
pocl: A Performance-Portable OpenCL Implementation

Kaushik Kulkarni

December 5, 2018

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 1 / 36

Outline

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 2 / 36

About the work

Published in 2015

Still an actively maintained project

Source code: https://github.com/pocl/pocl
Latest release: v1.2 in September 2018
Latest commit ∼ 25 days ago.

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 3 / 36

https://github.com/pocl/pocl

Overview of the work

OpenCL codes are platform portable

However, performance portability is not guaranteed

pocl's approach: target-speci�c compiler transformations

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 4 / 36

Performance portability

Variables that a�ect the performance of an OpenCL code

Address space of variables

Work group sizes

Memory access pattern

Optimizations performed by the kernel compiler of the OpenCL
implementation

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 5 / 36

Pieces of an OpenCL implementation

Figure: Sub-components of an OpenCL implementation[pg.6]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 6 / 36

Kernel compiler

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 7 / 36

pocl Compilation chain overview

The pocl kernel compiler is Clang-based and generates LLVM IR

Follows a target based execution model
SIMT architectures(like GPUs):

⇒ Generate code for a single work item

Else:

⇒ Transform LLVM IR to form multi-work-item work-group functions

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 8 / 36

pocl Compilation chain overview

Figure: Compilation strategies for di�erent backends[pg.12]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 9 / 36

LLVM IR

LLVM IR is a low-level language close to assembly language and
abstracts the underlying architecture in a generic manner

Data Structures: typed �virtual� registers
SSA

Nomenclature

Basic blocks: A group of statements that do not include any
conditional statements

Control Flow Graphs: a directed graph with BBs as nodes, arranged in
a schedulable manner

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 10 / 36

Parallel Region in the work group functions

De�nition

A collection of statements that must be executed by all the work items in
the work group before proceeding to any other statements.

The OpenCL speci�cation does not require an ordering of the WIs ⇒
Parallel region is embarrassingly parallel across the WIs

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 11 / 36

Generation of Parallel Work-Group Functions

Strategy

1 Identify the parallel region across WIs in the work group functions

2 Annotate the parallel regions of loops across the WIs and with LLVM
metadata that serves as directives for the LLVM loop vectorizer

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 12 / 36

Identifying the parallel region

The algorithm is categorized for the following cases:

No barrier
Unconditional barriers
Conditional barriers
Barriers in loops

The placement of the barrier in the kernel will a�ect the parallel region
formation in the multi-WI work group functions

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 13 / 36

Parallel Region Formation: No barrier

Identifying parallel region is trivial for a kernel with no barriers(or a
CFG with just one BB) i.e. the entire kernel is the parallel region

Figure: Single WI function

−−−−−→

Figure: Mutliple WI-work group
function[pg. 15]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 14 / 36

OpenCL speci�cation for barriers

Unconditional barrier

node A is said to dominate node B in a CFG if every path from the
entry to node B has to go through node A

A barrier B is said to be an unconditional barrier if the barrier
dominates the `exit' node

Example

__kernel v o i d uncond_bar r i e r_ke rne l (__global f l o a t *a)
{

i n t g i d = get_g loba l_ id (0) ;
a [g i d] = 2*a [g i d] ;
b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;
a [g i d] = 2*a [g i d] ;

}

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 15 / 36

OpenCL speci�cation for barriers

Conditional barrier

If a work item executes a conditional barrier then all the other WIs
must also execute the barrier

Same rule applies for barriers in a loop

Non-example: Kernel with unde�ned behavior

__kernel v o i d c r a sh_ke rne l (__global f l o a t *a)
{

i n t l i d = ge t_ loca l_ id (0) ;
i n t g i d = get_g loba l_ id (0) ;
a [g i d] = 2*a [g i d] ;
i f (l i d == 0)

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;
a [g i d] = 2*a [g i d] ;

}

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 16 / 36

Parallel Region Formation: Unconditional Barrier

Split the CFG into sub-CFGs between the unconditional barriers and
then form the parallel regions from those sub-CFGs1

Figure: Single WI function

−−−−−→

Figure: Mutliple WI-work group
function[pg. 15]

1One can assume implicit unconditional barriers at the entry and exit nodes
Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 17 / 36

Parallel Region formation: Conditional barriers

The CFG will contain atleast one node such that it has more than one
predecessor barrier
⇒ cannot apply the algorithm for unconditional barrier

Figure: CFG for a conditional barrier WI[pg.16]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 18 / 36

