Languages and Abstractions for High-Performance Scientific Computing
CS598 APK

Andreas Kloeckner

Fall 2018
Outline

Introduction
 Notes
 About This Class
 Why Bother with Parallel Computers?
 Lowest Accessible Abstraction: Assembly
 Architecture of an Execution Pipeline
 Architecture of a Memory System
 Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
Outline

Introduction

Notes
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
Outline

Introduction

Notes

About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
Why this class?

- Setting: Performance-Constrained Code
 When is a code performance-constrained?

 A desirable quality (fidelity/capability) is limited by computational cost on a given computer.

- If your code is performance-constrained, what is the best approach?
 Use a more efficient method/algorithm.

- If your code is performance-constrained, what is the second-best approach?
 Ensure the current algorithm uses your computer efficiently. Observe that this is a desperate measure.
Examples of Performance-Constrained Codes

- Simulation codes
 - Weather/climate models
 - Oil/gas exploration
 - Electronic structure
 - Electromagnetic design
 - Aerodynamic design
 - Molecular dynamics / biological systems
 - Cryptanalysis

- Machine Learning
- Data Mining

Discussion:

- In what way are these codes constrained?
- How do these scale in terms of the problem size?
What Problem are we Trying To Solve?

\[(C_{ij})_{i,j=1}^{m,n} = \sum_{k=1}^{\ell} A_{ik}B_{kj}\]

Reference BLAS DGEMM code:

OpenBLAS DGEMM code:
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/dgemm_kernel_4x8_sandy.S

Demo: intro/DGEMM Performance

Demo Instructions: Compare OpenBLAS against Fortran BLAS on large square matrix
Goals: What are we Allowed to Ask For?

- Goal: “make efficient use of the machine”
- In general: not an easy question to answer
- In theory: limited by *some* peak machine throughput
 - Memory Access
 - Compute
- In practice: many other limits (Instruction cache, TLB, memory hierarchy, NUMA, registers)

contains:

▶ Class outline
▶ Slides/demos/materials
▶ Assignments
▶ Virtual Machine Image
▶ Piazza
▶ Grading Policies
▶ Video
▶ HW1 (soon)
Welcome Survey

Please go to:

and click on 'Start Activity'.

If you are seeing this later, you can find the activity at Activity: welcome-survey.
Grading / Workload

Four components:

- Homework: 25%
- Paper Presentation: 25%
 - 30 minutes (two per class)
 - Presentation sessions scheduled throughout the semester
 - Paper list on web page
 - Sign-up survey: soon
- Paper Reactions: 10%
- Computational Project: 40%
Approaches to High Performance

- Libraries (seen)
- Black-box Optimizing Compilers
- Compilers with Directives
- Code Transform Systems
- “Active Libraries”

Q: Give examples of the latter two.

- Code Transform System: CHiLL
- Active Library: PyTorch
Libraries: A Case Study

\[(C_{ij})_{i,j=1}^{m,n} = \sum_{k=1}^{\ell} A_{ik} B_{kj}\]

Demo: intro/DGEMM Performance

Demo Instructions: Compare OpenBLAS on large square and small odd-shape matrices
Do Libraries Stand a Chance? (in general)

- Tremendously successful approach — Name some examples

(e.g.) LAPACK, Eigen, UMFPACK, FFTW, Numpy, Deal.ii

- Saw: Three simple integer parameters suffice to lose ’good’ performance
 - Recent effort: “Batch BLAS” e.g.

- Separation of Concerns
 Example: Finite differences – e.g. implement ∂_x, ∂_y, ∂_z as separate (library) subroutines — What is the problem?

 Data locality \rightarrow data should be traversed once, ∂_x, ∂_y, ∂_z computed together
 Separation of concerns \rightarrow each operator traverses the data separately.

- Flexibility and composition
Why is black-box optimizing compilation so difficult?

- Application developer knowledge lost
 - Simple example: “Rough” matrix sizes
 - Data-dependent control flow
 - Data-dependent access patterns
 - Activities of other, possibly concurrent parts of the program
 - Profile-guided optimization can recover some knowledge

- Obtain proofs of required properties

- Size of the search space

Consider

What is a directive-based compiler?

Demo Instructions: Show 12dformta_qbx from pyfmmlib/vec_wrappers.f90.

