw2P3YOMYb/vtAH5D0ixJVwCL\ngH8uoL6eUf9jddaN1L6f4G05qfq13O4H9kfE5xteyuX7meUM5FxFxKiks1NVB4D7I+NU1WloHvDN\n+vX/ZgAPRMTfSRoGvi7pd4Aq8OvFlVhu9WnU1wCXSBoB7gY2MMb2i4j9kr5ObWr1KPA/6r94jTG3\n5T1AImk5td0VzwC/C96WLXon8EHgB5KerLd9ipy+n6W805mZmXVXmXYTmZlZQRwGZmbmMDAzM4eB\nmZnhMDAzMxwGZmaGw8DMzHAYmJkZ8J+Ig31awNnXqAAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [ "eps_values = 10**(-np.linspace(1, 12))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the given precisions $\\varepsilon$, find the associated numerical rank:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def numrank(eps):\n", " return np.sum(sigma > eps)\n", "\n", "ranks = [numrank(e) for e in eps_values]\n", "\n", "pt.semilogx(eps_values, ranks)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 42, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEFCAYAAAD36MwKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFNlJREFUeJzt3XuUXXV1wPHvJmAgCaBhLUEEGYiQUEFBKYmicHktIwqI\nbRUJjwr4wJBoVtsAtguma7VSrQ+EEizSIBWIKApotQoFLqbggyhPAZGHQERAw0sBkZBf/7g3dBhm\nMvdx7jnnnvv9rDUr9545c/f+TSY7vzm/fX43UkpIkqpjvaITkCRly8IuSRVjYZekirGwS1LFWNgl\nqWIs7JJUMess7BGxNCIejohbRh1fEBG3R8StEfGp3qYoSWrHRDP2c4G5Iw9ExN7AQcDrU0o7AZ/p\nUW6SpA6ss7CnlJYDj406fBxwakrpueY5v+1RbpKkDnRyjX17YM+I+FFE1CNit6yTkiR1bv0Ov+YV\nKaU5EfHnwNeA7bJNS5LUqU4K+0rgmwAppesjYk1EbJZSWjXypIhwExpJ6kBKKbr5+k4uxVwK7AMQ\nETsALxtd1NdKKa3z45RTTpnwnPHOG31s5PNWXrfTc4qK65jbjzuIY/bfVOff67KMOQvrnLFHxDJg\nL2CziHgAOBlYCixttkD+CTiy0+C1Wq3j80Yfa/W12jm/THGLjF2WMbcbt5vY/Tpm/021d06/jnlC\nrfzv3slH46WLccoppwxU3CJjD1rcImM75sGI3aydXdXfSt55mvn/fiWPW2TsQYtbZGzHPDixuxUp\no2s6L3nhiNSr15akqooIUgGLp5KkErOwS1LFWNglqWIs7JJUMRZ2SaoYC7skVYyFXZIqxsIuSRVj\nYZekiulk296W7bprL1+9NbNmwYUXQnR1H5ck9Y+eFvalS3v56q2ZNw/qddh776IzkaR8VH6vmC9+\nEb7/fbjkkqIzkaSJZbFXTOUL+1NPwTbbwIoVMDRUdDaStG5uAtaCqVPhqKNgyZKiM5GkfFR+xg5w\nzz2w++5w//0wZUrR2UjS+Jyxt2i77WCPPeCCC4rORJJ6byAKO8DChXD66VCSXyIkqWcGprDvsw+s\nWdNofZSkKhuYwh4BCxY0Zu2SVGUDsXi6lq2PksrOxdM22fooaRCss7BHxNKIeDgibhnjc38TEWsi\nYnrv0sve/PmNrQ6efrroTCSpNyaasZ8LzB19MCK2BvYH7utFUr1k66OkqltnYU8pLQceG+NTnwMW\n9ySjHNj6KKnK2r7GHhEHAytTSjf3IJ9c2Pooqcra2rY3IqYAn6BxGeaFw5lmlIMIWLQI3vMemD7O\nCsGiRXD88fnmJUlZaHc/9hnAEHBTNN65YivgpxGxe0rpkdEnDw8Pv/C4VqtRq9U6zTNzxxwD++0H\nzz//0s+tXAnvfS8ceyxsuGH+uUkaHPV6nXrGlw8m7GOPiCHg2ymlncf43L3Am1JKj47xudL1sbdj\n7lx4//sb7ZGSlJee97FHxDLgOmCHiHggIj4w6pT+rdwTcIFVUr8aqDtP27FmDcycCeedB295S9HZ\nSBoU3nnaQ+ut11g8dW8ZSf3GGfs6PPEEbLst3HwzbLVV0dlIGgTO2Hts001h3rzGG2JLUr9wxj6B\nX/wC9twT7rvP1kdJveeMPQczZ8Kuu8JFFxWdiSS1xsLeAlsfJfUTC3sL5s6FJ5+EH/6w6EwkaWIW\n9hbY+iipn7h42iJbHyXlwcXTHNn6KKlfOGNvg62Pknotixl7u9v2DrSZM2HOHNhiC1i/BN+5xYsb\nH5I0kjP2Nj33XON6e9FWroT992/89jBlStHZSMpKFjN2C3sfO/BAOPjgxhuCSKoGF08HnDdOSRqL\nhb2P7bcfrF4NP/hB0ZlIKhMLex+LgAULvHFK0ot5jb3P/eEPsM028LOfNf6U1N+8xi6mTWu84faS\nJUVnIqksnLFXwN13N/rrbX2U+p8zdgEwY0ajsF94YdGZSCoDC3tF2PooaS0Le0WsbX285pqiM5FU\ntAkLe0QsjYiHI+KWEcf+NSJuj4ibIuKbEbFpb9PURNa2Pp5xRtGZSCpaKzP2c4G5o45dDrwupfQG\n4E7gpKwTU