FFTW: AN ADAPTIVE SOFTWARE ARCHITECTURE FOR THE FFT

Matteo Frigo and Steven G. Johnson

Fan Kiat Chan CS598APK

Motivation

- FFT literature has mostly focused on algorithms that minimize the number of floating-point operations
- On present-day computers, interactions with the processor pipeline and memory hierarchy have a larger impact on performance than number of floating-point operations
- Propose an adaptive FFT program that tunes the computation automatically for any particular hardware

Overview

- FFTW's main components: *executor, codelets* and *planner*.
- Executor (runtime)
 - Performs the computation of the transform by applying a combination of codelets specified by planner
- Codelets (compile time)
 - Specialized piece of code that computes part of the transform
 - Generated automatically during compile time using FFTW's codelet generator written in Caml Light
- Planner (runtime)
 - Determined during runtime before computation to construct a fast composition of codelets
 - Aims at *minimizing actual execution time* and not the number of floating point operations

Overview

```
fftw_plan plan;
COMPLEX A[n], B[n];
/* plan the computation */
plan = fftw_create_plan(n);
/* execute the plan */
fftw(plan, A);
/* the plan can be reused for
    other inputs of size N */
fftw(plan, B);
```

- User interacts with FFTW only through planner and executor
- Codelet generator is not used after compile time
 - user does not need to know Caml Light or need a Caml Light compiler
- FFTW creates a plan for a transform of a specified size and is reusable as many times as needed

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-\frac{2\pi i}{N}nk} = \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{N_{1}n_{2}+n_{1}} e^{-\frac{2\pi i}{N_{1}N_{2}} \cdot (N_{1}n_{2}+n_{1}) \cdot (N_{2}k_{1}+k_{2})} = \sum_{n_{1}=0}^{N_{1}-1} \left[e^{-\frac{2\pi i}{N}n_{1}k_{2}} \right] \left(\sum_{n_{2}=0}^{N_{2}-1} x_{N_{1}n_{2}+n_{1}} e^{-\frac{2\pi i}{N_{2}}n_{2}k_{2}} \right) e^{-\frac{2\pi i}{N_{1}}n_{1}k_{1}}$$

Executor implements Cooley-Tukey FFT algorithm

- Factors the size N of the transform into $N = N_1 N_2$
- Recursively computes N₁ transforms of size N₂
- Multiply the results by 'twiddle factors'
- Computes N₂ transforms of size N₁
- The algorithm mainly composed of two codelet variations (SIMD supported)
 - Normal codelets: Computes DFT of a fixed size and used as base case for recursion
 - Twiddle codelets: Like normal codelets, except they multiply their input by the twiddle factors

- Codelet with SIMD support
- Need transpose for appropriate data layout
- Example SIMD scheme: DFT(A + iB) = DFT(A) + i DFT(B)

By Steven G. Johnson - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8909753

- Input:
 - 1. Plan that specifies data structure of factorization and codelets to use
 - 2. Array to be transformed
- Example of a possible plan for a transform of length N=128
 - Computes 4 transforms of size 32 recursively then uses *twiddle codelet* of size 4 to combine results of the subproblems
 - Computes 8 transforms of size 4 solved directly using *normal codelet* and combined using size 8 twiddle codelet

- Implemented with explicit recursion instead of loop-based
 - Divide-and-conquer algorithms improve locality
 - Codelet performs significant amount of work recursion overhead is negligible
 - Easier to code and allows codelet to perform welldefined task independent of the context

Runtime structure: Planner

- Strategy: Construct plan with combinations of codelets and measure execution time of different plans to select the best (ideally, all possible plan)
- Problem: Impractical due to combinatorial explosion of number of plans
- Solution: Use dynamic programming algorithm to reduce search space
 - Assume optimal sub-structure: If an optimal plan for a size N is known, this plan is still optimal when size N is a subproblem of a larger transform
 - In theory, the assumption is not true cache states may differ
 - In practice, simplifying hypothesis yielded good results

Runtime structure: Planner

Speed of various plans as a function of number of flops required

- Fastest plan is not one that performs the fewest operations
- Total number of flops is not enough to predict execution time
- Optimal plan depends on processor, memory architecture and compiler
 - N = 1024 is factored into 8*8*16 on UltraSPARC and into 32*32 on Alpha

"MFLOPS" defined for a transform of size N as (5Nlog₂N)/t

Compile time: Codelet

- Codelet generator is written in Caml Light dialect of ML and is used during compile time
- Input: Size N
- Output: normal or twiddle codelet that performs Fourier transform of size N
- Operates on a subset of abstract syntax tree (AST) of the C language
- Codelet generation is broken down into three phases:
 - Generation: Creates a crude AST, contains useless code
 - Optimization/Simplification: Polish and apply local optimization on the crude AST
 - Scheduler: Topological sort of the AST to minimize register spills
 - Translation: Unparse the AST to produce desired C code