- Generally same as optimizing compiler
- Make use of extra promises made by the user
- What should the user promise?
 - Ideally: feedback cycle between compiler and user
 - Often broken in both directions
 - User may not know what the compiler did
 - Compiler may not be able to express what it needs
- Directives: generally not mandatory
Lies, Lies Everywhere

- Semantics form a contract between programmer and language/environment
- Within those bounds, the implementation is free to do as it chooses
- True at every level:
 - Assembly
 - “High-level” language (C)

Give examples of lies at these levels:

- Assembly: Concurrent execution
- “High-level” language (C): (e.g.) strength reduction, eliminated ops

One approach: *Lie to yourself*

- “Domain-specific languages” ← A fresh language, I can do what I want!
- Consistent semantics are notoriously hard to develop
 - Especially as soon as you start allowing subsets of even (e.g.)
Class Outline

High-level Sections:

▶ Intro, Armchair-level Computer Architecture
▶ Machine Abstractions
▶ Performance: Expectation, Experiment, Observation
▶ Programming Languages for Performance
▶ Program Representation and Optimization Strategies
▶ Code Generation/JIT
Survey: Class Makeup

- Compiler class: 11 no, 3 yes
- HPC class: 10 yes, 4 no
- C: very proficient on average
- Python: proficient on average
- Assembly: some have experience
- GPU: Half the class has experience, some substantial
- CPU perf: Very proficient
- 10 PhD, 4 Masters, mostly CS (plus physics, CEE, MechSE)
Survey: Learning Goals

- How to use hardware efficiently to write fast code (1 response)
- I want to learn about commonly encountered problems in HPC and efficient ways to approach and solve them. (1 response)
- about writing high performance code for large scale problems. (1 response)
- more (and more) about high-performance computing beyond parallel programming. (1 response)
- This summer (while interning at Sandia national labs), I got familiar with GPU programming using Kokkos as the back end. I enjoyed this work immensely, and hope to continue learning about it, especially so that I can become better at writing GPU code myself. I am also interested in the relationship between a higher level abstraction (Kokkos), the compiler, and the actual compute device (GPU/CPU) relate together, and what tricks we have to help fix issues regarding this. For example, Kokkos uses a small amount of template metaprogramming to convert the source code into actual code. (1 response)
- Some GPU stuff, course description sounded interesting for my research in HPC/Parallel Computing. Would be interesting to look at different programming models or abstractions for HPC. (1 response)
- Getting better at doing high performance computing. (1 response)
- become more familiar with abstractions (1 response)
- I want to be able to auto generate performance portable C++ code, specifically for small batched tensor contractions. (1 response)
- Languages and abstractions for high-performance scientific computing (1 response)
- Investigating problems in high performance computing and looking for solutions, especially large-scale and using GPUs. (1 response)
- Better ways to efficiently (in terms of human time) write high-performance code that may be useful to/readable by others (1 response)
- about high-level languages and frameworks for high performance computing, the different interfaces they expose, compilation and runtime techniques they use, and the tradeoffs of these for an application developer. (1 response)
Outline

Introduction
- Notes
- About This Class

Why Bother with Parallel Computers?
- Lowest Accessible Abstraction: Assembly
- Architecture of an Execution Pipeline
- Architecture of a Memory System
- Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
Moore’s Law

Issue: More transistors = faster?

$$\text{Work} \quad \frac{s}{s} = \text{Clock Frequency} \times \text{Work/Clock}$$

curve shows transistor count doubling every two years
Dennard Scaling of MOSFETs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>$1/\kappa$</td>
</tr>
<tr>
<td>Voltage</td>
<td>$1/\kappa$</td>
</tr>
<tr>
<td>Current</td>
<td>$1/\kappa$</td>
</tr>
<tr>
<td>Capacitance</td>
<td>$1/\kappa$</td>
</tr>
<tr>
<td>Delay Time</td>
<td>$1/\kappa$</td>
</tr>
<tr>
<td>Power dissipation/circuit</td>
<td>$1/\kappa^2$</td>
</tr>
<tr>
<td>Power density</td>
<td>1</td>
</tr>
</tbody>
</table>

[Dennard et al. ’74, via Bohr ’07]

- Frequency = Delay time$^{-1}$
MOSFETs ("CMOS" – "complementary" MOS): Schematic

[Dennard et al. '74]
MOSFETs: Scaling

- 'New' problem at small scale:
 Sub-threshold leakage (due to low voltage, small structure)
 Dennard scaling is over – and has been for a while.
Peak Architectural Instructions per Clock: Intel

<table>
<thead>
<tr>
<th>CPU</th>
<th>IPC</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium 1</td>
<td>1.1</td>
<td>1993</td>
</tr>
<tr>
<td>Pentium MMX</td>
<td>1.2</td>
<td>1996</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>1.9</td>
<td>1999</td>
</tr>
<tr>
<td>Pentium 4 (Willamette)</td>
<td>1.5</td>
<td>2003</td>
</tr>
<tr>
<td>Pentium 4 (Northwood)</td>
<td>1.6</td>
<td>2003</td>
</tr>
<tr>
<td>Pentium 4 (Prescott)</td>
<td>1.8</td>
<td>2003</td>
</tr>
<tr>
<td>Pentium 4 (Gallatin)</td>
<td>1.9</td>
<td>2003</td>
</tr>
<tr>
<td>Pentium D</td>
<td>2</td>
<td>2005</td>
</tr>
<tr>
<td>Pentium M</td>
<td>2.5</td>
<td>2003</td>
</tr>
<tr>
<td>Core 2</td>
<td>3</td>
<td>2006</td>
</tr>
<tr>
<td>Sandy Bridge...</td>
<td>4ish</td>
<td>2011</td>
</tr>
</tbody>
</table>

[Charlie Brej](http://brej.org/blog/?p=15)

Discuss: How do we get out of this dilemma?
The Performance Dilemma

- IPC: Brick Wall
- Clock Frequency: Brick Wall

Ideas:

- Make one instruction do more copies of the same thing (“SIMD”)
- Use copies of the same processor (“SPMD”/“MPMD”)

Question: What is the conceptual difference between those ideas?