/uOOALq9cYiqqTBNWFhTyktBx4bdeyKlNKa5tMfA771RAnY+igJsrnGfjTw3QxeRxmY\nPx+WLoWnny46E0lF6aqwR8TfA39KKdloVxIzZsC++8Imm8AGG7z0Y+ON4frri85SUi91/HYREfHX\nwAHAvuOdMzw8/MLjWq1GrVbrNJzasGwZfOUrY3/ujDPgc59rnCOpePV6nXq9nulrtnTnaUQMAd9O\nKe3cfD4X+CywV0rpd+N8jXeeltDaN+W+9VbYcsuis5E0Wi53nkbEMuA6YGZEPBARRwNnANOAKyLi\nhohwua5PbLopHHaYb8otVZl7xQygO+6AWq3RFjl5ctHZSBrJvWLUkVmz4A1vgIsuKjoTSb1gYR9Q\n7i0jVZeFfUC94x3w+OPwox8VnYmkrFnYB9R668Hxx/u2elIVuXg6wGx9lMrHxVN1xdZHqZqcsQ84\nWx+lcnHGrq7Z+ihVj4Vdtj5KFWNhl62PUsV0vLujqmNt6+Npp8EuuxSdTSMfr/dLnXPxVECj9XGX\nXeChh4rOpHFJ6MorYY89is5Eyl8Wi6cWdpXOmWfC1VfDxRcXnYmUPwu7Kun3v4ehIbjhBnjNa4rO\nRsqX7Y6qpI03hiOPhLPOKjoTqT85Y1cp3XUXvPnNcP/9sNFGRWcj5ccZuyrrta+F2bPhQt8mXWqb\nhV2ltXBh4823/cVPao+FXaW1337wxz/C8uVFZyL1Fwu7Smu99WDBAveMl9rl4qlKzdZHDRoXT1V5\ntj5K7XPGrtKz9VGDpOcz9ohYGhEPR8QtI45Nj4grIuLOiLg8Il7eTQLSRGx9lNoz0aWYc4G5o46d\nCFyRUtoBuLL5XOopWx+l1q2zsKeUlgOPjTp8EHBe8/F5wLt7kJf0IrY+Sq3rZPF085TSw83HDwOb\nZ5iPNCZbH6XWdfVGGymlFBHj/nI8PDz8wuNarUatVusmnAbckUfCySc3FlFtfVRV1Ot16vV6pq85\nYVdMRAwB304p7dx8fgdQSyk9FBGvAq5OKc0a4+vsilHmFi2CDTeEU08tOhOpN4rqY/8WcFTz8VHA\npd0kILVj/nw45xx45pmiM5HKa6J2x2XAdcDMiHggIj4A/Auwf0TcCezTfC7lwtZHaWLeoKS+c/nl\nsHhxY5uB6OoXVql83FJAA8nWR2ndLOzqO7Y+SuvmpRj1JXd9VFV5KUYDy10fpfE5Y1ffctdHVZEz\ndg00Wx+lsVnY1dfc9VF6KQu7+pqtj9JLWdjV12x9lF7KxVP1PVsfVSVZLJ5a2FUJixbB6tWN2XvR\nNtkEttii6CzUryzsUtO998Ihh8DTTxedCTz0ENx4I2y3XdGZqB9Z2KUSWrwY1qyBz3ym6EzUjyzs\nUgn96lfwpjfBfffBtGlFZ6N+4w1KUgkNDcGee8L55xediQaVhV3qAW+cUpEs7FIP1GqNHvurrio6\nEw0iC7vUAxHeOKXiuHgq9chTT8E228BPfmLro1rn4qlUYlOnwtFHw5IlRWeiQeOMXeohWx/VLmfs\nUsnZ+qgiWNilHrP1UXnruLBHxEkR8fOIuCUiLoyIyVkmJlWFrY/KW0eFPSKGgA8Cb0wp7QxMAg7N\nLi2pOmx9VN46nbE/CTwHTImI9YEpwK8zy0qqmHnz4NprG7tQSr3WUWFPKT0KfBa4H3gQeDyl9D9Z\nJiZVydrWxzPPLDoTDYL1O/miiJgBfBwYAp4Avh4R81JKF4w8b3h4+IXHtVqNWq3WaZ5S3/voR2G3\n3WB42NZH/b96vU69Xs/0NTvqY4+I9wH7p5SObT4/ApiTUpo/4hz72KVRDjkE3v52+MhHis5EZVVk\nH/sdwJyI2CgiAtgPuK2bRKRBYOuj8tDpNfabgP8EVgA3Nw+fnVVSUlXZ+qg8uKWAlLOzz4bvfAcu\nu6zoTFRGvjWe1IfW7vp4/fWw7bZFZ6Oyca8YqQ/Z+qhec8YuFcBdHzUeZ+xSn3LXR/WShV0qiK2P\n6hULu1QQWx/VKxZ2qSDu+qhecfFUKpBveK3RXDyV+pxveK1ecMYuFczWR43knadSRRxyCOy4I+yz\nT9GZrNv22zcuHal3LOxSRdxwA5xwAqxZU3Qm43vySdh4Y7jyyqIzqTYLu6TcrFrV2Nvmscdg0qSi\ns6kuF08l5WazzWDzzeH224vORBOxsEtq2ezZ8OMfF52FJmJhl9QyC3t/sLBLatns2Y2bqVRuLp5K\natmzz8L06fDII42bq5Q9F08l5WryZNhpJ/jpT4vOROtiYZfUFq+zl5+FXVJbLOzlZ2GX1BYLe/lZ\n2CW1ZcYMeOYZePDBojPReDou7BHx8oi4OCJuj4jbImJOlolJKqcI2H13Z+1l1s2M/QvAd1NKOwKv\nB7zRWBoQ9rOXW0eFPSI2Bd6WUloKkFJanVJ6ItPMJJWWM/Zy63TGvi3w24g4NyJ+FhFfiogpWSYm\nqbx23x1WrIDnny86E41l/S6+7o3A8Sml6yPiNOBE4OSRJw0PD7/wuFarUavVOgwnqUxG7vS4005F\nZ9Pf6vU69Xo909fsaEuBiNgC+GFKadvm87cCJ6aU3jXiHLcUkCrs8MNh773hmGOKzqRaCttSIKX0\nEPBAROzQPLQf8PNuEpHUX+xnL69uumIWABdExE00umI+mU1KkvqBhb283N1RUkeefRZe8YrGTo/T\nphWdTXW4u6OkwkyeDDvv7E6PZWRhl9Qxb1QqJwu7pI55nb2cLOySOmZhLycLu6SOudNjOVnYJXXM\nnR7LycIuqStejikfC7ukrljYy8cblCR1ZdUqGBqCxx+HSZOKzqb/eYOSpMJtthlssUVjp0eVgzN2\nSV07/PDGtgKzZxedSWci4OCDG1skFC2LGbuFXVLXrrkGvvzlorPo3IoV8MEPwsKFRWdiYZekTCxd\nClddBeefX3QmXmOXpExUrbPHwi5p4M2a1dh+eNWqojPJhoVd0sCbNAl22606O1Va2CWJal2OsbBL\nEtXa88auGEkCfvMb2Gkn+N3vGn3tRbErRpIy8qpXwdSpcPfdRWfSPQu7JDVV5Tq7hV2SmizsklQx\nVSnsXS2eRsQkYAWwMqV04KjPuXgqqa889RS88pXw6KMweXIxOZRh8fRjwG2AFVxS35s6FbbfHm68\nsehMutNxYY+IrYADgHOAApuDJCk7Vbgc082M/fPA3wFrMspFkgpXhcK+fidfFBHvAh5JKd0QEbXx\nzhseHn7hca1Wo1Yb91RJKoXZs+HUU/OLV6/Xqdfrmb5mR4unEfFJ4AhgNbAhsAnwjZTSkSPOcfFU\nUt95/nmYPh3uuafxtn95K2zxNKX0iZTS1imlbYFDgatGFnVJ6ldV2Okxqz52p+aSKqPfNwTrurCn\nlK5JKR2URTKSVAb9voDq7o6SNEqROz2W4QYlSaqctTs93nVX0Zl0xsIuSWPo58sxFnZJGsPs2f3b\nGWNhl6Qx9HNnjIunkjSGonZ6dPFUknqkn3d6tLBL0jj6dQHVwi5J47CwS1LF9Gth72jbXkkaBLNm\nwSOPwMknw/p9VC37KFVJytekSbBkCdx5J6xeXXQ2rbPdUZJKxHZHSdJLWNglqWIs7JJUMRZ2SaoY\nC7skVYyFXZIqxsIuSRVjYZekirGwS1LFdFzYI2LriLg6In4eEbdGxMIsE5MkdaabGftzwKKU0uuA\nOcD8iNgxm7S6U6/XBypukbEHLW6RsR3z4MTuVseFPaX0UErpxubjPwC3A1tmlVg3/CE0bhVjO+bB\nid2tTK6xR8QQsCvQ1s7FrX7jxjpv9LF2/xJaOb9McYuMXZYxd/IPbdDG7L+p9s7p1zFPpOvCHhHT\ngIuBjzVn7i3zh7C9cwZ9zBb2bOKOd96g/3zlGbvXhb2rbXsjYgPgv4D/TimdNupz7tkrSR3odtve\njgt7RARwHrAqpbSomyQkSdnpprC/FfgBcDOw9kVOSil9L6PcJEkd6Nk7KEmSiuGdp5JUMRZ2SaqY\n3Ap7RGwbEedExNebzw+OiLMj4qsRsX+OcV/0PMe4UyPivOaYD+tl7BE5/FlEXBQRSyLiL/KI2Yy7\nVUR8MyL+IyJOyCtuM/ZbI+KsiPhSRFybY9yIiH+OiNMj4si84jZj1yJieXPce+Uce2pEXB8R78w5\n7qzmeL8WEcfkGDeXujVG3LbqVm6FPaV0b0rp2BHPL0spfQj4CPC+HOO+6HlecYH3AF9rjvmgXsdv\nmguckVL6KJBnsdkZ+EZK6RgaN67lJqX0vyml42i04X45x9DvBl4N/AlYmWNcgDXA74HJBcReDFyU\nc0xSSnc0/54PBd6eY9xc6tYYcduqW20X9ohYGhEPR8Qto47PjYg7IuKXbc7S/gH4twLitiTDuK8G\nHmg+fj6nHL4CHBoRnwY2aydml3GvAz4UEVcCHXVJZfB9Pwy4MMe4OwDXppT+Fjiu3bhdxl6eUjoA\nOBH4x7ziNmestwG/bTdmt7Gb5xwIfAf4ap5xm1qqWz2I25qUUlsfwNtozMJuGXFsEnAXMARsANwI\n7AgcAXwe2HLEuV9v/hnAp4B984w73vMcxns48M7m42U5f88nAZfm9XcNfBx4Wzvf5yzHDLwGODvP\nuMA84K+a51+U95ib576sk+93F2P+p+bj7wOX0uyyy3PMzfMvy3HMbdWtHvwdt1a3OkxuaFRibwa+\nN+L5icCJo75mOvBF4JfNzy8AVgBnAR/OKe4Jo5/nEPeuZtwpwFJgCfD+nL7n2wD/DpwPvCXHv+vX\n09hm4izg053E7TR28/gwMCfPuMBGwDnA6cBxOcc+pPmz9lVgzzy/183PHQUckPOY9wK+0Pz5/niO\ncRfSZt3KKG5bdWt9sjHyMgM0rvPNHnlCSulRGtelRjqjoLijn+cV9+gu47abw33AhzOM2Wrcm4G/\nzDhuS7Gb8YfzjptSegboxdpNK7EvAS7JO+6I+OflHTuldA1wTQFxT6fxn3fecceqJ+PKavG0qLuc\nBi3uSIM4dsdc/bhFxq5M3KwK+6+BrUc835p8VucHLW4Zcihy7I7ZMRu3BVkV9hXA9hExFBEvo9EG\n9K2MXtu45cqhyLE7Zsds3FZ0cOF/GfAg8CyN60IfaB5/B/ALGouFJ3W6kGLc8uRQ5Ngds2Ou4pjz\niusmYJJUMe4VI0kVY2GXpIqxsEtSxVjYJaliLOySVDEWdkmqGAu7JFWMhV2SKsbCLkkV839ig+47\njO9RrAAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 42 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now compare with our estimate:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "pt.semilogx(eps_values, ranks)\n", "pt.semilogx(eps_values, (np.log(eps_values)/np.log(rho)-1)**2)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 38, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8FXX2//HXSSMQpPemSBHiooCCDeGKgAgKAaUJiIIK\nsqLu/nQF3ZX43WbZpu5iAwSkCwLBpQtRURcUaVKUrrQoTZCWhHx+f+SiMVIScnPn3tz38/G4D2bm\nzsw5k4Qzn/uZz8w15xwiIhIZorxOQEREgkdFX0Qkgqjoi4hEEBV9EZEIoqIvIhJBVPRFRCJInoq+\nmUWb2Uozm+2fL2dmC83sKzNbYGZlcqw7zMw2mdlGM2tXWImLiEj+5bWl/wiwHjg9qH8osNA5Vx94\nzz+PmSUCPYBEoD0wwsz0aUJEJESctyCbWQ2gAzASMP/iTsBY//RYIMk/3RmY5JzLcM5tBzYDzQOZ\nsIiIXLi8tML/CTwOZOVYVtk5l+afTgMq+6erATtzrLcTqF7QJEVEJDDOWfTN7DbgW+fcSn5q5f+M\ny36Ow7me5aDnPIiIhIiY87x/PdDJzDoA8UApM3sLSDOzKs65vWZWFfjWv/4uoGaO7Wv4l/2MmelE\nICJyAZxzZ2yA59U5W/rOuSedczWdc7WBnsBi51xfIAXo51+tHzDTP50C9DSzODOrDdQDlp9l3+d8\nDR8+/ILXyb0853xB9nu+dbyKe65YedlnJB5zQX4uRfnvKxKPOZzqSCCcr6X/i1rt//dZYKqZDQC2\nA939hXy9mU0le6RPJjDYXWCmPp/vgtfJvTwv+wpEbK/i5l6e37gFiR2ux5zX9UPpmIMR18vYoRTX\ny9gFjXteeTnzB/oFuHXfrnNeGD58uOIW8dg65siIHYnHjP8yakFeno2hT5qcxKETh4IeN+BnTcUN\nudg65siIHYnHHAjmAtRPlK+gZm7InCFsPbiVlF4pROn+LRGR8zIzXGFeyC1Mf2/3d46kHyE5Ndmr\nFEREIo5nRT82Opapd05lzKoxzNgww6s0REQiiqf9KpVLVmZ69+kMfHcgG77b4GUqIiIRwfPO9GbV\nm/F82+dJmpLE9ye+9zodEZEizbMLubnjPjTnIXZ8v4NZPWfpwq6IyBmE9YXc3P5xyz84dOKQLuyK\niBSikCn6cdFxTOs2jbGrxzJ9/XSv0xERKZJCpuhD9oXdGT1mMOi/g1iTtsbrdEREipyQKvoATas2\n5aX2L9F5cmf2HdvndToiIkVKyBV9gF6NetHz8p50e7sbGacyvE5HRKTICMmiD/Cn1n8iITaB38z/\njdepiIgUGSFb9KOjopnQdQKLti7ijRVveJ2OiEiREDLj9M/mq/1f0WJ0C97p8Q4tarUo5MxEREJX\nkRqnfzb1y9dnXJdxdH+7O19//7XX6YiIhLWQL/oA7eu25/9d9//oPLkzR9OPep2OiEjYCvnundOc\ncwxIGcChE4eY1n2aHtUgIhEnIrp3TjMzXun4Ct8d+46nlzztdToiImHpnEXfzOLNbJmZrTKz9Wb2\nV//yZDPbaWYr/a9bc2wzzMw2mdlGM2sXyGSLxRRjevfpTFg7gYlrJwZy1yIiEeG83TtmVsI5d8zM\nYoClwGPAzcAR59w/cq2bCEwEmgHVgUVAfedcVq718t29k9PatLXcPO5mZveazTU1rrng/YiIhJOg\ndO845475J+OAaODg6fhnWL0zMMk5l+Gc2w5sBpoXJMEzaVS5EaM6jaLr1K588/03gd69iEiRdd6i\nb2ZRZrYKSAOWOOfW+d8aYmarzWyUmZXxL6sG7Myx+U6yW/wBd/tlt/PINY9oRI+ISD7kpaWf5Zxr\nDNQAWpqZD3gFqA00BvYAfz/XLgKQ5xk9fv3jNKrciH4z+5H18x4kERE5g5i8ruic+97M/gtc7ZxL\nPb3czEYCs/2zu4CaOTar4V/2C8nJyT9O+3w+fD5fXlP5kZnx+m2v03pca55e8jR/av2nfO9DRCRU\npaamkpqaGtB9nvNCrplVADKdc4fMrDgwH3gGWOec2+tf5zdAM+fcXTku5Dbnpwu5dXNftS3ohdzc\nvjv6HdeMvIbhrYbTr3G/gO1XRCSUBOJC7vla+lWBsWYWRXZX0FvOuffMbJyZNSa762YbMBDAObfe\nzKYC64FMYHBAq/tZVEyoyLt3vYtvjI/aZWvT8uKWhR1SRCQshc0duXmxcMtC+s7oy9L+S6lbrm7A\n9y8i4qWIuiM3L9rWacszvmfoOLEjB44f8DodEZGQU6Ra+qf9dv5vWbV3FfP6zCMuOq7Q4oiIBFMg\nWvpFsuifyjpFlyldqJRQiTdufwOzAv2MRERCgrp3ziI6KpqJd0xkxZ4VvPDxC16nIyISMopk0Qco\nGVeS2b1m89Kyl5i2fprX6YiIhIQiW/QBapSqwexes3nwvw/yyTefeJ2OiIjninTRB2hStQljk8bS\ndWpXthzY4nU6IiKeKvJFH6BDvQ4MbzWcDhM7sP/Yfq/TERHxTJEcvXM2v1v4Oz7Z+QkL+y4kPiY+\n6PFFRApCQzbzKctl0WNaD2KiYpjQdYK+Z1dEwoqGbOZTlEUxLmkcOw7t4A+L/+B1OiIiQRdRRR+g\neGxxZvWcxZR1Uxj5+Uiv0xERCao8P0+/KKmYUJE5vefQ8s2WVLuoGh3qdfA6JRGRoIi4lv5p9cvX\nZ0aPGfSb2Y/Pdn/mdToiIkERsUUf4Lqa1zHy9pF0mtSJrQe3ep2OiEihi8junZw6N+jM7iO7aT++\nPR8P+JgKJSp4nZKISKGJ6Jb+aQ82e5A7E+/k9km3cyzjmNfpiIgUmogap38uzjn6zezH4ZOHmd59\nOtFR0V6nJCLyMxqnH0BmxshOIzmacZQhc4cQaiclEZFAOGfRN7N4M1tmZqvMbL2Z/dW/vJyZLTSz\nr8xsgZmVybHNMDPbZGYbzaxdYR9AIMVFxzG9+3Q+/uZj/rr0r16nIyIScOcs+s65E8BNzrnGwBXA\nTWbWAhgKLHTO1Qfe889jZolADyARaA+MMAuvZx2UKlaKOb3n8MbnbzB65Wiv0xERCajzFmTn3Okr\nm3FANHAQ6ASM9S8fCyT5pzsDk5xzGc657cBmoHkgEw6GahdVY36f+Ty1+ClSvkzxOh0RkYA5b9E3\nsygzWwWkAUucc+uAys65NP8qaUBl/3Q1YGeOzXcC1QOYb9DUL1+flJ4p3JdyHx99/ZHX6YiIBERe\nWvpZ/u6dGkBLM7sp1/sOONdVz7C9ItqsejPGdx1P16ldWfftOq/TEREpsDzfnOWc+97M/gtcBaSZ\nWRXn3F4zqwp8619tF1Azx2Y1/Mt+ITk5+cdpn8+Hz+fLX+ZB0q5OO/55yz9pP6E9H/X/iFqla3md\nkohEiNTUVFJTUwO6z3OO0zezCkCmc+6QmRUH5gPPALcA+51zz5nZUKCMc26o/0LuRLL78asDi4C6\nuQflh+I4/fP51//+xWsrXuPDez/UXbsi4olAjNM/X0u/KjDWPwInCnjLOfeema0EpprZAGA70B3A\nObfezKYC64FMYHDYVfezePTaR9n7w15um3gb7939HglxCV6nJCKSb7ojNx+cc/RP6c+eI3tI6ZVC\nXHSc1ymJSATR1yV6IDMrkzun3kl8TDwTuk7Q4xpEJGj0GAYPxETFMPnOyXx79Ft+PefXelyDiIQV\nFf0LEB8Tz8yeM/ls92f8fvHvvU5HRCTPVPQvUKlipZjbey7vbHyHv3/8d6/TERHJk4j/EpWCqJhQ\nkQV9FnDjmzdSrng57m1yr9cpiYick4p+AdUsXZP5febjG+ujTHwZujTs4nVKIiJnpaIfAJdVuIz/\n3vVf2o9vT6lipbj50pu9TklE5IzUpx8gTas2ZVr3afSc3pOPv/nY63RERM5IRT+AWl7ckvFdxpM0\nOYnP93zudToiIr+goh9gt9S9hVdve5WOEzuy/rv1XqcjIvIz6tMvBF0bduVo+lFuGX8L79/zPpeW\nvdTrlEREABX9QtP3yr78kP4Dbca14YN7P6BGqRpepyQioqJfmB5s9uDPCn+lhEpepyQiEU59+oXs\n8Rsep/vl3Wn3VjsOHj/odToiEuH0lM0gcM7x2ILH+PDrD1nYdyGl40t7nZKIhCE9WjmMOOcYMncI\nK/euZF7veVxU7CKvUxKRMKOiH2ayXBYDZw9k04FNzOk9hxKxJbxOSUTCiIp+GMpyWdw7694fv30r\nPibe65REJEyo6IepU1mn6DOjD4dPHuad7u9QLKaY1ymJSBgIyjdnmVlNM1tiZuvM7Asze9i/PNnM\ndprZSv/r1hzbDDOzTWa20czaFSTBoig6KppxSeOIj4mnx7QeZJzK8DolEYkQ523pm1kVoIpzbpWZ\nlQRWAElAd+CIc+4fudZPBCYCzYDqwCKgvnMuK8c6Ed3SPy39VPqP37c78Y6JxETptgkRObugtPSd\nc3udc6v80z8AG8gu5gBnCt4ZmOScy3DObQc2A80LkmRRFRcdx9vd3uZI+hH6vNOHzKxMr1MSkSIu\nXzdnmdklQBPgf/5FQ8xstZmNMrMy/mXVgJ05NtvJTycJyaVYTDFm9JjB9ye/p++Mvir8IlKo8tyf\n4O/amQY84pz7wcxeAf7P//Yfgb8DA86y+S/6cpKTk3+c9vl8+Hy+vKZS5MTHxDOjxwySJidx94y7\nGddlnLp6RITU1FRSU1MDus88jd4xs1jgXWCuc+5fZ3j/EmC2c66RmQ0FcM49639vHjDcObcsx/rq\n0z+DE5kn6Dy5M+WLl1fhF5FfCNboHQNGAetzFnwzq5pjtS7AWv90CtDTzOLMrDZQD1hekCQjRXxM\nPDN7zGTfsX30m9lPXT0iEnB5Gb3TAvgAWMNP3TRPAr2Axv5l24CBzrk0/zZPAv2BTLK7g+bn2qda\n+udwPOM4nSd3pmJCRcYljSM6KtrrlEQkBOjmrCLseMZxOk3uROWEyoxJGqOuHhEJTveOeKN4bHFm\n9ZzFt0e/pe+MvrqBS0QCQkU/hJWILUFKrxS+P/E9vab3Iv1UutcpiUiYU9EPcaeHc6afSqf72905\nmXnS65REJIyp6IeBYjHFmNZ9GtFR0XSd2pUTmSe8TklEwpSKfpiIi45j8h2TKRlXks6TO3M847jX\nKYlIGFLRDyOx0bFM6DqBiiUqctuk2ziaftTrlEQkzKjoh5mYqBjGJo2lVula3DrhVg6fPOx1SiIS\nRlT0w1B0VDSjOo3i8oqX02ZcGw4cP+B1SiISJlT0w1SURTGi4whaXdwK3xgfaT+keZ2SiIQBFf0w\nZmY83/Z57mh4B63GtGLn4Z3n30hEIpqKfpgzM4b7hnNf0/to+WZLth7c6nVKIhLC9ECXIuKx6x8j\nITaBVmNasbDvQhpUaOB1SiISglT0i5AHmz1IQlwCrce2Zk7vOTSu0tjrlEQkxKjoFzF3X3k3CbEJ\n3DL+Ft7p/g431LrB65REJISoT78IuiPxDsZ3GU+XKV2Yu2mu1+mISAhR0S+i2tZpy6yes7hn1j1M\n/mKy1+mISIhQ904Rdl3N61jUdxG3TriVQycOMejqQV6nJCIe0zdnRYCtB7fS9q22DGgygGEthpH9\ntcciEm70dYmSZ7uP7OaW8bdwS51beKHtCyr8ImEoKF+XaGY1zWyJma0zsy/M7GH/8nJmttDMvjKz\nBWZWJsc2w8xsk5ltNLN2BUlQAqPaRdV4/573+eibj7h31r36+kWRCHXelr6ZVQGqOOdWmVlJYAWQ\nBNwL7HPOPW9mTwBlnXNDzSwRmAg0A6oDi4D6zrmsHPtUS98jR9OP0u3tbkRZFFO7TaVEbAmvUxKR\nPApKS985t9c5t8o//QOwgexi3gkY619tLNknAoDOwCTnXIZzbjuwGWhekCQlcBLiEpjVcxblS5Tn\n5nE3s//Yfq9TEpEgyteQTTO7BGgCLAMqO+dOP9oxDajsn64G5Hzy106