FFTW: AN ADAPTIVE
SOFTWARE ARCHITECTURE
FOR THE FFT

Matteo Frigo and Steven G. Johnson

Fan Kiat Chan
CS598APK

Motivation

e FFT literature has mostly focused on algorithms that
minimize the number of floating-point operations

e On present-day computers, interactions with the
processor pipeline and memory hierarchy have a larger
impact on performance than number of floating-point
operations

e Propose an adaptive FFT program that tunes the
computation automatically for any particular hardware

Overview

FFTW's main components: executor, codelets and planner.
Executor (runtime)

 Performs the computation of the transform by applying a
combination of codelets specified by planner

Codelets (compile time)
e Specialized piece of code that computes part of the transform

* (Generated automatically during compile time using FFTW's codelet
generator written in Caml Light

Planner (runtime)

* Determined during runtime before computation to construct a fast
composition of codelets

 Aims at minimizing actual execution time and not the number of
floating point operations

Overview

fftw plan plan;
COMPLEX A[n], B[n];

/* plan the computation */
plan = fftw create plan(n);

/* execute the plan */
fftw(plan, A);

/* the plan can be reused for
other inputs of size N */
fftw(plan, B);

e User interacts with FFTW

only through planner and
executor

Codelet generator is not
used after compile time

e user does not need to
know Caml Light or need
a Caml Light compiler

FFTW creates a plan for a
transform of a specified
size and Is reusable as
many times as needed

Runtime structure: Executor

— 2T (Nyng+nq)-(Noky +ks)

e Executor implements Cooley-Tukey FFT algorithm |:1p 0L XL A L Hen
i] [0 121 [4] [6] [131 151 171
* Factors the size N of the transform into N = N1 N2 | o
_ _ R2 (0 14 2] (6] (1 (5] 131 7]
e Recursively computes N+ transforms of size N2

R3101 4] 2] 16] 115l 31 171

* Multiply the results by 'twiddle factors' \Q M M M
e Computes N2 transforms of size Nj DV MDA

* The algorithm mainly composed of two codelet R2 ﬂ*ll |2| (6] e |:-s| (7]

variations (SIMD supported)

e Normal codelets: Computes DFT of a fixed size 0 0 o o o o o
. R1 [0 121 [+ [6] 1131 (3] 171
and used as base case for recursion o — PR

* Twiddle codelets: Like normal codelets, except NS S 4
they multiply their input by the twiddle factors of o' © o o o o o

Top YI0] YU Y[2] Y[3] Y[4] YI5] Y[6] Y[7]
https://cw.fel.cvut.cz/wiki/_media/courses/b4m35pag/chap13_slides.pdf

Runtime structure: Executor

e Codelet with SIMD support
e Need transpose for appropriate data layout
e Example SIMD scheme: DFT(A + iB) = DFT(A) + /i DFT(B)

inputs: N —_ N1N2
1d DFT of size N: | |

=~ 2d DFT of size N, xN,

reinterpret 1d inputs:
] multiply by N “twiddle factors™

N, 1= t
2 ranspose N,
>. > Nl o
— = contiguous >
first DFT columns, size N, finally, DFT columns, size NV,
(non-contiguous) (non-contiguous)

By Steven G. Johnson - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8909753

Runtime structure: Executor

Twiddle codelet

DIVIDE-AND-CONQUER(128, 4)
DIVIDE-AND-CONQUER(32, 8

Normal codelet

ﬂ// \ N\ I :
32| [32] |32] |32 Twiddle codelet

Normal
4 4 4 4 4 4 4 codelet °

e |nput:

1. Plan that specifies data structure
of factorization and codelets to
use

2. Array to be transformed

e Example of a possible plan for a

128 transform of length N=128

Computes 4 transforms of size 32
recursively then uses twiddle
codelet of size 4 to combine results
of the subproblems

Computes 8 transforms of size 4
solved directly using normal codelet
and combined using size 8 twiddle
codelet

Runtime structure: Executor

 Implemented with explicit recursion instead of loop-based
e Divide-and-conquer algorithms improve locality

e Codelet performs significant amount of work -
recursion overhead is negligible

e Easier to code and allows codelet to perform well-
defined task independent of the context

Runtime structure: Planner

e Strategy: Construct plan with combinations of codelets and

measure execution time of different plans to select the best

(ideally, all possible plan)

* Problem: Impractical due to combinatorial explosion of

number of plans

* Solution: Use dynamic programming algorithm to reduce

search space

* Assume optimal sub-structure: If an optimal plan for a size
N is known, this plan is still optimal when size N is a
subproblem of a larger transform

* |n theory, the assumption is not true - cache states may
differ

* |n practice, simplifying hypothesis yielded good results

Speed in “MFLOPS”

Runtime structure: Planner

e Fastest plan is not one that
performs the fewest operations

\O
o

oo
o

e Total number of flops is not
enough to predict execution time

~J
o

O 0
O worst: O | @ Qptimal plan depends on
processor, memory architecture
and compiler

T . * N =1024 is factored into
Floating Point Operations 8*8*1 6 on UItraSPARC and

Speed of various plans as a function into 32*32 on Alpha
of number of flops required

"MFLOPS" defined for a transform of size N as (5Nlog2N)/t

N (@)

(@) (@]
|IIII|III[|IIII|II[I
@)