- SIMD executes multiple program instances in lockstep.
- SPMD has no synchronization assumptions.
The Performance Dilemma: Another Look

- **Really:** A crisis of the ‘starts-at-the-top-ends-at-the-bottom’ programming model
- **Tough luck:** Most of our codes are written that way
- **Even tougher luck:** Everybody on the planet is trained to write codes this way

So:

- **Need:** Different tools/abstractions to write those codes
Outline

Introduction
 Notes
 About This Class
 Why Bother with Parallel Computers?
 Lowest Accessible Abstraction: Assembly
 Architecture of an Execution Pipeline
 Architecture of a Memory System
 Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
A Basic Processor: Closer to the Truth

- Address ALU
- Register File
- Flags
- Data ALU
- Address ALU
- Control Unit
- PC
- Memory Interface
- Address Bus
- Data Bus
- Internal Bus
- Insn. fetch

- Loosely based on Intel 8086
- What’s a bus?
A Very Simple Program

```c
int a = 5;
int b = 17;
int z = a * b;
```

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)

b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)

12: 8b 45 f4 mov -0xc(%rbp),%eax

15: 0f af 45 f8 imul -0x8(%rbp),%eax

19: 89 45 fc mov %eax,-0x4(%rbp)

1c: 8b 45 fc mov -0x4(%rbp),%eax

Things to know:

- **Question:** Which is it?
 - `<opcode> <src>, <dest>`
 - `<opcode> <dest>, <src>`

- **Addressing modes** (Immediate, Register, Base plus Offset)

- **0xHexadecimal**
A Very Simple Program: Another Look

4: c7 45 f4 05 00 00 00 00 movl $0x5,-0xc(%rbp)
b: c7 45 f8 11 00 00 00 00 movl $0x11,-0x8(%rbp)
12: 8b 45 f4 mov -0xc(%rbp),%eax
15: 0f af 45 f8 imul -0x8(%rbp),%eax
19: 89 45 fc mov %eax,-0x4(%rbp)
1c: 8b 45 fc mov -0x4(%rbp),%eax
A Very Simple Program: Intel Form

4: c7 45 f4 05 00 00 00 mov DWORD PTR [rbp-0xc],0x5
b: c7 45 f8 11 00 00 00 mov DWORD PTR [rbp-0x8],0x11
12: 8b 45 f4 mov eax,DWORD PTR [rbp-0xc]
15: 0f af 45 f8 imul eax,DWORD PTR [rbp-0x8]
19: 89 45 fc mov DWORD PTR [rbp-0x4],eax
1c: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

▶ “Intel Form”: (you might see this on the net)
 <opcode> <sized dest>, <sized source>
▶ Previous: “AT&T Form”: (we’ll use this)
▶ Goal: Reading comprehension.
▶ Don’t understand an opcode?
Assembly Loops

```c
int main()
{
    int y = 0, i;
    for (i = 0; y < 10; ++i)
        y += i;
    return y;
}
```

Things to know:
- **Condition Codes (Flags):** Zero, Sign, Carry, etc.
- **Call Stack:** Stack frame, stack pointer, base pointer
- **ABI:** Calling conventions

Demo Instructions: [C → Assembly mapping from](https://github.com/ynh/cpp-to-assembly)
Demos

Demo: intro/Assembly Reading Comprehension

Demo: Source-to-assembly mapping

Code to try:

```c
int main()
{
    int y = 0, i;
    for (i = 0; y < 10; ++i)
    {
        y += i;
    }
    return y;
}
```
Outline

Introduction
 Notes
 About This Class
 Why Bother with Parallel Computers?
 Lowest Accessible Abstraction: Assembly
 Architecture of an Execution Pipeline
 Architecture of a Memory System
 Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
Modern Processors?

All of this can be built in about 4000 transistors.
(e.g. MOS 6502 in Apple II, Commodore 64, Atari 2600)

So what exactly are Intel/ARM/AMD/Nvidia doing with the other billions of transistors?
Execution in a Simple Processor

- **IF** Instruction fetch
- **ID** Instruction Decode
- **EX** Execution
- **MEM** Memory Read/Write
- **WB** Result Writeback

[Wikipedia](https://en.wikipedia.org)
Solution: Pipelining

[Diagram of pipeline stages: IF, ID, EX, MEM, WB]

[Wikipedia ©]
MIPS Pipeline: 110,000 transistors

[Wikipedia ©️]
Hazards and Bubbles

Q: Types of Pipeline Hazards? (aka: what can go wrong?)

