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Motivation

> Prevalent method of multi-GPU programming: Bulk
Synchronous Parallel (BSP)

» Local computation — global communication

» Underutilization particularly for irregular applications

» Due to load imbalance and unpredictable communication
» Asynchronous programming models to the rescue

» Processors can compute and communicate autonomously

» Overlap computation and communication

» But requires in-depth knowledge of underlying architecture and
network

/28



Goals

v

v

v

v

Asynchronous programming model + runtime environment

Provide communication constructs to efficiently express both
regular and irregular programs

Promote load balancing for heterogeneous GPUs

Outperform existing state-of-the-art implementations
(Gunrock, B40C)
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Multi-GPU Architecture
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Figure: Multi-GPU Node Schematic'

TAll figures were taken from the paper
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Inter-GPU Communication

» Peer transfer

>

>

Host-initiated
Executed explicitly

» Direct access (DA)

>

v vy

Device-initiated

Implemented with virtual addressing

Performance sensitive to alignment, coalescing, order of access
May not be available between all pairs of GPUs
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Packetization

v

GPUs can only transmit to one destination at a time

v

Hinders responsiveness of an asynchronous system,
especially with large buffers

v

Divide messages into packets

v

Also used in collective communication

v

But overhead exists
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Packetization
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Figure: Inter-GPU Memory Transfer Benchmarks
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Groute Programming Model

v

Dataflow graph construction + asynchronous computation

v

Endpoint: a physical device (CPU/GPU) or a router

v

Router: connects endpoints for dynamic communication

v

Link: connects two endpoints

v

Routing policy determines how routers behave
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Example: Predicate-Based Filtering

» Filter data based on some condition (i.e. predicate)

> E.g. With a number of particles as input data, give me all the
particles whose mass is larger than some threshold
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Example: Predicate-Based Filtering
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Figure: PBF Dataflow Graph
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Example: Predicate-Based Filtering

:vector<T> input =
vector<T> output;
int packet_size = ...;

Context ctx;
auto all_gpus = ctx.devices();
int num_gpus = all_gpus.size();

Router h2gpus (1, num_gpus, AnyDevicePolicy);
Router gpus2h(num_gpus, 1, AnyDevicePolicy);

Link dist

(HOST, h2gpus, packet_size, 1);

Link collect (gpus2h, HOST, packet_size, 2);

for (device_t dev : all_gpus) |
std::thread t (WorkerThread,

Link (h2gpus, dev,

Link (dev, gpus2h,

t.detach();

dist.Send(input, input_size);
dist.Shutdown () ;

while (true) {

packet_size, 2),
packet_size, 2));

PendingSegment output_seg = collect.Receive().get ();

if (output_seg.Empty()) break;
output_seg.Synchronize () ;
append (output, output_seg);
collect.Release (output_seq);

}

/7=

EndpointList AnyDevicePolicy (
const Segments message, Endpoint source,
const EndpointLists router_dst) |
return router_dst;

b

void WorkerThread (device_t dev, Link in, Link out)
Stream stream (dev);
T xs_out = ;
int +out_size

while (true) {

PendingSegment seg = in.Receive().get ();

if (seg.Enpty()) break;

seg.Synchronize (stream);

Filter<<<...,stream>>>(seg.Ptr(), seg.Size(),
s_out, out_size);

in.Release (seg, stream);

out.Send(s_out, out_size, stream);

}
out . Shutdown () ;

{

Figure: PBF Pseudocode
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Distributed Worklists
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Figure: Distributed Worklist Implementation

» Global list of computations (work-items) to process
» Each item may generate new items

> Requires all-to-all communication
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Distributed Worklists

> SplitReceive
» Controlled by receive thread
» High priority for responsiveness
» Filter/take/pass

> Local worklist

» Controlled by worker thread
» Lock-free circular buffer
» Newly generated work — local worklist or remote worklist

» Remote worklist: send to next GPU
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Soft Priority Scheduling

v

Stale information may be propagated due to asynchrony

v

Can generate additional intermediate work

v

Example: Asynchronous BFS
» Path with least number of edges is located on a lagging device
> "Incorrect” path will be used to traverse the graph
» After the lagging device completes, all traversed values will be
recomputed

v

Solution: assign soft priorities to each work-item

» Defer items suspected to generate "useless work”
» Decreases amount of intermediate work
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Kernel Fusion

