
Chen Wang, 2018/11/28

Motivation

• Stencil computations are easy to implement using nested
loops. But looping implementations suffer from poor cache
performance.

• Cache oblivious algorithms are more efficient, but they are
difficult to write, especially when parallelism is involved.

• The Pochoir compiler allows a programmer to write a stencil
program in a DSL embedded in C++. The Pochoir compiler
then translates it into high-performing Cilk code that employs
an efficient parallel cache-oblivious algorithm.

What is Pochoir

• Pochoir (pronounced as “PO-shwar”; it means “stencil” in
French) is a compiler and runtime system for implementing
stencil computations on multicore processors.
1. Pochoir template library
2. Pochoir compiler

Workflow

• Phase 1:
the programmer uses the normal Intel
C++ compiler to compile his or her
code with the Pochoir template
library. Phase 1 verifies that the
programmer’s stencil specification is
Pochoir compliant.

• Phase 2:
the programmer uses the Pochoir
compiler, which acts as a
preprocessor to the Intel C++
compiler, to generate optimized
multithreaded Cilk code.

Example: periodic 2D heat equation

• 2d heat equation • Jacobi-style update equation:

Example: periodic 2D heat equation

• 2d heat equation

• Simple for loop implementation:

• Jacobi-style update equation:

• Pochoir_Shape_2D 2d_five_pt[] = {{0, 0, 0}, {−1, 1, 0}, {−1, 0,
0}, {−1, −1, 0}, {−1, 0, 1}, {−1, 0, −1}} ;

• Pochoir_2D heat(2d_five_pt);

Example: periodic 2D heat equation

x offset y offset

time step

Pochoir_Boundary_2D (heat_bv, array, t, x, y)
return array.get(t, mod(x, array.size(1)), mod(y,
array.size(0)));

Pochoir_Boundary_End

This construct defines a boundary function called heat_bv that
will be invoked to supply a value when the stencil computation
accesses a point outside the domain of the Pochoir array array.

Example: periodic 2D heat equation
function name data array time step

spatial coordinates

Pochoir_Kernel_2D (heat_fn, u, t, x, y)
u(t+1, x, y) = CX * (u(t, x+1, y) - 2 * u(t, x, y) + u(t, x-1, y)) +

 CY * (u(t, x, y+1) - 2 * u(t, x, y) + u(t, x, y-1)) +
 u(t, x, y);

Pochoir_Kernel_End

This construct defines a kernel function named heat_fn for updating
a stencil on a spatial grid with dim spatial dimensions.

Example: periodic 2D heat equation

function name data array time step

spatial coordinates

Example: periodic 2D heat equation

Pochoir_Shape_dimD contains
the spatial information. Each of its
element has dim+1 integers
represent the offset of each
memory footprint in the stencil
kernel relative to the space-time
grid point ⟨t , x, y, · · ·⟩.

Example: periodic 2D heat equation

The static information about a
Pochoir stencil computation, such
as the computing kernel, the
boundary conditions, and the
stencil shape, is stored in a
Pochoir_dimD

Example: periodic 2D heat equation

The boundary function will be
invoked to supply a value when
the stencil computation accesses
a point outside the domain of the
Pochoir array array.

Example: periodic 2D heat equation

Pochoir_Kernel_dimD arbitrary
C++ code for updating a stencil
on a spatial grid with dim spatial
dimensions .

Trapezoid (zoid) decomposition with hyperspace cut

Trapezoid (zoid) decomposition with hyperspace cut

Trapezoid (zoid) decomposition with hyperspace cut

Base case (delta_t = 1)

Coarsening of Base Cases

• Although trapezoidal decomposition reduces cache-miss
rates, overall performance can suffer from function-call
overhead unless the base case of the recursion is coarsened.

• Solution: reduce the overhead of function(kernel) calls by
coarsening of base cases.
• For 2D problems, Pochoir stops the recursion at 100 × 100

space chunks with 5 time steps.
• For 3D problems, the recursion stops at 1000 × 3 × 3 with 3

time steps.
• Higher dimensions?

Trapezoid (zoid) decomposition with hyperspace cut

• For 2D problems, Pochoir
stops the recursion at 100 ×
100 space chunks with 5
time steps.

• For 3D problems, the
recursion stops at 1000 × 3
× 3 with 3 time steps.

Handling boundary conditions with
code cloning

• Pochoir compiler generates two code clones of the kernel
function:

1. a slower boundary clone: the boundary clone is used for
boundary zoids: those that contain at least one point
whose computation requires an off-grid access.

2. a faster interior clone: the interior clone is used for
interior zoids: those all of whose points can be updated
without indexing off the edge of the grid.

Loop Indexing

• -split-macro-shadow • -split-pointer

Two ways to generate the interior clone of the kernel function.
-split-pointer by default. User can decide by command-line option.

Loop Indexing

Parallelism and cache miss ratio

Benchmark

• Heat: heat equation on a 2D grid, a 2D torus, and a 4D grid;
• Life: Conway’s game of Life (Life)
• Wave: 3D finite-difference wave equation
• LBM: lattice Boltzmann method (LBM)
• RNA: RNA secondary structure prediction
• PSA: pairwise sequence alignment
• LCS: longest common subsequence
• APOP: American put stock option pricing (APOP)

Benchmark

Pochoir performance on an Intel Core i7 (Nehalem) machine

• serial loops: a serial for loop implementation running on one core
• 12-core loops: a parallel cilk_for loop implementation running on 12 cores.
• ratio: indicates how much slower the looping implementation is than the 12-core

Pochoir implementation
• p in dims means periodic

Comparison

• The Berkeley autotuner focuses on optimizing the
performance of stencil kernels by automatically selecting
tuning parameters. Their work serves as a good benchmark
for the maximum possible speedup one can get on a stencil.

• 7-point stencil and a 27-point stencil on a 2583 grid with
“ghost cells”

• “Unfortunately, we were unable to reproduce the reported
results from — presumably because there were too many
differences in hardware, compilers, and operating system ”

Comparison

Conclusion

• Easier to write parallel cache efficient stencil program.
• Two phases methodology
• Trapezoid decomposition with hyperspace cut

Some questions

• Compare with hand-written parallel cache efficient algorithms?
• Doesn’t support irregularly shaped domains.
• Performance decomposition?
• Performance of dimension > 3?
• Scalability