- Data
- Structural
- Control

[Wikipedia ©]
Demo: intro/Pipeline Performance Mystery

- a, a: elapsed time 3.83603 s
- a, b: elapsed time 2.58667 s
- a, a unrolled: elapsed time 3.83673 s
- aa, bb unrolled: elapsed time 1.92509 s
- a, b unrolled: elapsed time 1.92084 s
A Glimpse of a More Modern Processor

[David Kanter / Realworldtech.com]
A Glimpse of a More Modern Processor: Frontend

Sandy Bridge

Instruction Fetch Unit

Branch Predictors

144 Entry L1 ITLB (4 way)

32KB L1 I-Cache (8 way)

16B Predecode, Fetch Buffer

6 instructions

18+ Entry Instruction Queue

μcode Engine

Complex Decode

Simple Decode

Simple Decode

Simple Decode

1.5K μop Cache (8 way)

28 μop Decoder Queue

[David Kanter / Realworldtech.com]
A Glimpse of a More Modern Processor: Backend

- New concept: Instruction-level parallelism (“ILP”, “superscalar”)
- Where does the IPC number from earlier come from?

[David Kanter / Realworldtech.com]
Demo: intro/More Pipeline Mysteries
Q: Potential issues?

- $n \times$ the cache demand!
- Power?
- Some people just turn it off and manage their own ILP.
Q: Potential issues?

- \(n \times \) the cache demand!
- Power?
- Some people just turn it off and manage their own ILP.
Outline

Introduction
Notes
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
More bad news from Dennard

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>$1/\kappa$</td>
</tr>
<tr>
<td>Line Resistance</td>
<td>κ</td>
</tr>
<tr>
<td>Voltage drop</td>
<td>κ</td>
</tr>
<tr>
<td>Response time</td>
<td>1</td>
</tr>
<tr>
<td>Current density</td>
<td>κ</td>
</tr>
</tbody>
</table>

[Dennard et al. ‘74, via Bohr ‘07]

- The above scaling law is for on-chip interconnects.
- Current \sim Power vs. response time

Getting information from

- processor to memory
- one computer to the next

is

- slow (in latency)
- power-hungry
Performance characteristics of memory:

- Bandwidth
- Latency

Flops are cheap

Bandwidth is money

Latency is physics

- M. Hoemmen

Minor addition (but important for us)?

- Bandwidth is money and code structure
Latency is Physics: Distance

[Wikipedia ©]
Latency is Physics: Electrical Model
Latency is Physics: DRAM

[Wikipedia]
What is the performance impact of high memory latency?

Processor stalled, waiting for data.

Idea:

- Put a look-up table of recently-used data onto the chip.
- Cache
Memory Hierarchy

- Registers
- L1 Cache
 - 1 kB, 1 cycle
 - 10 kB, 10 cycles
- L2 Cache
 - 100 kB, 10 cycles
 - 10 MB, 100 cycles
- L3 Cache
 - 1 GB, 1000 cycles
 - 1 TB, 1 M cycles
- DRAM
- Virtual Memory (hard drive)
A Basic Cache

Demands on cache implementation:

- Fast, small, cheap, low power
- Fine-grained
- High “hit”-rate (few “misses”)

Design Goals: at odds with each other. Why?

Address matching logic expensive
Caches: Engineering Trade-Offs

Engineering Decisions:

- More data per unit of access matching logic
 → Larger “Cache Lines”
- Simpler/less access matching logic
 → Less than full “Associativity”
- Eviction strategy
- Size
Associativity

Direct Mapped:

2-way set associative:
Miss rate versus cache size on the Integer portion of SPEC CPU2000 [Cantin, Hill 2003]
Demo: Learning about Caches

Demo: intro/Cache Organization on Your Machine
Experiments: 1. Strides: Setup

```c
int go(unsigned count, unsigned stride)
{
    const unsigned array_size = 64 * 1024 * 1024;
    int *ary = (int *) malloc(sizeof(int) * array_size);

    for (unsigned it = 0; it < count; ++it)
    {
        for (unsigned i = 0; i < array_size; i += stride)
            ary[i] *= 17;
    }

    int result = 0;
    for (unsigned i = 0; i < array_size; ++i)
        result += ary[i];

    free(ary);
    return result;
}
```

What do you expect? [Ostrovsky '10]
Experiments: 1. Strides: Results
Experiments: 2. Bandwidth: Setup

```c
int go(unsigned array_size, unsigned steps)
{
    int *ary = (int *) malloc(sizeof(int) * array_size);
    unsigned asm1 = array_size - 1;

    for (unsigned i = 0; i < 100*steps;)
    {
        #define ONE ary[(i++)*16 + asm1] ++;
        #define FIVE ONE ONE ONE ONE ONE
        #define TEN FIVE FIVE
        #define FIFTY TEN TEN TEN TEN TEN
        #define HUNDRED FIFTY FIFTY HUNDRED
    }

    int result = 0;
    for (unsigned i = 0; i < array_size; ++i)
        result += ary[i];

    free(ary);
    return result;
}
```