» Small kernels cause underutilization and increases
communication overhead
> Augment worker kernel to include entire control flow and
communication with host and other GPUs
> Includes
» Determining work-item priorities
» Processing a batch of work-items in local worklist
» Running SplitSend

> Decreases kernel launch overhead in high-diameter graphs
» Reduces CPU-GPU roundtrips
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Performance Evaluation

1. Breadth-First Search (BFS)

2. Single-Source Shortest Path (SSSP)
3. PageRank (PR)

4. Connected Components (CC)

» Compared to Gunrock and Back40Computing (B40C)

» Gunrock: multi-GPU graph analytics library using BSP
» B40C: state-of-the-art hardcoded BFS

» Evaluated on multiple graphs
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Graphs

Name Nodes Edges Avg. Max Size
Degree Degree (GB)
Road Maps
USA[1] 24M 58M 241 9 0.62
OSM-eur-k [3] 174M 348M 2.00 15 3.90
Social Networks
soc-LiveJournall [10] SM 69M 14.23 20,293 0.56
twitter [8] S5IM 1,963M 38.37 779,958 16.00
Synthetic Graphs
kron21.sym [5] [ 2M | 182M | 86.82 [ 213904 | 1.40

Figure: Graph Properties

> Avg/max degrees vary significantly

» Partitioned using METIS, except kron2l.sym and twitter
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Evaluation Environment
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Figure: Multi-GPU Node Schematic

» 8-GPU server of 4 dual-board NVIDIA Tesla M60 cards

» 2 8-core Intel Xeon E5-2630 v3 CPUs
» 2 QP links per CPU for PCI-E switch
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Strong Scaling

» In communication intensive algorithms (BFS, SSSP), bus
topology starts to affect performance when more than the
single 4-GPU quadruplet is used

» Groute mitigates these issues but can still be seen in
high-degree graphs such as soc-LiveJournall
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Breadth-First Search (BFS)
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» B40C

» Requires direct memory access to all GPUs
» No METIS partitioning
» Failed on twitter and kron2l.sym

» Gunrock

12345678

(a) Breadth-First Search
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Figure: BFS Execution Time

» Ran out of memory on twitter

» Produced incorrect results on kron2l.sym and soc-LiveJournall

12345678
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Breadth-First Search (BFS)

» Groute significantly outperforms Gunrock in road networks
due to kernel fusion

» B40C is faster on soc-LiveJournall as it contains a hybrid
implementation that switches between kernels

» Not implemented by Groute due to its highly specialized nature
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Single-Source Shortest Path (SSSP)
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(b) Single-Source Shortest Path

Figure: SSSP Execution Time

» Groute outperforms Gunrock in all cases except kronZ2l.sym

» Asynchrony causes an inflation in number of atomic
operations
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PageRank (PR)

—e— Groute #— Gunrock
USA OSM-eur-k soc-LiveJournali

Z 10¢

- \\‘*‘\‘

o o

£

;103\\\.“ W
—~—o

12345678 12345678 1234561738
twitter kron21.sym

10°
JUPSS Y
2 10t a

e

12345678 123456738

Figure: PR Execution Time

» Computationally intensive, unlike BFS and SSSP
» Groute outperforms Gunrock on all graphs

> Best scaling achieved with a high ratio of computation to
communication (low-degree graphs)
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Connected Components (CC)
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Figure: CC Execution Time

Topology-driven, not worklist-driven

Outperforms Gunrock on all counts

Less memory consumption from not using worklists
Gunrock runs out of memory

vV V. vY
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Conclusion

» A robust asynchronous multi-GPU programming model
coupled with a runtime environment

» Expressive set of communication primitives capable of
expressing both regular and irregular applications

» Outperforms existing graph analytics frameworks
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Comments & Discussion

> Requires the programmer to explicitly implement threading (as
in pseudocode)

» Limited to a single shared-memory node

» Lacks comparison to CPU-based implementations

> Will the ring topology be scalable in a distributed memory
setting?

> All-to-all communication for distributed worklists likely to be a
scalability bottleneck

» Soft priority scheduling: how do we know if items are likely to
generate "useless work™?

> Load balancing policy described in the paper is basically ‘first
available device’; how dees Groute adapt to changing load
during runtime? (E.g. imbalance in the number of generated
work-items per GPU)
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