yTxISImKjYxnTeQwta7Wk\nxZst+Pr7r71OSUSCJM9DNv1dO9OBR5xzR3JeCHTOOTM7V3/NL95LTk7+cdrn8+Hz+fKaigSAmfFc\n2+eoUrIKN4y+gbm95/KrSr/yOi0RySE1NZXU1NSA7jNPo3fMLBZ4F5jrnPuXf9lGwOec22tmVYEl\nzrkGZjYUwDn3rH+9ecBw59yyHPtTn34ImbBmAr+Z/xumd5/OjRff6HU6InIWwRq9Y8AoYP3pgu+X\nAvTzT/cDZuZY3tPM4sysNlAPWF6QJKVw9b6iN+O7jqfr1K68s+Edr9MRkUKUl9E7LYAPgDX81E0z\njOxCPhWoBWwHujvnDvm3eRLoD2SS3R00P9c+1dIPQSt2r6DT5E48ccMTPHzNw16nIyK56OYsCbjt\nh7Zz64Rb6VC3Ay+0e4Eo0+OZREKFir4UigPHD5A0OYkqJaswrss44mPivU5JRAhSn75EnnLFy7Gg\n7wLMjLZvteXA8QNepyQiAaKiL2cUHxPPpDsmcW31a7l+1PVsO7jN65REJABU9OWsoiyKF9q9wEPN\nH+KG0TewfJcGYYmEO/XpS56kfJnCgJQBvNrxVe5IvMPrdEQiki7kSlB9vudzOk3qxMPXPMzj1z+u\nxzOLBJmKvgTdzsM7uW3ibTSr1owRHUcQGx3rdUoiEUNFXzzxQ/oP9JzWkxOZJ5jWfRpl4sucfyMR\nKTAN2RRPlIwryayes7i84uUa2SMSZlT05YJER0Xz4q0vMrjZYK4ffT1Lv17qdUoikgfq3pECm795\nPn1n9OW5Ns9xb5N7vU5HpMhSn76EjI37NnL7pNvpVL8Tz7d9nuioaK9TEilyVPQlpBw4foBub3ej\nWHQxJt0xidLxpb1OSaRI0YVcCSnlipdjXu951C5Tm+tGXceWA1u8TklEclHRl4CKjY7lPx3/8+Oj\nG5ZsW+J1SiKSg7p3pNC8t/U9er/Tm6dufIqHmj+kO3hFCkh9+hLyth3cRtKUJJpWbcorHV/Rs/lF\nCkB9+hLyapetzcf9P+ZYxjFavtmSnYd3ep2SSERT0ZdClxCXwOQ7JnNHwzto/kZz3cgl4qHzFn0z\nG21maWa2NseyZDPbaWYr/a9bc7w3zMw2mdlGM2tXWIlLeDEznmjxBKM6jaLrlK68+tmrXqckEpHO\n26dvZjcCPwDjnHON/MuGA0ecc//ItW4iMBFoBlQHFgH1nXNZudZTn34E27R/E0lTkriuxnX8u8O/\n1c8vkkdB6dN3zn0IHDxT/DMs6wxMcs5lOOe2A5uB5gVJUIqeeuXr8b8B/+PwycO0GN2CHYd2eJ2S\nSMQoSJ/+EDNbbWajzOz0s3WrATmv1O0ku8Uv8jMXFbuIKXdO4a5Gd9F8ZHPmb57vdUoiESHmArd7\nBfg///Qfgb8DA86y7hn7cZKTk3+c9vl8+Hy+C0xFwpWZ8dvrfstVVa+i1/ReDG42mCdvfJIo0/gC\nEYDU1FRSU1MDus88jdM3s0uA2af79M/2npkNBXDOPet/bx4w3Dm3LNc26tOXn9l1eBfdp3WnXPFy\nvNXlLX0xi8gZeDZO38yq5pjtApwe2ZMC9DSzODOrDdQDlhckQYkM1UtVZ0m/JdQuU5urX7+aVXtX\neZ2SSJGUl9E7k4BWQAUgDRgO+IDGZHfdbAMGOufS/Os/CfQHMoFHnHO/6KxVS1/OZdLaSTw872H+\n3PrP3N/0fj2+QcRPj2GQImvjvo10e7sbV1S+gtdue42ScSW9TknEc3oMgxRZDSo0YNl9y4iPjqfZ\nG8344tsvvE5JpEhQ0ZeQVSK2BKM6j2LoDUO5aexNvLnyTa9TEgl76t6RsLDu23V0e7sbzas35z8d\n/kNCXILXKYkEnbp3JGJcXulylt+/HIfj6jeuZvXe1V6nJBKWVPQlbJSMK8nYpLE8deNTtHmrDf9e\n/m/0iVEkf9S9I2Fp0/5N9JreixqlajCq0yjKlyjvdUoihU7dOxKx6pWvx8cDPqZO2To0ea0JH+z4\nwOuURMKCWvoS9uZsmsOAlAEMvGogv2/5e2KiLvSRUiKhTTdnifjtObKHu2fezdH0o4zvOp5Ly17q\ndUoiAafuHRG/qhdVZX6f+XRL7MY1I69hzKoxusgrcgZq6UuRszZtLXe9cxcNKjTg1Y6v6iKvFBlq\n6YucQaPKjfj0/k+pWaomjV9rzKKti7xOSSRkqKUvRdrCLQu5d9a9dEvsxl9u/gvFY4t7nZLIBVNL\nX+Q82tZpy+pBq9n9w26avt6UT3d96nVKIp5SS18ixpQvpvDwvId5oOkD/KHVH4iLjvM6JZF80ZBN\nkXzac2QP98++n11HdjEuaRyNKv/iG0BFQpa6d0TyqepFVZndazZDmg+h9bjWPLv0WU5lnfI6LZGg\nUUtfItaOQzvon9Kfo+lHGd15NIkVE71OSeSc1NIXKYCLy1zMwr4LuafxPbQa04q/fPgXMk5leJ2W\nSKE6b9E3s9FmlmZma3MsK2dmC83sKzNbYGZlcrw3zMw2mdlGM2tXWImLBEKURTHo6kGseGAFH+z4\ngOYjm7Nq7yqv0xIpNHlp6b8JtM+1bCiw0DlXH3jPP4+ZJQI9gET/NiPMTJ8mJOTVKl2Lub3n8ug1\nj9LurXY8veRpTmae9DotkYA7b0F2zn0IHMy1uBMw1j89FkjyT3cGJjnnMpxz24HNQPPApCpSuMyM\nfo37sXrQatakraHp601ZtnOZ12mJBNSFtsIrO+fS/NNpQGX/dDVgZ471dgLVLzCGiCeqXlSVGT1m\n8HTLp0maksSQOUM4fPKw12mJBESBHzzunHNmdq6hOGd8Lzk5+cdpn8+Hz+craCoiAWNm9PhVD9rW\nacvvFv6Oy0dczkvtX6JLwy5epyYRJDU1ldTU1IDuM09DNs3sEmC2c66Rf34j4HPO7TWzqsAS51wD\nMxsK4Jx71r/ePGC4c25Zrv1pyKaElQ92fMADsx+gYcWGvHzry9QoVcPrlCQCeTlkMwXo55/uB8zM\nsbynmcWZWW2gHrC8IAmKhIKWF7dk9aDVXFn5Shq/2piXl72sm7okLJ23pW9mk4BWQAWy+++fBmYB\nU4FawHagu3PukH/9J4H+QCbwiHNu/hn2qZa+hK0N321g4LsDOZ55nBEdRtCsejOvU5IIoWfviHjE\nOcdba97iiUVPkHRZEn+++c+UK17O67SkiNMduSIeMTPuvvJu1g9eT5RFkfifRN5c+SZZLsvr1ETO\nSS19kQBYsXsFg+cMJiYqhhEdRnBllSu9TkmKILX0RULEVdWu4pMBn9Dvyn60fastD815iAPHD3id\nlsgvqOiLBEiURfHAVQ+w4dcbyHJZNPxPQ0Z8OoLMrEyvUxP5kbp3RArJmrQ1PDLvEQ4cP8CL7V/E\nd4nP65QkzGn0jkiIc84xfcN0HlvwGM2qN+Nvbf/GxWUu9jotCVPq0xcJcWbGnYl3suHXG7ii0hU0\nfb0pwxYN07N8xDMq+iJBUDy2OH9o9QfWDFrD3qN7qf9yfV759BX190vQqXtHxAOr9q7isQWPsevI\nLl5o+wId63XErECf2iUCqE9fJIw555i7eS6PLXiMKiWr8Ld2f6Np1aZepyUhTEVfpAjIzMpk1Oej\nSH4/Gd8lPv540x+pW66u12lJCNKFXJEiICYqhoFXD2TzkM38quKvuHbktTz47oPsPrLb69SkCFLR\nFwkRCXEJPNXyKb586EtKxpWk0SuNGLZoGIdOHPI6NSlCVPRFQkz5EuV5od0LrB60mn3H9lHv5Xo8\nu/RZfkj/wevUpAhQn75IiNu4byPPvP8Mi7ct5vHrH2dws8GUiC3hdVriAV3IFYkgX3z7Bc+8/wxL\nv17K767/HYOuHkTx2OJepyVBpKIvEoHWpK0hOTWZZbuW8cQNT/DAVQ8QHxPvdVoSBCr6IhFs5Z6V\nJL+fzGe7P+O31/6WgVcPpGRcSa/TkkLkedE3s+3AYeAUkOGca25m5YApwMXk+v7cHNup6IsEyKq9\nq/jLh38hdXsqQ5oPYcg1QygTX8brtKQQhMI4fQf4nHNNnHPN/cuGAgudc/WB9/zzIlJIGldpzNRu\nU/ng3g/YcnALdV6qw5PvPcl3R7/zOjUJQYEYspn7rNMJGOufHgskBSCGiJxHgwoNGJM0hs/u/4yD\nxw9y2b8vY8icIWw7uM3r1CSEBKKlv8jMPjOz+/3LKjvn0vzTaUDlAsYQkXyoXbY2r9z2Cl8M/oKE\nuASavdGMntN6smL3Cq9TkxBQ0D79qs65PWZWEVgIDAFSnHNlc6xzwDlXLtd26tMXCZLDJw8z8vOR\n/Ot//6Juubo8fv3jtK/bXk/1DEOeX8jNlcxw4AfgfrL7+feaWVVgiXOuQa513fDhw3+c9/l8+Hy+\ngOQhImeWcSqDKeum8PxHz+NwPHrNo9zV6C6N9Q9hqamppKam/jj/zDPPeFf0zawEEO2cO2JmCcAC\n4BmgDbDfOfecmQ0FyjjnhubaVi19EY8451i4dSEvLnuRT3d9yn1N72Nws8HUKFXD69TkPDxt6ZtZ\nbWCGfzYGmOCc+6t/yOZUoBYasikS0jbt38TLy19m/JrxtKvTjoeveZjralynrp8QFVLdO/kKqqIv\nElIOnzzMmyvf5OXlL1O2eFkevPpBev6qp57xE2JU9EUkoE5lnWLe5nm8uuJVPv7mY/o06sPAqweS\nWDHR69QEFX0RKUQ7Du1g5OcjGblyJPXL12fQVYPo2rArxWKKeZ1axFLRF5FCl3Eqg5QvU3h1xaus\n3rua3o16079JfxpVbuR1ahFHRV9EgmrLgS2MWTWGMavHUKVkFfo37k+vRr30rJ8gUdEXEU+cyjrF\noq2LGL1qNPM3z6dj/Y7cc+U9tK7dmuioaK/TK7JU9EXEc/uP7Wfi2omMWzOOXYd30fNXPelzRR+a\nVGmioZ8BpqIvIiHly31fMmHtBMavGU+xmGL0adSHuxrdRe2ytb1OrUhQ0ReRkOSc45OdnzBhzQSm\nrp9K3XJ16Z7YnTsT76Rm6Zpepxe2VPRFJOSln0pn8bbFvL3ubWZ+OZP65evTLbEbdybeSa3StbxO\nL6yo6ItIWMk4lcF7297j7XVvM+vLWdQtV5euDbvS+bLOXFbhMq/TC3kq+iIStjJOZbB422JmbpxJ\nylcpXBRwGL6NAAAJLElEQVR3EZ0v60ynyzpxbY1rNQroDFT0RaRIyHJZrNi9gpQvU5j15SzSjqZx\nW73b6FCvA20ubUPp+NJepxgSVPRFpEjaenArs7+czdzNc/nom49oUqUJt9a9lfZ129O4SuOIHQqq\noi8iRd6xjGO8v/195m2ex9zNczmSfoR2ddrRpnYbbqp9U0R9D4CKvohEnC0HtrBgywIWb1/Mkm1L\nKF+iPK0vaU3r2q3xXeKjYkJFr1MsNGFd9MuX977ox8RAhQpQseJPr9PzpUrB2T5Blijx823KlYOo\ngn7FvIjkW5bLYm3aWhZvW8zi7Yv5cMeH1Cpdixa1Wvz4KkrDQsO66H/3nfdFPz0d9u+H77775evI\nkTNv4xwcPZq9zr592f9+/z2ULZt9AoiPD+4xnE3uE1POk9rZcjSDMmV+Wi82Nrg5ixRUZlYmn+/5\nnI++/oil3yxl6ddLiYuOyz4B1GzBdTWvo1GlRsRGh+cfd1gX/aLUvZOZ+dPJIz3d62x+fmLKeXI6\n/TpbjllZcPBg9joHDkDJkj//NBMdAiPocp6Ycn86O/0qWfLsn9Iksjjn2HJwC0u/zj4BfLLzE7Yf\n2s4Vla+gebXmNKvejGbVmlGvfD2iLPQ/rqvoS6HJyoJDh346URw4kL3Ma6dPTLlPZDlfp0798hNO\nmTKh0QUXFQXly//yRBVKJ9ai7sjJI3y+53OW71rOp7s/Zfmu5Rw6cYgmVZtwZeUrs19VriSxYiLx\nMSHy0d0vZIu+mbUH/gVEAyOdc8/lel9FXwrNsWO/PBEcOuR1VtkyM7NPoLnz27cvu5uwTJkznxAu\nuij0P72UKgWJidmv8uW9ziZ/vj36LSv3rGR12mpWp61mTdoaNh/YTJ2ydbiyypVcXvFyGlZoSIMK\nDahbrq5n3UMhWfTNLBr4EmgD7AI+BXo55zbkWMezop+amorP51PcIhw7XI/5XCeEs11jOu3rr1Op\nVevC4hbU6dgHDsCGDbB+PRQrll38GzbM/rdiIQyoWbculcsv9wV+x34ZWSfZmb6eHSdWc7jYevbb\nBrYc3sg3339Dpe8qcdX1V9GwQkPqlK1DnXJ1uLTspVS/qHqh3kkciKIfE6hkcmgObHbObQcws8lA\nZ2DDuTYKlkgrROFaAMMxbkFjx8RApUrZr/xKTk4lOfnC4hZU7tjOwZ492cV//Xr44ovsLrlA++KL\nVL780nfe9S5cMaAJWVlN+Prr7BNaQgJce/kJ9v3wG8pdfBO7j21k1ZYP2H18DLuOb+Vwxn6qxF9M\nteKXUq3EpVSKr0mlYjWoFJ/9qlisOsWiixdizudXGEW/OvBNjvmdwDX53Ule/vOcbZ3cy/P7H/FC\nY3sVN/fyCyk8kXbMeV0/lI45GHEDEdsMqlXLfrVpk/fY+Y2bnJz9yu8+87pO7uVLlqRSr56P9evj\n+cc/KhO9sTtbvoKTJ6E4UBfIijrOyeLbOVhiC9uOLCCq1kHS49eSHr8z+1VsF9GnShJ3shoxJyvB\njixKlG9ETHpFYtMrEZtekZN7v6FUKR8xmaWJzizN0f2fU7p063MfaD4UxqWtgPTbpKamXvA6uZfn\nZV+BiO1V3NzL8xu3ILHD9Zjzun4oHXMw4noZO5Tinmn5+++nUqMGtGsH114Lr78OqanwySc/vZZ9\nVJxVixqyMeU2BrUqx+6xz7HvtQkcfvF9Tjy3hVPPHGf3kxv46LFxTHv0CW6uXoYnBtamb/9j3Nz3\nUxr0GkNWlb/huvZmX6cb+arjxWyofDPrOpViV/fA3G9QGH361wLJzrn2/vlhQFbOi7lmpqu4IiIX\nIBQv5MaQfSH3ZmA3sJxcF3JFRMQbAe/Td85lmtlDwHyyh2yOUsEXEQkNntycJSIi3giBexRFRCRY\nVPRFRCKI50XfzGqb2Ugze9s/39nMXjezyWbWNsixfzYfxLgJZjbWf9x3FWbsHDkkmtkUMxthZncE\nI6Y/bg0ze8fMRpnZE8GK64/dwsxeMbM3zOyjIMY1M/uzmb1kZncHK64/ts/MPvQfd6sgx04ws0/N\nrGMQYzbwH+tUMxsQrLj+2EGrXbni5qtueV70nXPbnHP35Zif5Zx7ABgE9Ahy7J/NBysu0BWY6j/u\nToUd36898LJzbjAQzELUCJjunBsANAliXJxzS51zDwLvAmOCGDqJ7JsW08m+WTGYsoAjZN9eGuzY\nvwOmBDOgc26j/3fcE7glyLGDVrtyxc1X3QpY0Tez0WaWZmZrcy1vb2YbzWxTPlt2vwf+7VHsPAlg\n3Jx3MZ8KUg5vAT3N7Hkg34/HKkDcj4EHzOw9YF5+4xYw9ml3ARODGLc+8JFz7jHgwfzGLWDsD51z\nHYChwDPBiutv6a4HvstvzILE9a9zO/BfYHKwY/vluXYFOG7eOOcC8gJuJLvltjbHsmhgM3AJEAus\nAhoCfYF/AtVyrPu2/18DngNuDnbss80H4Zj7AB3905OC/HOPBmYG6/cNPArcmJ+fcyCPGagFvB7M\nuEBvoJt//Ske/f+Ku5CfdwGO+U/+6fnATPwjBYN1vP71ZwX595zv2hXg33He6taFJHeOpC/JlfB1\nwLwc80OBobm2KQe8Cmzyvz8E+Ax4BRgYxNhP5J4PQtzN/rglgNHACLJvZAvGz/1i4DVgPHB9EH/f\nVwDT/L/f54P5t+ZfngxcG+S/8eLASOAl4MEgx+7i/1ubDLQM5s/a/14/oEMQj7cV8KL/b/vRIP+s\nH+YCalcA4uarbhXGA9dyOu/D15xzB8juA8vpZQ9j554PVtz+BYyb3xx2AAMDGDOvcdcAdwY4bp5i\n++MnBzuuc+44UBjXivISewYwI9hxc8QfG8y4zrn3gfcDGDM/sV8i+8Qe7LhnqidnVdgXcr2888ur\n2KFwt1skHruOWXGLYuyAxy3sor8LqJljvibBG0HgVWwvj9nrHPT71jEXxbhexg543MIu+p8B9czs\nEjOLI3sYU0ohx/Q6tpfH7HUO+n3rmItiXC9jBz7uhV7oOMMFiElkP1XzJNl9UPf6l99K9lM3NwPD\nAhUvFGJ7ecxe56Dft465KMaNhGPWA9dERCKI53fkiohI8Kjoi4hEEBV9EZEIoqIvIhJBVPRFRCKI\nir6ISARR0RcRiSAq+iIiEURFX0Qkgvx/LFbCf3V679sAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 38 }, { "cell_type": "markdown", "metadata": {}, "source": [ "* We estimated that the rank would grow *quadratically*.\n", "* Comments on how good our estimate is?" ] } ], "metadata": {} } ] }