What do you expect? [Ostrovsky ‘10]
Experiments: 2. Bandwidth: Results

![Graph showing efficiency bandwidth vs array size in bytes. The x-axis represents array size in bytes, ranging from 2^{12} to 2^{28}, while the y-axis represents efficiency bandwidth in GB/s, ranging from 10^{-1} to 10^3. The graph depicts two lines: one in blue and one in green. The blue line shows a decrease in efficiency bandwidth as array size increases, while the green line remains relatively flat.]
Experiments: 3. A Mystery: Setup

```c
int go(unsigned array_size, unsigned stride, unsigned steps)
{
    char *ary = (char *) malloc(sizeof(int) * array_size);

    unsigned p = 0;
    for (unsigned i = 0; i < steps; ++i)
    {
        ary[p] ++;
        p += stride;
        if (p >= array_size)
            p = 0;
    }

    int result = 0;
    for (unsigned i = 0; i < array_size; ++i)
        result += ary[i];

    free(ary);
    return result;
}

What do you expect? [Ostrovsky '10]
```
Experiments: 3. A Mystery: Results

Color represents achieved bandwidth:

- Red: high
- Blue: low
Thinking about the Memory Hierarchy

- What is a working set?
- What is data locality of an algorithm?
- What does this have to with caches?
Q: Estimate expected throughput for saxpy on an architecture with caches. What are the right units?

\[z_i = \alpha x_i + y_i \quad (i = 1, \ldots, n) \]

- Units: GBytes/s
- Net memory accessed: \(n \times 4 \times 3 \) bytes
- Actual memory accessed: \(n \times 4 \times 4 \) bytes
 (To read \(z \) read into the cache before modification)

Demo: https://github.com/lcw/stream_ispc
Special Store Instructions

At least two aspects to keep apart:

- **Temporal Locality:** Are we likely to refer to this data again soon? (*non-temporal* store)
- **Spatial Locality:** Will (e.g.) the entire cache line be overwritten? (*streaming* store)

What hardware behavior might result from these aspects?

- **Non-temporal:** Write past cache entirely (/invalidate), or evict soon
- **Spatial:** Do not fetch cache line before overwriting

- Comment on what a compiler can promise on these aspects.
- Might these ’flags’ apply to loads/prefetches?

(see also: [McCalpin ’18])
Case study: Matrix-Matrix Mult. ('MMM'): Code Structure

- How would you structure a high-performance MMM?
- What are sources of concurrency?
- What should you consider your working set?

Sources of concurrency:
- row, column loop,
- summation loop (?)

Working set: artificially created blocks

Provide enough concurrency:
- SIMD, ILP, Core
Case study: Matrix-Matrix Mult. (’MMM’) via Latency

Come up with a simple cost model for MMM in a two-level hierarchy based on latency:

\[
\text{Avg latency per access} = (1 - \text{Miss ratio}) \cdot \text{Cache Latency} + \text{Miss ratio} \cdot \text{Mem Latency}
\]

Assume: Working set fits in cache, No conflict misses

Calculation:
- Total accesses: \(4N_B^3\) (\(N_B\): block size)
- Misses: \(3N_B^2\)
- Miss rate:
 \[
 \frac{3}{4N_B \cdot \text{cache line size}}
 \]

[Yotov et al. ’07]
Case study: Matrix-Matrix Mult. (‘MMM’) via Bandwidth

Come up with a cost model for MMM in a two-level hierarchy based on bandwidth:

- **FMA throughput**: 16×2 SP FMAs per clock (e.g.)
- **Cycle count**: $2N^3 / (2 \cdot 32) = N^3 / 32$
- **Required cache bandwidth**: $4N^3 / (N^3 / 32) = 128$ floats/cycle (GB/s?)
- **Total mem. data motion**:
 \[\# \text{ blocks} \cdot 4 \cdot \text{(block size)} = (N/N_B)^3 \cdot 4N_B^2 = 4N^3 / N_B \]
- **Required mem. bandwidth**:
 \[4N^3 / N_B / (N^3 / 32) = 128 / N_B \text{ floats/cycle (GB/s?)} \]
- **What size cache do we need to get to feasible memory bandwidth?**

[Yotov et al. ’07]
Discussion: What are the main simplifications in each model?

