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Motivation

▶ Prevalent method of multi-GPU programming: Bulk
Synchronous Parallel (BSP)

▶ Local computation → global communication
▶ Underutilization particularly for irregular applications
▶ Due to load imbalance and unpredictable communication

▶ Asynchronous programming models to the rescue
▶ Processors can compute and communicate autonomously
▶ Overlap computation and communication
▶ But requires in-depth knowledge of underlying architecture and

network

3 / 28



Goals

▶ Asynchronous programming model + runtime environment
▶ Provide communication constructs to efficiently express both

regular and irregular programs
▶ Promote load balancing for heterogeneous GPUs
▶ Outperform existing state-of-the-art implementations

(Gunrock, B40C)
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Multi-GPU Architecture

Figure: Multi-GPU Node Schematic1

1All figures were taken from the paper
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Inter-GPU Communication

▶ Peer transfer
▶ Host-initiated
▶ Executed explicitly

▶ Direct access (DA)
▶ Device-initiated
▶ Implemented with virtual addressing
▶ Performance sensitive to alignment, coalescing, order of access
▶ May not be available between all pairs of GPUs
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Packetization

▶ GPUs can only transmit to one destination at a time
▶ Hinders responsiveness of an asynchronous system,

especially with large buffers
▶ Divide messages into packets
▶ Also used in collective communication
▶ But overhead exists
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Packetization

Figure: Inter-GPU Memory Transfer Benchmarks
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Groute Programming Model

▶ Dataflow graph construction + asynchronous computation
▶ Endpoint: a physical device (CPU/GPU) or a router
▶ Router: connects endpoints for dynamic communication
▶ Link: connects two endpoints
▶ Routing policy determines how routers behave
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Example: Predicate-Based Filtering

▶ Filter data based on some condition (i.e. predicate)
▶ E.g. With a number of particles as input data, give me all the

particles whose mass is larger than some threshold
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Example: Predicate-Based Filtering

Figure: PBF Dataflow Graph
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Example: Predicate-Based Filtering

Figure: PBF Pseudocode
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Distributed Worklists

Figure: Distributed Worklist Implementation

▶ Global list of computations (work-items) to process
▶ Each item may generate new items
▶ Requires all-to-all communication
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Distributed Worklists

▶ SplitReceive
▶ Controlled by receive thread
▶ High priority for responsiveness
▶ Filter/take/pass

▶ Local worklist
▶ Controlled by worker thread
▶ Lock-free circular buffer
▶ Newly generated work → local worklist or remote worklist

▶ Remote worklist: send to next GPU
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Soft Priority Scheduling

▶ Stale information may be propagated due to asynchrony
▶ Can generate additional intermediate work
▶ Example: Asynchronous BFS

▶ Path with least number of edges is located on a lagging device
▶ ”Incorrect” path will be used to traverse the graph
▶ After the lagging device completes, all traversed values will be

recomputed
▶ Solution: assign soft priorities to each work-item

▶ Defer items suspected to generate ”useless work”
▶ Decreases amount of intermediate work
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Kernel Fusion

▶ Small kernels cause underutilization and increases
communication overhead

▶ Augment worker kernel to include entire control flow and
communication with host and other GPUs

▶ Includes
▶ Determining work-item priorities
▶ Processing a batch of work-items in local worklist
▶ Running SplitSend

▶ Decreases kernel launch overhead in high-diameter graphs
▶ Reduces CPU-GPU roundtrips
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Performance Evaluation

1. Breadth-First Search (BFS)
2. Single-Source Shortest Path (SSSP)
3. PageRank (PR)
4. Connected Components (CC)

▶ Compared to Gunrock and Back40Computing (B40C)
▶ Gunrock: multi-GPU graph analytics library using BSP
▶ B40C: state-of-the-art hardcoded BFS

▶ Evaluated on multiple graphs
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Graphs

Figure: Graph Properties

▶ Avg/max degrees vary significantly
▶ Partitioned using METIS, except kron21.sym and twitter
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Evaluation Environment

Figure: Multi-GPU Node Schematic

▶ 8-GPU server of 4 dual-board NVIDIA Tesla M60 cards
▶ 2 8-core Intel Xeon E5-2630 v3 CPUs
▶ 2 QPI links per CPU for PCI-E switch

19 / 28



Strong Scaling

▶ In communication intensive algorithms (BFS, SSSP), bus
topology starts to affect performance when more than the
single 4-GPU quadruplet is used

▶ Groute mitigates these issues but can still be seen in
high-degree graphs such as soc-LiveJournal1
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Breadth-First Search (BFS)

Figure: BFS Execution Time

▶ B40C
▶ Requires direct memory access to all GPUs
▶ No METIS partitioning
▶ Failed on twitter and kron21.sym

▶ Gunrock
▶ Ran out of memory on twitter
▶ Produced incorrect results on kron21.sym and soc-LiveJournal1
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Breadth-First Search (BFS)

▶ Groute significantly outperforms Gunrock in road networks
due to kernel fusion

▶ B40C is faster on soc-LiveJournal1 as it contains a hybrid
implementation that switches between kernels

▶ Not implemented by Groute due to its highly specialized nature
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Single-Source Shortest Path (SSSP)

Figure: SSSP Execution Time

▶ Groute outperforms Gunrock in all cases except kron21.sym
▶ Asynchrony causes an inflation in number of atomic

operations
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PageRank (PR)

Figure: PR Execution Time

▶ Computationally intensive, unlike BFS and SSSP
▶ Groute outperforms Gunrock on all graphs
▶ Best scaling achieved with a high ratio of computation to

communication (low-degree graphs)
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Connected Components (CC)

Figure: CC Execution Time

▶ Topology-driven, not worklist-driven
▶ Outperforms Gunrock on all counts
▶ Less memory consumption from not using worklists
▶ Gunrock runs out of memory
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Conclusion

▶ A robust asynchronous multi-GPU programming model
coupled with a runtime environment

▶ Expressive set of communication primitives capable of
expressing both regular and irregular applications

▶ Outperforms existing graph analytics frameworks
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Comments & Discussion

▶ Requires the programmer to explicitly implement threading (as
in pseudocode)

▶ Limited to a single shared-memory node
▶ Lacks comparison to CPU-based implementations
▶ Will the ring topology be scalable in a distributed memory

setting?
▶ All-to-all communication for distributed worklists likely to be a

scalability bottleneck
▶ Soft priority scheduling: how do we know if items are likely to

generate ”useless work”?
▶ Load balancing policy described in the paper is basically ’first

available device’; how dœs Groute adapt to changing load
during runtime? (E.g. imbalance in the number of generated
work-items per GPU)
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Thank You
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