Groute: An Asynchronous Multi-GPU
Programming Model for Irregular Computations

Tal Ben-Nun, Micheel Sutton, Streepathi Pai, Keshav Pingali

Presented by Jeemin Choi

November 2, 2018

1/28

Overview

A w N -

Motivation and Goals
Multi-GPU Architecture and Communication
Groute Programming Model

Implementation Details

» Distributed Worklists
» Soft Priority Scheduling
» Kernel Fusion

Performance Evaluation

. Conclusion

/28

Motivation

> Prevalent method of multi-GPU programming: Bulk
Synchronous Parallel (BSP)

» Local computation — global communication

» Underutilization particularly for irregular applications

» Due to load imbalance and unpredictable communication
» Asynchronous programming models to the rescue

» Processors can compute and communicate autonomously

» Overlap computation and communication

» But requires in-depth knowledge of underlying architecture and
network

/28

Goals

v

v

v

v

Asynchronous programming model + runtime environment

Provide communication constructs to efficiently express both
regular and irregular programs

Promote load balancing for heterogeneous GPUs

Outperform existing state-of-the-art implementations
(Gunrock, B40C)

/28

Multi-GPU Architecture

Dual Board Dual Board
Tesla M60 Tesla M60

Dual Board Dual Board
Tesla M60 Tesla M60

| N PCI-Express Switch R |

FSB Lanes FSB Lanes

Figure: Multi-GPU Node Schematic'

TAll figures were taken from the paper
5/28

Inter-GPU Communication

» Peer transfer

>

>

Host-initiated
Executed explicitly

» Direct access (DA)

>

v vy

Device-initiated

Implemented with virtual addressing

Performance sensitive to alignment, coalescing, order of access
May not be available between all pairs of GPUs

/28

Packetization

v

GPUs can only transmit to one destination at a time

v

Hinders responsiveness of an asynchronous system,
especially with large buffers

v

Divide messages into packets

v

Also used in collective communication

v

But overhead exists

/28

Packetization

m Peer Transfer = Pkt. Peer Transfer mPkt. DA o
13 ©

a
3

1"

s
5

9

Runtime [ms]
8

N
8

7

: O

Direct Indirect Oneto-All Peer Transfer Packetized Peer DA Ring
Ring Transfer Ring

Transfer Rate [GB/s]

3

o

(c) Packetized transfer rate (d) Peer broadcast performance

Figure: Inter-GPU Memory Transfer Benchmarks

8/28

Groute Programming Model

v

Dataflow graph construction + asynchronous computation

v

Endpoint: a physical device (CPU/GPU) or a router

v

Router: connects endpoints for dynamic communication

v

Link: connects two endpoints

v

Routing policy determines how routers behave

/28

Example: Predicate-Based Filtering

» Filter data based on some condition (i.e. predicate)

> E.g. With a number of particles as input data, give me all the
particles whose mass is larger than some threshold

10/28

Example: Predicate-Based Filtering

InputData CTTTTTTTTTT]-

Policy: First available device

Policy: Send to host

OutputData [TTTTTTTTTT]

Figure: PBF Dataflow Graph

n/28

Example: Predicate-Based Filtering

:vector<T> input =
vector<T> output;
int packet_size = ...;

Context ctx;
auto all_gpus = ctx.devices();
int num_gpus = all_gpus.size();

Router h2gpus (1, num_gpus, AnyDevicePolicy);
Router gpus2h(num_gpus, 1, AnyDevicePolicy);

Link dist

(HOST, h2gpus, packet_size, 1);

Link collect (gpus2h, HOST, packet_size, 2);

for (device_t dev : all_gpus) |
std::thread t (WorkerThread,

Link (h2gpus, dev,

Link (dev, gpus2h,

t.detach();

dist.Send(input, input_size);
dist.Shutdown () ;

while (true) {

packet_size, 2),
packet_size, 2));