<table>
<thead>
<tr>
<th>Bandwidth:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Miss assumptions</td>
</tr>
<tr>
<td>▶ Multiple cache levels</td>
</tr>
<tr>
<td>▶ Latency effects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Miss assumptions</td>
</tr>
<tr>
<td>▶ Concurrency/parallelism of memory accesses</td>
</tr>
<tr>
<td>▶ (HW) prefetching</td>
</tr>
<tr>
<td>▶ Machine Limits</td>
</tr>
</tbody>
</table>

[Yotov et al. ’07]

General Q: How can we analyze cache cost of algorithms in general?
Hong/Kung: Red/Blue Pebble Game

Simple means of I/O cost analysis: “Red/blue pebble game”

- A way to quantify I/O cost on a DAG (why a DAG?)
- “Red Hot” pebbles: data that can be computed on
- “Blue Cool” pebbles: data that is stored, but not available for computation without I/O

Note: Can allow “Red/Purple/Blue/Black”: more levels

Q: What are the cost metrics in this model?

- I/O Cost: Turn a red into a blue pebble and vice versa
- Number of red pebbles (corresponding to size of ’near’ storage)

[Hong/Kung ‘81]
Annoying chore: Have to pick multiple machine-adapted block sizes in cache-adapted algorithms, one for each level in the memory hierarchy, starting with registers.

Idea:

- Step 1: Express algorithm recursively in divide & conquer manner
- Step 2: Pick a strategy to decrease block size

Give examples of block size strategies, e.g. for MMM:

- All dimensions
- Largest dimension

Result:

- Asymptotically optimal on Hong/Kung metric
Cache-Oblivious Algorithms: Issues

What are potential issues on actual hardware?

- In pure form:
 - Function call overhead
 - Register allocation
- With good base case:
 - I-cache overflow
 - Instruction scheduling

[Yotov et al. ’07]
Recall: Big-O Notation

Classical Analysis of Algorithms (e.g.):

\[\text{Cost}(n) = O(n^3). \]

Precise meaning? Anything missing from that statement?

Missing: ‘as \(n \to \infty \)’

There exists a \(C \) and an \(N_0 \) independent of \(n \) so that for all \(n \geq N_0 \),

\[\text{Cost}(n) \leq C \cdot n^3. \]
Comment: “Asymptotically Optimal”

Comments on asymptotic statements about cost in relation to high performance?

- No statement about finite \(n \)
- No statement about the constant

Net effect: Having an understanding of asymptotic cost is necessary, but not sufficient for high performance.

HPC is in the business of minimizing \(C \) in:

\[
\text{Cost}(n) \leq C \cdot n^3 \quad (\text{for all } n)
\]
Outline

Introduction
 Notes
 About This Class
 Why Bother with Parallel Computers?
 Lowest Accessible Abstraction: Assembly
 Architecture of an Execution Pipeline
 Architecture of a Memory System
 Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
Multiple Cores vs Bandwidth

Assume (roughly right for Intel):

▶ memory latency of 100 ns
▶ peak DRAM bandwidth of 50 GB/s (per socket)

How many cache lines should be/are in flight at one time?

▶ $100\text{ns} \cdot 50\text{GB/s} = 5000\text{bytes}$
▶ About 80 cache lines
▶ Oops: Intel hardware can only handle about 10 pending requests per core at one time
▶ $10 \cdot 64/100\text{ns} \approx 6.4\text{GB/s}$

[McCalpin ‘18]
Topology and NUMA

[SuperMicro Inc. ‘15]
Demo: Show lstopo on porter, from hwloc.
Placement and Pinning

Who decides on what core my code runs? How?

- The OS scheduler: “Oh, hey, look! A free core!”
- You, explicitly, by pinning:
 - `OMP_PLACES=cores`
 - `pthread_setaffinity_np()`

Who decides on what NUMA node memory is allocated?

- `malloc` uses ‘first touch’
- *You* can decide explicitly (through `libnuma`)

Demo: intro/NUMA and Bandwidths

What is the main expense in NUMA?

- Latency (but it impacts bandwidth by way of queuing)
Cache Coherence

What is *cache coherence*?

- As soon as you make a copy of (cache) something, you risk inconsistency with the original
- A set of guarantees on how (and in what order) changes to memory become visible to other cores

How is cache coherence implemented?

- Snooping
- Protocols, operating on cache line states (e.g. “MESI”)

What are the performance impacts?

- Demo: intro/Threads vs Cache
- Demo: intro/Lock Contention
'Conventional' vs Atomic Memory Update

![Diagram showing the difference between conventional and atomic memory updates]

- Conventional memory update:
 - Read → Increment
 - Increment → Write
 - Interruptible!

- Atomic memory update:
 - Read → Increment → Write
 - Protected

The atomic memory update is protected from interruptions, ensuring a single, atomic update process.
Outline

Introduction

Machine Abstractions
- C
- OpenCL/CUDA
 Convergence, Differences in Machine Mapping
- Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

 C
 OpenCL/CUDA
 Convergence, Differences in Machine Mapping
 Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Atomic Operations: Compare-and-Swap

```c
#include <stdatomic.h>

_Bool atomic_compare_exchange_strong(
    volatile A* obj,
    C* expected, C desired);
```

What does `volatile` mean?

Memory may change at any time, do not keep in register.

What does this do?