Codelet: Generation

- AST generator builds syntax tree recursively
 - Generator needs to decide which algorithm to use at each stage of recursion
 - split-radix recursive split to N/2-N/4-N/4
 - prime factor $N = N_1N_2$ where N_1N_2 prime numbers
 - Cooley-Tukey $N = N_1N_2$
 - Rader's algorithm Computes DFT of prime sizes
 - Minimize a certain cost function which depends on arithmetic complexity and memory traffic
 - Example: *cost* = 4*v* + *f* (experimentally showed good results)
 - *f* is the number of floating-point operations
 - *v* is the number of stack variable

Codelet: Generation

$$\sum_{n_1=0}^{N_1-1} \left[e^{-rac{2\pi i}{N}n_1k_2}
ight] \left(\sum_{n_2=0}^{N_2-1} x_{N_1n_2+n_1} e^{-rac{2\pi i}{N_2}n_2k_2}
ight) e^{-rac{2\pi i}{N_1}n_1k_1}$$

```
let rec cooley_tukey n1 n2 input sign =
    let tmp1 j2 = fftgen n1
      (fun j1 -> input (j1 * n2 + j2)) sign in
    let tmp2 i1 j2 =
      exp n (sign * i1 * j2) @* tmp1 j2 i1 in
    let tmp3 i1 = fftgen n2 (tmp2 i1) sign
    in
      (fun i -> tmp3 (i mod n1) (i / n1))
```

Fragment of codelet generator that implements Cooley-Tukey

tmp1 = REAL(input[0]); tmp5 = REAL(input[0]); tmp6 = IMAG(input[0]); tmp2 = IMAG(input[0]); tmp3 = REAL(input[1]); tmp7 = REAL(input[1]); tmp8 = IMAG(input[1]); tmp4 = IMAG(input[1]); REAL(output[0]) = ((1 * tmp1) - (0 * tmp2))+ ((1 * tmp3) - (0 * tmp4));IMAG(output[0]) = ((1 * tmp2) + (0 * tmp1))+ ((1 * tmp4) + (0 * tmp3));REAL(output[1]) = ((1 * tmp5) - (0 * tmp6))+ ((-1 * tmp7) - (0 * tmp8)); IMAG(output[1]) = ((1 * tmp6) + (0 * tmp5))+ ((-1 * tmp8) + (0 * tmp7));

C translation of an AST for a complex DFT of size 2

Codelet: Simplification

- Optimizer consists of a set of rules applied locally to each node in the AST to transform it into one that executes faster
- Codelet may contain many floating-point constant coefficients pair (i.e. a,-a) from trigonometric identities
 - Hack: Have a rule to make all constants positive and propagate the minus sign accordingly
 - Floating point constants are typically not part of the program code and are loaded from memory

let rec stimesM =function (Uminus a, b) -> (* -a * b ==> -(a * b) *) stimesM (a, b) >>= suminusM (a, Uminus b) -> (* a * -b ==> -(a * b) *) stimesM (a, b) >>= suminusM (Num a, Num b) -> (* multiply two numbers *) snumM (Number.mul a b) (Num a, Times (Num b, c)) -> snumM (Number.mul a b) >>= fun x -> stimesM (x, c) (Num a, b) when Number.is_zero a -> snumM Number.zero (* 0 * b = > 0 *) (Num a, b) when Number.is_one a -> returnM b (* 1 * b ==> b *) | (Num a, b) when Number.is_mone a -> (* -1 * b => -b *)suminusM b | (a, (Num _ as b')) -> stimesM (b', a) (a, b) -> returnM (Times (a, b))

Codelet: Scheduler

- Aim at maximizing register usage (Remember Hong and Kung?)
- However, codelet generator does not address instruction scheduling problem - pipelining
- Heuristic: Recursive partitioning

Illustration of a scheduling problem for FFT on 8 inputs

Compile time: Codelet

- Advantages of codelet generator:
 - Produce correct code automatically
 - Allows hacks such as propagation of the minus sign implemented with minimal code
 - Algorithm and coding style for best performance is not known *a priori*, generator helps produce and experiment code quickly

Performance results

- Compared FFTW with over 40 other complex FFT implementations on 7 platforms (not all is shown)
- Obtained similar numbers on other machines
 - On IBM RS/6000, comparing with IBM's ESSL library
 - N = 64, FFTW 55% faster
 - N=16384, FFTW 12% slower
 - N = 131072, FFTW 7% faster

Conclusion

- Manually optimizing software is impractical due to complexity of computer architecture
- FFTW provides a method to address such complexity by minimizing execution time instead of arithmetic complexity
 - Planner seeks for best execution plan
 - Codelet generator generates optimized code for transforms