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Motivation

Small matrix-multiplication is used in,

• Discontinuous Galerkin methods

• Spectral element methods

• Information Retrieval (Blocked Compressed Sparse Row matrices)

What’s Small?

For A ∈ RM×K and B ∈ RK×N , let C = AB

MNK ≤ 803
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Why specialized library?

• General purpose code is not optimal for all scenarios.

• Lack of specialization is not good for small matrices.

• Building specialized code at compile time =⇒ library is too large.
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Overview

For AVX2, micro-kernels of size {16, 12, 8, 4, 2, 1} × {1, 2, 3} for C

Figure 1: Partitioning of C matrix of

size, 26× 32
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Overview

Micro-kernel of size 16× 3 uses,

• 12 AVX2 registers to store the result C

• 3 AVX2 registers for storing the l th row of B broadcasted. (eg:

b21, b22, b23)

• 1 AVX2 register containing 4 entries of column l of A. (Loads

[a12, a22, a32, a42] and then [a52, a62, a72, a82])
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Overview

Figure 2: LIBXSMM application overview
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Code generation

Generate C code with inline assembly at library build time.

C = αAB + βC

Configurable parameters

• set of M, N, K tuples

• Architecture (noarch, wsm, snb, hsw, knc, knl, knm, skx)

• single precision or double precision or both

• prefetch strategy

• LDA, LDB, LDC (leading dimensions of A, B, C)

Limitations

• α = 1

• β = 0, 1

• Column major only

• No dynamic architecture selection if statically compiled.
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JIT compilation

Evaluation criteria for a JIT

• Fast

• Supports AVX512

• Actively maintained

• Open Source

Authors looked at,

• LLVM - Full blown (with IR, phases, etc.), “slow” JIT, complex ([2])

• Xbyak - No AVX512 support (in 2015)

• XED - closed source (in 2015)
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JIT compilation

• Generate code if no static kernel exists

• Generate machine code in memory.

• No bulky compiler is used. Internal implementation

• vmovaps 256(%rax,%rcx,2), %ymm16 =⇒
0x62,0xE1,0x7C,0x28,0x28,0x44,0x48,0x08

• Cast executable buffer to a function pointer

• Faster than compiler backends like LLVM

• AVX2 Kernel source Codegen source

• Keep a thread-local cache of already built kernels

• Use CRC32 hash of M,N,K , LDA, LDB, LDC , transA, transB and

prefetch strategy.

• Check the last hit first.
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https://github.com/hfp/libxsmm/blob/d2ff62d4486451090cdeecdfab8e5c42de95c7a0/src/generator_gemm_avx2_microkernel.c#L47
https://github.com/hfp/libxsmm/blob/bbf9e5a857a269420f7dc4e52142fc9a1730041e/src/generator_x86_instructions.c#L317


Prefetching

• ”nopf”: no prefetching at all, just 3 inputs (A, B, C)

• ”pfsigonly”: just prefetching signature, 6 inputs (A, B, C, A’, B’, C’)

• ”BL2viaC”: uses accesses to C to prefetch B’

• ”curAL2”: prefetches current A ahead in the kernel

• ”curAL2-BL2viaC”: combines curAL2 and BL2viaC

• ”AL2”: uses accesses to A to prefetch A’

• ”AL2-BL2viaC”: combines AL2 and BL2viaC

• ”AL2jpst”: aggressive A’ prefetch of first rows without any structure

• ”AL2jpst-BL2viaC”: combines AL2jpst and BL2viaC

• ”AL1”: prefetch A’ into L1 via accesses to A

• ”AL1-BL1”: prefetch A’ and B’ into L1

• ”AL1-BL1-CL1”: prefetch A’, B’, and C’ into L1
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Results

• BDX: a dual-socket Intel Xeon E5-2697v4 processor (previously

code-named Broadwell-EP) system with 2 18 cores, 2.0 GHz

(running at AVX-base frequency), 128 GB of DDR4-2400 memory.

• KNL: a single-socket Intel Xeon Phi 7250 processor (previously

code-named Knights Landing) with 68 cores, 1.2 GHz core-clock

(running at AVX-base frequency), 1.7 GHz mesh-clock, 16 GB

MC-DRAM@7.2 GT, 96 GB DDR4-2400, FLAT/QUADRANT

memory mode.
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Results

Figure 3: JIT compile overhead of LIBXSMM in microseconds and in Intel

MKL DGEMM calls on BDX and KNL. Source: [1]
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Results

Figure 4: Performance of LIBXSMM for static and JIT compilation for square matrices of order

2 until 20 on a single core of the Intel Xeon E5-2697v4 processor clocked at 2.0 GHz, its AVX-base

frequency (top) and a single core of the Intel Xeon Phi 7250 processor clocked at 1.2 GHz, its

AVX-base frequency (bottom). LIBXSMMs performance is compared against various other

libraries: Intel MKL 11.3.2, Eigen-3.3-beta1 and BLAZE 2.6. We want to note that a source scan

of Eigen and BLAZE creates the impression that there are no special optimizations for AVX-512F

instructions set extensions. Source: [1]
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Results

Figure 5: NekBox kernel performance on BDX and KNL (upper plot) NekBox

reproducer performance (lower plot) for Helmholtz operator, tensor product

gradient and basis transformation of different polynomial order. Source: [1]
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Future work

• Dynamic dispatch of statically generated kernels

• Row major

• Mixed types

• Complex, half and other precision formats
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Summary

• Specialized kernels give good performance for small matrix

multiplications.

• Maximize the use of AVX2/AVX512 registers.

• Using a JIT compilation approach to avoid building large number of

configurations.

• Use a cache to amortize the cost of compilation.
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