
Julia: A fresh approach to numerical
computing

Je� Bezanson, Alan Edelman, Stefan Karpinksi, Viral B.
Shah

presented by Bogdan Enache

Department of Computer Science
University of Illinois at Urbana-Champaign

October 26, 2018



Overview

“Machine performance without sacrificing human
convenience”
Julia questions these “laws of nature”:
I High level dynamic programs have to be slow
I One must prototype in one language and deploy in

another for performance
I There are parts of a system made for the user, and others

left to experts
“Julia is designed to be easy and fast.”



“Features that work well together”

1. An expressive type system, allowing optional type
annotations

2. Multiple dispatch using these types to select
implementations

3. Metaprogramming for code generation
4. A dataflow type inference algorithm allowing types of

most expressions to be inferred
5. Aggressive code specialization against run-time types
6. Just-In-Time (JIT) compilation using the LLVM compiler

framework
7. Julia’s carefully written libraries that leverage the

language design





CUDAnative

function vadd(a, b, c)
i = (blockIdx ().x-1) * blockDim ().x + threadIdx ().x
c[i] = a[i] + b[i]
return

end

len = 100
a = rand(Float32 , len)
b = rand(Float32 , len)

d_a = CUDAdrv.Array(a)
d_b = CUDAdrv.Array(b)
d_c = similar(d_a)

@cuda (1,len) vadd(d_a , d_b , d_c)
c = Base.Array(d_c)



Conclusions

Pros:
I Macros / Metaprogramming
I JIT to native code makes things fast
I Dynamic features make development easy
I Emojis

Cons:
I 1-based indexing
I Garbage Collector
I Jit Overhead



References

The Paper.
https://docs.julialang.org/en/latest/manual/performance-
tips/
https://nextjournal.com/sdanisch/julia-gpu-programming
https://docs.julialang.org/en/v1/manual/parallel-
computing/index.html
https://julialang.org/blog/


