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Motivation

• Stencil computations are easy to implement using nested 
loops. But looping implementations suffer from poor cache 
performance. 

• Cache oblivious algorithms are more efficient, but they are 
difficult to write, especially when parallelism is involved.  

• The Pochoir compiler allows a programmer to write a stencil 
program in a DSL embedded in C++. The Pochoir compiler 
then translates it into high-performing Cilk code that employs 
an efficient parallel cache-oblivious algorithm. 



What is Pochoir

• Pochoir (pronounced as “PO-shwar”; it means “stencil” in 
French) is a compiler and runtime system for implementing 
stencil computations on multicore processors. 
1. Pochoir template library 
2. Pochoir compiler  



Workflow

• Phase 1: 
the programmer uses the normal Intel 
C++ compiler to compile his or her 
code with the Pochoir template 
library. Phase 1 verifies that the 
programmer’s stencil specification is 
Pochoir compliant.  

• Phase 2: 
the programmer uses the Pochoir 
compiler, which acts as a 
preprocessor to the Intel C++ 
compiler, to generate optimized 
multithreaded Cilk code. 



Example: periodic 2D heat equation

• 2d heat equation • Jacobi-style update equation: 



Example: periodic 2D heat equation

• 2d heat equation 

• Simple for loop implementation:

• Jacobi-style update equation: 



• Pochoir_Shape_2D 2d_five_pt[] = {{0, 0, 0}, {−1, 1, 0}, {−1, 0, 
0},  {−1, −1, 0}, {−1, 0, 1}, {−1, 0, −1}} ; 

• Pochoir_2D heat(2d_five_pt);

Example: periodic 2D heat equation

x offset y offset

time step



Pochoir_Boundary_2D (heat_bv, array, t, x, y) 
return array.get(t, mod(x, array.size(1)), mod(y, 
array.size(0)));  

Pochoir_Boundary_End

This construct defines a boundary function called heat_bv that 
will be invoked to supply a value when the stencil computation 
accesses a point outside the domain of the Pochoir array array. 
  

Example: periodic 2D heat equation
function name data array time step

spatial coordinates



Pochoir_Kernel_2D (heat_fn,   u,   t,   x,   y) 
u(t+1, x, y) = CX * (u(t, x+1, y) - 2 * u(t, x, y) + u(t, x-1, y)) +  

      CY * (u(t, x, y+1) - 2  * u(t, x, y) + u(t, x, y-1)) + 
      u(t, x, y);  

Pochoir_Kernel_End

This construct defines a kernel function named heat_fn for updating 
a stencil on a spatial grid with dim spatial dimensions. 

Example: periodic 2D heat equation

function name data array time step

spatial coordinates



Example: periodic 2D heat equation

Pochoir_Shape_dimD contains 
the spatial information. Each of its 
element has dim+1 integers 
represent the offset of each 
memory footprint in the stencil 
kernel relative to the space-time 
grid point ⟨t , x, y, · · ·⟩. 



Example: periodic 2D heat equation

The static information about a 
Pochoir stencil computation, such 
as the computing kernel, the 
boundary conditions, and the 
stencil shape, is stored in a 
Pochoir_dimD



Example: periodic 2D heat equation

The boundary function will be 
invoked to supply a value when 
the stencil computation accesses 
a point outside the domain of the 
Pochoir array array. 



Example: periodic 2D heat equation

Pochoir_Kernel_dimD arbitrary 
C++ code for updating a stencil 
on a spatial grid with dim spatial 
dimensions . 



Trapezoid (zoid) decomposition with hyperspace cut



Trapezoid (zoid) decomposition with hyperspace cut



Trapezoid (zoid) decomposition with hyperspace cut

Base case (delta_t = 1)



Coarsening of Base Cases

• Although trapezoidal decomposition reduces cache-miss 
rates, overall performance can suffer from function-call 
overhead unless the base case of the recursion is coarsened.  

• Solution: reduce the overhead of function(kernel) calls by 
coarsening of base cases. 
• For 2D problems, Pochoir stops the recursion at 100 × 100 

space chunks with 5 time steps. 
• For 3D problems, the recursion stops at 1000 × 3 × 3 with 3 

time steps.  
• Higher dimensions?



Trapezoid (zoid) decomposition with hyperspace cut

• For 2D problems, Pochoir 
stops the recursion at 100 × 
100 space chunks with 5 
time steps. 

• For 3D problems, the 
recursion stops at 1000 × 3 
× 3 with 3 time steps. 



Handling boundary conditions with 
code cloning

• Pochoir compiler generates two code clones of the kernel 
function: 

1. a slower boundary clone: the boundary clone is used for 
boundary zoids: those that contain at least one point 
whose computation requires an off-grid access.  

2. a faster interior clone: the interior clone is used for 
interior zoids: those all of whose points can be updated 
without indexing off the edge of the grid. 



Loop Indexing

• -split-macro-shadow • -split-pointer 

Two ways to generate the interior clone of the kernel function.  
-split-pointer by default. User can decide by command-line option. 



Loop Indexing



Parallelism and cache miss ratio



Benchmark

• Heat: heat equation on a 2D grid, a 2D torus, and a 4D grid; 
• Life: Conway’s game of Life (Life) 
• Wave: 3D finite-difference wave equation 
• LBM: lattice Boltzmann method (LBM) 
• RNA: RNA secondary structure prediction 
• PSA: pairwise sequence alignment 
• LCS: longest common subsequence 
• APOP: American put stock option pricing (APOP)



Benchmark

Pochoir performance on an Intel Core i7 (Nehalem) machine  

• serial loops: a serial for loop implementation running on one core  
• 12-core loops: a parallel cilk_for loop implementation running on 12 cores.  
• ratio: indicates how much slower the looping implementation is than the 12-core 

Pochoir implementation 
• p in dims means periodic



Comparison

• The Berkeley autotuner focuses on optimizing the 
performance of stencil kernels by automatically selecting 
tuning parameters. Their work serves as a good benchmark 
for the maximum possible speedup one can get on a stencil.  

• 7-point stencil and a 27-point stencil on a 2583 grid with 
“ghost cells”  

• “Unfortunately, we were unable to reproduce the reported 
results from — presumably because there were too many 
differences in hardware, compilers, and operating system ”



Comparison



Conclusion

• Easier to write parallel cache efficient stencil program. 
• Two phases methodology 
• Trapezoid decomposition with hyperspace cut



Some questions

• Compare with hand-written parallel cache efficient algorithms? 
• Doesn’t support irregularly shaped domains. 
• Performance decomposition? 
• Performance of dimension > 3? 
• Scalability