- Store `(*obj == *expected) ? desired : *obj` into `*obj`.
- Return `true` iff memory contents was as expected.

How might you use this to implement atomic FP multiplication?

Read previous, perform operation, try CAS, maybe retry
Memory Ordering

Why is Memory Ordering a Problem?

- Out-of-order CPUs reorder memory operations
- Compilers reorder memory operations

What are the different memory orders and what do they mean?

- Atomicity itself is unaffected
- Makes sure that ‘and then’ is meaningful

Types:

- Sequentially consistent: no reordering
- Acquire: later loads may not reorder across
- Release: earlier writes may not reorder across
- Relaxed: reordering OK
Example: A Semaphore With Atomics

```c
#include <stdatomic.h> // mo->memory_order, a->atomic
typedef struct { atomic_int v; } naive_sem_t;
void sem_down(naive_sem_t *s) {
    while (1) {
        while (a_load_explicit(&(s->v), mo_acquire) < 1)
            spinloop_body();
        int tmp = a_fetch_add_explicit(&(s->v), -1, mo_acq_rel);
        if (tmp >= 1)
            break; // we got the lock
        else // undo our attempt
            a_fetch_add_explicit(&(s->v), 1, mo_relaxed);
    }
}
void sem_up(naive_s_t *s) {
    a_fetch_add_explicit(&(s->v), 1, mo_release);
}
```

[Cordes ‘16] — Hardware implementation: how?
Arrays

Why are arrays the dominant data structure in high-performance code?

- Performance is mostly achieved with regular, structured code (e.g. SIMD, rectangular loops)
- Arrays are a natural fit for that type of code

Any comments on C’s arrays?

- 1D arrays: fine, no surprises
- nD arrays: basically useless: sizes baked into types
 - Interestingly: Fortran is (incrementally) smarter
Arrays vs Abstraction

Arrays-of-Structures or Structures-of-Arrays? What’s the difference? Give an example.

- Example: Array of XYZ coordinates:
 - XYZXYZXYZ...
 - XXX....YYY...ZZZ...
- Which of these will be suitable for SIMD? (e.g. computing a norm?)
- Structures-of-Arrays if at all possible – to expose regularity

Language aspects of the distinction?

- C struct forces you into arrays-of-structures
 - AoS: more “conceptually sound”
 - SoA: better for performance
- Few if any convincing solutions to accomplish this
SIMD

Name the dominant language mechanisms by which SIMD is made accessible:

- Intrinsics
- Vector Types
- `#pragma simd`
- Merging of scalar program instances (in hw/sw)

How is inter-lane communication exposed in SIMD?

- Misaligned stores/loads? (no)
- “Vector shuffles”

Name tricky aspects in terms of expressing SIMD:

- Divergent control flow
- Dependencies
Being Nice to Your Compiler

- Use indices rather than pointers
- Extract common subexpressions
- Make functions static
- Use const
- Avoid store-to-load dependencies

What are the concrete impacts of doing these things?
Outline

Introduction

Machine Abstractions

C

OpenCL/CUDA

Convergence, Differences in Machine Mapping

Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

- C
- OpenCL/CUDA
 Convergence, Differences in Machine Mapping
- Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions
- C
- OpenCL/CUDA
 - Convergence, Differences in Machine Mapping
- Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
 Forming Expectations of Performance
 Simple Performance Models: Rooflines
 Timing Experiments and Potential Issues
 Profiling and Observable Quantities
 Practical Tools: perf and toplevel (work-alike of Intel VTune)

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Forming Expectations of Performance
Simple Performance Models: Rooflines
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf and toplev (work-alike of Intel VTune)

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
 Forming Expectations of Performance
 Simple Performance Models: Rooflines
 Timing Experiments and Potential Issues
 Profiling and Observable Quantities
 Practical Tools: perf and toplevel (work-alike of Intel VTune)

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
 Forming Expectations of Performance
 Simple Performance Models: Rooflines
 Timing Experiments and Potential Issues
 Profiling and Observable Quantities
 Practical Tools: perf and toplev (work-alike of Intel VTune)

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
 Forming Expectations of Performance
 Simple Performance Models: Rooflines
 Timing Experiments and Potential Issues
 Profiling and Observable Quantities
 Practical Tools: perf and toplevel (work-alike of Intel VTune)

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
 Forming Expectations of Performance
 Simple Performance Models: Rooflines
 Timing Experiments and Potential Issues
 Profiling and Observable Quantities
 Practical Tools: perf and toplevel (work-alike of Intel VTune)

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
 The Importance of Semantics: Defined and Undefined Behavior
 The Importance of Batches: kernels and traffic cops
 Functional and not
 Lazy and eager
 Embedded Languages
 “Array and scalar: APL/numpy”
 Tensorflow, Torch, and Tensor Programs
 Parallel Patterns
 NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

The Importance of Semantics: Defined and Undefined Behavior
The Importance of Batches: kernels and traffic cops
Functional and not
Lazy and eager
Embedded Languages
“Array and scalar: APL/numpy”
Tensorflow, Torch, and Tensor Programs
Parallel Patterns
NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

