
FFTW: AN ADAPTIVE 
SOFTWARE ARCHITECTURE 

FOR THE FFT
Matteo Frigo and Steven G. Johnson

Fan Kiat Chan

CS598APK



Motivation

• FFT literature has mostly focused on algorithms that 
minimize the number of floating-point operations


• On present-day computers, interactions with the 
processor pipeline and memory hierarchy have a larger 
impact on performance than number of floating-point 
operations


• Propose an adaptive FFT program that tunes the 
computation automatically for any particular hardware



Overview
• FFTW's main components: executor, codelets and planner.

• Executor (runtime)

• Performs the computation of the transform by applying a 

combination of codelets specified by planner

• Codelets (compile time)

• Specialized piece of code that computes part of the transform

• Generated automatically during compile time using FFTW's codelet 

generator written in Caml Light

• Planner (runtime)

• Determined during runtime before computation to construct a fast 

composition of codelets

• Aims at minimizing actual execution time and not the number of 

floating point operations



Overview
• User interacts with FFTW 

only through planner and 
executor


• Codelet generator is not 
used after compile time

• user does not need to 

know Caml Light or need 
a Caml Light compiler


• FFTW creates a plan for a 
transform of a specified 
size and is reusable as 
many times as needed



Runtime structure: Executor

• Executor implements Cooley-Tukey FFT algorithm

• Factors the size N of the transform into N = N1 N2


• Recursively computes N1 transforms of size N2


• Multiply the results by 'twiddle factors'

• Computes N2 transforms of size N1 


• The algorithm mainly composed of two codelet 
variations (SIMD supported)

• Normal codelets: Computes DFT of a fixed size 

and used as base case for recursion

• Twiddle codelets: Like normal codelets, except 

they multiply their input by the twiddle factors
https://cw.fel.cvut.cz/wiki/_media/courses/b4m35pag/chap13_slides.pdf

Top
R1

R2

R3

R2

R1

Top



Runtime structure: Executor

• Codelet with SIMD support

• Need transpose for appropriate data layout

• Example SIMD scheme: DFT(A + iB) = DFT(A) + i DFT(B)

By Steven G. Johnson - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8909753



Runtime structure: Executor
• Input:


1. Plan that specifies data structure 
of factorization and codelets to 
use


2. Array to be transformed

• Example of a possible plan for a 

transform of length N=128

• Computes 4 transforms of size 32 

recursively then uses twiddle 
codelet of size 4 to combine results 
of the subproblems


• Computes 8 transforms of size 4 
solved directly using normal codelet 
and combined using size 8 twiddle 
codelet

Twiddle codelet

Normal codelet

32 32 32 32

128

4 4 4 4 4 4 4 4

Twiddle codelet

Twiddle codelet

Normal 
codelet



Runtime structure: Executor

• Implemented with explicit recursion instead of loop-based

• Divide-and-conquer algorithms improve locality

• Codelet performs significant amount of work - 

recursion overhead is negligible

• Easier to code and allows codelet to perform well-

defined task independent of the context



Runtime structure: Planner
• Strategy: Construct plan with combinations of codelets and 

measure execution time of different plans to select the best 
(ideally, all possible plan)


• Problem: Impractical due to combinatorial explosion of 
number of plans


• Solution: Use dynamic programming algorithm to reduce 
search space

• Assume optimal sub-structure: If an optimal plan for a size 

N is known, this plan is still optimal when size N is a 
subproblem of a larger transform 

• In theory, the assumption is not true - cache states may 
differ


• In practice, simplifying hypothesis yielded good results



Runtime structure: Planner

• Fastest plan is not one that 
performs the fewest operations


• Total number of flops is not 
enough to predict execution time


• Optimal plan depends on 
processor, memory architecture 
and compiler

• N = 1024 is factored into 

8*8*16 on UltraSPARC and 
into 32*32 on AlphaSpeed of various plans as a function 

of number of flops required
"MFLOPS" defined for a transform of size N as (5Nlog2N)/t



Compile time: Codelet
• Codelet generator is written in Caml Light dialect of ML and is used 

during compile time

• Input: Size N

• Output: normal or twiddle codelet that performs Fourier transform of 

size N

• Operates on a subset of abstract syntax tree (AST) of the C language

• Codelet generation is broken down into three phases:

• Generation: Creates a crude AST, contains useless code

• Optimization/Simplification: Polish and apply local optimization on 

the crude AST

• Scheduler: Topological sort of the AST to minimize register spills

• Translation: Unparse the AST to produce desired C code



Codelet: Generation
• AST generator builds syntax tree recursively

• Generator needs to decide which algorithm to use at each 

stage of recursion

• split-radix - recursive split to N/2-N/4-N/4

• prime factor - N = N1N2 where N1N2 prime numbers

• Cooley-Tukey - N = N1N2

• Rader's algorithm - Computes DFT of prime sizes


• Minimize a certain cost function which depends on arithmetic 
complexity and memory traffic

• Example: cost = 4v + f (experimentally showed good results) 
• f is the number of floating-point operations

• v is the number of stack variable



Codelet: Generation

C translation of an AST for a 
complex DFT of size 2

Fragment of codelet generator 
that implements Cooley-Tukey



Codelet: Simplification
• Optimizer consists of a set of rules 

applied locally to each node in the 
AST to transform it into one that 
executes faster


• Codelet may contain many 
floating-point constant coefficients 
pair (i.e. a,-a) from trigonometric 
identities

• Hack: Have a rule to make all 

constants positive and 
propagate the minus sign 
accordingly


• Floating point constants are 
typically not part of the 
program code and are loaded 
from memory



Codelet: Scheduler
• Aim at maximizing register usage 

(Remember Hong and Kung?)

• However, codelet generator does 

not address instruction scheduling 
problem - pipelining


• Heuristic: Recursive partitioning

Illustration of a scheduling 
problem for FFT on 8 inputs



Compile time: Codelet

• Advantages of codelet generator:

• Produce correct code automatically

• Allows hacks such as propagation of the minus sign 

implemented with minimal code

• Algorithm and coding style for best performance is not 

known a priori, generator helps produce and 
experiment code quickly



Performance results
• Compared FFTW with over 40 other 

complex FFT implementations on 7 
platforms (not all is shown)


• Obtained similar numbers on other 
machines

• On IBM RS/6000, comparing 

with IBM's ESSL library

• N = 64, FFTW 55% faster

• N=16384, FFTW 12% slower

• N = 131072, FFTW 7% faster



Conclusion

• Manually optimizing software is impractical due to 
complexity of computer architecture


• FFTW provides a method to address such complexity by 
minimizing execution time instead of arithmetic 
complexity

• Planner seeks for best execution plan

• Codelet generator generates optimized code for 

transforms