PendingSegment output_seg = collect.Receive().get ();

if (output_seg.Empty()) break;
output_seg.Synchronize () ;
append (output, output_seg);
collect.Release (output_seq);

}

/7=

EndpointList AnyDevicePolicy (
const Segments message, Endpoint source,
const EndpointLists router_dst) |
return router_dst;

b

void WorkerThread (device_t dev, Link in, Link out)
Stream stream (dev);
T xs_out = ;
int +out_size

while (true) {

PendingSegment seg = in.Receive().get ();

if (seg.Enpty()) break;

seg.Synchronize (stream);

Filter<<<...,stream>>>(seg.Ptr(), seg.Size(),
s_out, out_size);

in.Release (seg, stream);

out.Send(s_out, out_size, stream);

}
out . Shutdown () ;

{

Figure: PBF Pseudocode

12/28

Distributed Worklists

Local Worklist T
Filter
g Start T
ake + R
| End Unpack [.;ilgh Priority) GPU K-1
=
Router
Pass
SplitSend UESRMLSS GPU K+1
Remote Worklist
Tak
o GPUK

Figure: Distributed Worklist Implementation

» Global list of computations (work-items) to process
» Each item may generate new items

> Requires all-to-all communication

13/28

Distributed Worklists

> SplitReceive
» Controlled by receive thread
» High priority for responsiveness
» Filter/take/pass

> Local worklist

» Controlled by worker thread
» Lock-free circular buffer
» Newly generated work — local worklist or remote worklist

» Remote worklist: send to next GPU

14/28

Soft Priority Scheduling

v

Stale information may be propagated due to asynchrony

v

Can generate additional intermediate work

v

Example: Asynchronous BFS
» Path with least number of edges is located on a lagging device
> "Incorrect” path will be used to traverse the graph
» After the lagging device completes, all traversed values will be
recomputed

v

Solution: assign soft priorities to each work-item

» Defer items suspected to generate "useless work”
» Decreases amount of intermediate work

15/28

Kernel Fusion

» Small kernels cause underutilization and increases
communication overhead
> Augment worker kernel to include entire control flow and
communication with host and other GPUs
> Includes
» Determining work-item priorities
» Processing a batch of work-items in local worklist
» Running SplitSend

> Decreases kernel launch overhead in high-diameter graphs
» Reduces CPU-GPU roundtrips

16/28

Performance Evaluation

1. Breadth-First Search (BFS)

2. Single-Source Shortest Path (SSSP)
3. PageRank (PR)

4. Connected Components (CC)

» Compared to Gunrock and Back40Computing (B40C)

» Gunrock: multi-GPU graph analytics library using BSP
» B40C: state-of-the-art hardcoded BFS

» Evaluated on multiple graphs

17/28

Graphs

Name Nodes Edges Avg. Max Size
Degree Degree (GB)
Road Maps
USA[1] 24M 58M 241 9 0.62
OSM-eur-k [3] 174M 348M 2.00 15 3.90
Social Networks
soc-LiveJournall [10] SM 69M 14.23 20,293 0.56
twitter [8] S5IM 1,963M 38.37 779,958 16.00
Synthetic Graphs
kron21.sym [5] [2M | 182M | 86.82 [213904 | 1.40

Figure: Graph Properties

> Avg/max degrees vary significantly

» Partitioned using METIS, except kron2l.sym and twitter

18/28

Evaluation Environment

GPU | GPU GPU | GPU GPU | GPU
5 6 7 8
P2P
Dual Board Dual Board Dual Board Dual Board
Tesla M60 Tesla M60 Tesla M60 Tesla M60

PCI-Express Switch

RRRRRE
’ FSB Lanes FSB Lanes
Lol L L L
CPU 1 —————1 CPU 2
R
RAM RAM

Figure: Multi-GPU Node Schematic

» 8-GPU server of 4 dual-board NVIDIA Tesla M60 cards

» 2 8-core Intel Xeon E5-2630 v3 CPUs
» 2 QP links per CPU for PCI-E switch

19/28

Strong Scaling

» In communication intensive algorithms (BFS, SSSP), bus
topology starts to affect performance when more than the
single 4-GPU quadruplet is used