The Importance of Semantics: Defined and Undefined Behavior

The Importance of Batches: kernels and traffic cops

Functional and not

Lazy and eager

Embedded Languages

“Array and scalar: APL/numpy”

Tensorflow, Torch, and Tensor Programs

Parallel Patterns

NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
 The Importance of Semantics: Defined and Undefined Behavior
 The Importance of Batches: kernels and traffic cops
 Functional and not
 Lazy and eager
 Embedded Languages
 “Array and scalar: APL/numpy”
 Tensorflow, Torch, and Tensor Programs
 Parallel Patterns
 NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
 The Importance of Semantics: Defined and Undefined Behavior
 The Importance of Batches: kernels and traffic cops
 Functional and not
 Lazy and eager
 Embedded Languages
 “Array and scalar: APL/numpy”
 Tensorflow, Torch, and Tensor Programs
 Parallel Patterns
 NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
 The Importance of Semantics: Defined and Undefined Behavior
 The Importance of Batches: kernels and traffic cops
 Functional and not
 Lazy and eager
 Embedded Languages
 “Array and scalar: APL/numpy”
 Tensorflow, Torch, and Tensor Programs
 Parallel Patterns
 NESL
Abusing the Type System
Expression templates
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
 The Importance of Semantics: Defined and Undefined Behavior
 The Importance of Batches: kernels and traffic cops
 Functional and not
 Lazy and eager
 Embedded Languages
 “Array and scalar: APL/numpy”
 Tensorflow, Torch, and Tensor Programs
 Parallel Patterns
 NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
- The Importance of Semantics: Defined and Undefined Behavior
- The Importance of Batches: kernels and traffic cops
- Functional and not
- Lazy and eager
- Embedded Languages
- “Array and scalar: APL/numpy”

Tensorflow, Torch, and Tensor Programs

Parallel Patterns

NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

The Importance of Semantics: Defined and Undefined Behavior
The Importance of Batches: kernels and traffic cops
Functional and not
Lazy and eager
Embedded Languages
“Array and scalar: APL/numpy”
Tensorflow, Torch, and Tensor Programs
Parallel Patterns
NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
 The Importance of Semantics: Defined and Undefined Behavior
 The Importance of Batches: kernels and traffic cops
 Functional and not
 Lazy and eager
 Embedded Languages
 “Array and scalar: APL/numpy”
 Tensorflow, Torch, and Tensor Programs
 Parallel Patterns
 NESL
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
 Expression Trees
 Metaprogramming
 Data Flow Analysis
 A Zoology of Compiler Passes and Ways to Control Them

Polyhedral Representation and Transformation
Term Rewriting
Macros: Textual and Syntactic, Hygiene
Common Subexpression Elimination
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
 Expression Trees
 Metaprogramming
 Data Flow Analysis
 A Zoology of Compiler Passes and Ways to Control Them

Polyhedral Representation and Transformation
Textual
Hygiene
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
 Expression Trees
 Metaprogramming
 Data Flow Analysis
 A Zoology of Compiler Passes and Ways to Control Them

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation
 Expression Trees
 Metaprogramming
 Data Flow Analysis
 A Zoology of Compiler Passes and Ways to Control Them

Polyhedral Representation and Transformation
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
 Presburger arithmetic, sets, and relations
 “Available Tools: Integer Linear Programming and Fourier-Motzkin”
 Loop Domains and Relations
 Polyhedral Schedule Models
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
 Presburger arithmetic, sets, and relations
 “Available Tools: Integer Linear Programming and Fourier-Motzkin”
 Loop Domains and Relations
Polyhedral Schedule Models
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
- Presburger arithmetic, sets, and relations
- "Available Tools: Integer Linear Programming and Fourier-Motzkin"
- Loop Domains and Relations
- Polyhedral Schedule Models
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation

Presburger arithmetic, sets, and relations

“Available Tools: Integer Linear Programming and Fourier-Motzkin”

Loop Domains and Relations

Polyhedral Schedule Models
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation
 Presburger arithmetic, sets, and relations
 “Available Tools: Integer Linear Programming and Fourier-Motzkin”
 Loop Domains and Relations

Polyhedral Schedule Models
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation

Code Generation and Just-in-Time Compilation

C as IR, LLVM IR

Caching Strategies

Constant Propagation and Run-time Typing
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation

Code Generation and Just-in-Time Compilation
 C as IR, LLVM IR
 Caching Strategies
 Constant Propagation and Run-time Typing
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation

Code Generation and Just-in-Time Compilation
 C as IR, LLVM IR
 Caching Strategies
 Constant Propagation and Run-time Typing
Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Program Representation and Transformation

Polyhedral Representation and Transformation

Code Generation and Just-in-Time Compilation
 C as IR, LLVM IR
 Caching Strategies
 Constant Propagation and Run-time Typing