@

=~
-}
|l ||

o
o
|

rrrrrprrerrrp eyttt p T

1790000
1800000
1810000

1820000
1830000
1840000
1850000
1860000

Compile time: Codelet

Codelet generator is written in Caml Light dialect of ML and is used
during compile time

Input: Size N

Output: normal or twiddle codelet that performs Fourier transform of
size N

Operates on a subset of abstract syntax tree (AST) of the C language
Codelet generation is broken down into three phases:
* Generation: Creates a crude AST, contains useless code

e Optimization/Simplification: Polish and apply local optimization on
the crude AST

e Scheduler: Topological sort of the AST to minimize register spills
* Translation: Unparse the AST to produce desired C code

Codelet: Generation

e AST generator builds syntax tree recursively

e (Generator needs to decide which algorithm to use at each
stage of recursion

e gsplit-radix - recursive split to N/2-N/4-N/4

* prime factor - N = N1N2 where N1N2 prime numbers
e Cooley-Tukey - N = N1N>

e Rader's algorithm - Computes DFT of prime sizes

 Minimize a certain cost function which depends on arithmetic
complexity and

e Example: cost = 4v + f (experimentally showed good results)
e fis the number of floating-point operations

Codelet: Generation

tmpl = REAL (input [0]) ;

tmp5 = REAL(input[0]);
Ni—1 mi Ny—1 —zﬂwnkz _ami tmp6 = IMAG(input[0]);
Z [VM 2] (E TN nytn € 2) Ny tmp2 = IMAG(input[0]);
11 —0 tmp3 = REAL(input[1]);
tmp7 = REAL(input[1]);
tmp8 = IMAG(input[1]);
tmp4 = IMAG(input[1]);
let rec cooley_tukey nl n2 input sign = REAL (output [0]) = ((1 * tmpl) - (0 * tmp2))
let tmpl j2 = fftgen ni + ((1 x tmp3) - (0 * tmp4));
(fun j1 -> input (j1 * n2 + j2)) sign in IMAG(output [0]) = ((1 * tmp2) + (0 * tmpl))
let tmp2 il j2 = + ((1 * tmp4) + (0 * tmp3));
exp n (sign * il * j2) @ tmpl j2 il in REAL (output[1]) = ((1 * tmp5) - (0 * tmp6))
let tmp3 il = fftgen n2 (tmp2 il) sign + ((-1 * tmp7) - (0 * tmp8));
in IMAG(output[1]) = ((1 * tmp6) + (0 * tmpb))
(fun i -> tmp3 (i mod n1) (i / nl1)) + ((-1 * tmp8) + (0 * tmp7));
Fragment of codelet generator C translation of an A_ST fora
that implements Cooley-Tukey complex DFT of size 2

Codelet: Simplification

e Optimizer consists of a set of rules
applied locally to each node in the
AST to transform it into one that
executes faster

e Codelet may contain many
floating-point constant coefficients
pair (i.e. a,-a) from trigonometric
identities

e Hack: Have a rule to make all
constants positive and
propagate the minus sign
accordingly

e Floating point constants are
typically not part of the
program code and are loaded
from memory

let rec stimesM = function

(Uminus a, b) => (*x =a * b ==> -(a *x b) x*)
stimesM (a, b) >>= suminusM
(a, Uminus b) => (x a *x =b ==> =(a *x b) *)
stimesM (a, b) >>= suminusM
(Num a, Num b) -> (* multiply two numbers *)
snumM (Number.mul a b)
(Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x ->
stimesM (x, c)
(Num a, b) when Number.is_zero a ->
snumM Number.zero (x 0 x b ==> 0 %)
(Num a, b) when Number.is_one a ->
returnM b (* 1 *x b ==>Db %)
(Num a, b) when Number.is_mone a =->
suminusM b (*x =1 *x b ==> -b x)
(a, (Num _ as b')) -> stimesM (b', a)
(a, b) -> returnM (Times (a, b))

Codelet: Scheduler

* Aim at maximizing register usage %y s
? 7%
(Remember Hong and Kung?) %@9 0

e However, codelet generator does
not address instruction scheduling
problem - pipelining

5

>\ //
N/

N‘V.V
A
DO/ A\
N\

* Heuristic: Recursive partitioning

‘Q

"

KT
/ II; /

Z

AN NN R RN S

e
7

lllustration of a scheduling
problem for FFT on 8 inputs

Compile time: Codelet

e Advantages of codelet generator:
e Produce correct code automatically

e Allows hacks such as propagation of the minus sign
Implemented with minimal code

e Algorithm and coding style for best performance is not
known a priori, generator helps produce and
experiment code quickly

Performance results

—— FFTW —1+— FFTPACK . Temperton
e suwmre -0 seeen —x— mily ® Gompared FFTW with over 40 other
A Oom A Kmlw —e— OFF complex FFT implementations on 7
T e e e platforms (not all is shown)
_ . e Obtained similar numbers on other
200 — I — ot]
. ALt machines
% 50 — . she . .
o NCIA On IBM RS/6000, comparing
£ 100 with IBM's ESSL library
o N =64, FFTW 55% faster
00 4 S S S e N=16384, FFTW 12% slower
P T T T T T T T T T T T T T T
CTremisRiizgsigsey e N=131072, FFTW 7% faster

Conclusion

e Manually optimizing software is impractical due to
complexity of computer architecture

e FFTW provides a method to address such complexity by
minimizing execution time instead of arithmetic
complexity

e Planner seeks for best execution plan

e Codelet generator generates optimized code for
transforms