» Groute mitigates these issues but can still be seen in
high-degree graphs such as soc-LiveJournall

20/28

Breadth-First Search (BFS)

10%
210

£ 102
E10

—e— Groute —+— B40C a— Gunrock
USA 4+ OSM-eur-k jsoc-LiveJournall twitter 5 __kron21.sym
10 = 0 10 10
o
i o f/') o .
B]
;ﬁ"/‘ 10° \\“‘w—o*O i RE“\\’_M “ \\‘\‘M “ D
ja g
102 1oLt 102 10°

12345678

» B40C

» Requires direct memory access to all GPUs
» No METIS partitioning
» Failed on twitter and kron2l.sym

» Gunrock

12345678

(a) Breadth-First Search

123456738

12345678

Figure: BFS Execution Time

» Ran out of memory on twitter

» Produced incorrect results on kron2l.sym and soc-LiveJournall

12345678

21/28

Breadth-First Search (BFS)

» Groute significantly outperforms Gunrock in road networks
due to kernel fusion

» B40C is faster on soc-LiveJournall as it contains a hybrid
implementation that switches between kernels

» Not implemented by Groute due to its highly specialized nature

22/28

Single-Source Shortest Path (SSSP)

—e— Groute a— Gunrock

108 USA 107 OSM-eur-k masoc-LiveJournaHmA twitter 10¢ kron21.sym

5 6"
1P e essagg] 10 s0aaaay

3 10° 10° 10? S\D\D\iii:j 10° \\if 10°

£

E 3 4

F 107 e o o0 ooes| 10|a .- g
2 3 1

S ssasers 1° 10

- - 102 102
12345678 12345678 12345678 12345678

(b) Single-Source Shortest Path

Figure: SSSP Execution Time

» Groute outperforms Gunrock in all cases except kronZ2l.sym

» Asynchrony causes an inflation in number of atomic
operations

23/28

PageRank (PR)

—e— Groute #— Gunrock
USA OSM-eur-k soc-LiveJournali

Z 10¢

- \\‘*‘\‘

o o

£

;103\\\.“ W
—~—o

12345678 12345678 1234561738
twitter kron21.sym

10°
JUPSS Y
2 10t a

e

12345678 123456738

Figure: PR Execution Time

» Computationally intensive, unlike BFS and SSSP
» Groute outperforms Gunrock on all graphs

> Best scaling achieved with a high ratio of computation to
communication (low-degree graphs)

24/28

Connected Components (CC)

—e— Groute = Gunrock
USA OSM-eur-k soc-LiveJournall

e
g

R

5% aaogl
102 =

.\'\'—*'—WWH-.

12345678 12345678 12345678
twitter kron21.sym

‘\‘“_H

Time (ms)

10'

10°

Time (ms)
2

\\‘_‘\‘\N

12345678 123456738

10'

Figure: CC Execution Time

Topology-driven, not worklist-driven

Outperforms Gunrock on all counts

Less memory consumption from not using worklists
Gunrock runs out of memory

vV V. vY

25/28

Conclusion

» A robust asynchronous multi-GPU programming model
coupled with a runtime environment

» Expressive set of communication primitives capable of
expressing both regular and irregular applications

» Outperforms existing graph analytics frameworks

26/28

Comments & Discussion

> Requires the programmer to explicitly implement threading (as
in pseudocode)

» Limited to a single shared-memory node

» Lacks comparison to CPU-based implementations

> Will the ring topology be scalable in a distributed memory
setting?

> All-to-all communication for distributed worklists likely to be a
scalability bottleneck

» Soft priority scheduling: how do we know if items are likely to
generate "useless work™?

> Load balancing policy described in the paper is basically ‘first
available device’; how dees Groute adapt to changing load
during runtime? (E.g. imbalance in the number of generated
work-items per GPU)

27/28

Thank You