Parallel Region formation: Conditional barriers

From the OpenCL speci�cation for conditional barrier, we can claim
that �All the WIs in a work group take the same path from entry to

exit�

⇒ by �tail duplication� of the sub-CFG between a conditional barrier
and the exit node we can apply the algorithm for unconditional barrier
to each one of the tails

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 19 / 36

Parallel Region formation: Conditional barriers

Figure: Single WI function[pg. 16]

−−−−−→

Figure: Tail duplicated WI
function[pg. 18]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 20 / 36

Parallel Region formation: Conditional barriers

The �tail-duplicated� CFG's parallel region can be dealt in the similar
way as unconditional barriers

Figure: Tail duplicated WI
function[pg. 18]

−−−−−→

Figure: Work group function[pg. 18]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 21 / 36

Parallel Region formation: Conditional barriers

Further optimization to the kernel is done by �loop-peeling� i.e. by
unrolling the �rst iteration of the loop.

We end up with longer branch-less codes ⇒ better ILP optimizations

−−−−−→

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 22 / 36

Parallel Region formation: Conditional barriers

Figure: Work group function[pg. 18]

−−−−−→

Figure: Peeled work group
function[pg.19]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 23 / 36

Barriers in kernel loops

Sections of a loop

Algorithm

All work items must execute the b-loop in lock steps

Add an implicit barrier after the header, and before the latch

The parallel regions lies in between the barriers

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 24 / 36

Barrier in kernel loops

Figure: Parallel regions in b-loops[pg.22]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 25 / 36

Horizontal Inner loop parallelization

WI functions with loops having dependency patterns which are di�cult
to parallelize can be optimized using the work-group functions

pocl strategy: introduce implicit barriers so that the scheduling of the
WI captures the parallelism within the WG functions captures the
parallel structure of computations

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 26 / 36

Horizontal Inner loop parallelization example

−−−−−→

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 27 / 36

Handling private variables

Possible solution

A Context Array for each private variable.

Maintaining an array for each private variable would be ine�cient, as
it is possible that a private variable is only allocated for a single WI

Implemented heuristic:

Analyze the LLVM IR

If more than 1 WI allocate a private variable then allocate a context
array for the private
Else, allocate such private variables(allocated by only 1 WI) in one of
the registers

More optimizations are done by doing a uniformity analysis of private
variables

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 28 / 36

Vectorized Mathematical Library Functions

pocl also contains low level implementations of mathematical
functions on vector data types though the VecMathlib library

VecMathlib is implemented for several backends � Intel, AMD, GPUs

Backend generic implementation through data structures such as
realvec<double, 2>

Implementation Strategy:

Try to implement the vector data types and map the vectorized
operations to corresponding instructions in the hardware
If hardware does not support the instruction then, fallback to serial
execution

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 29 / 36

Implementation details of VecMathlib

IEEE �oating point system

Computations of some mathematical functions through iterative
scheme. For example:

√
x , 1

x

Trigonometric mathematical functions are reduced to the range
[0, π/2] and then computed using interpolation through Chebyshev
polynomials

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 30 / 36

Performance Evaluation

Testing platform I:

Intel x86-64 i7-440

OpenCL implementations for comparison

AMD APP SDK
Intel's OpenCL implementation

Testing platform II:

ARM Cortex-A9

Neon SIMD Units

OpenCL implementations for comparison: FreeOCL

Testing platform III:

Cell BE of PS3

AltiVec instruction set of accessing SIMD units

OpenCL implementations for comparison: IBM OpenCL
Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 31 / 36

Performance comparison on Intel i7

Figure: Comparison of OpenCL implementations on Intel i7(lower is better)[pg.30]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 32 / 36

Performance comparison on AMD Cortex-A9

Figure: Comparison of OpenCL implementations on AMD Cortex-A9(lower is
better)[pg.29]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 33 / 36

Performance comparison on Cell BE

Figure: Comparison of OpenCL implementations on Cell BE(lower is better)[pg.31]

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 34 / 36

Current state of pocl

Support to NVIDIA CUDA is added though LLVM NVPTX backend

Figure: pocl's OpenCL implementation for NVIDIA2

2http://portablecl.org/cuda-backend.html
Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 35 / 36

Summary

The central theme of the work is around the concept of
creating/exposing parallel regions of the kernel using compiler
transformations, and annotate the embarrassingly parallel sections of
code in LLVM IR

Proofs for the validity of the compiler transformation have been
provided in the paper

Implemented VecMathlib, a backend generic library for mathematical
functions that evaluates mathematical functions for vector data types

The authors have shown comparable performance with the vendor's
provided OpenCL implementation

Support for more targets is being added: NVIDIA and pHSA being the
major ones

Kaushik Kulkarni pocl: A Performance-Portable OpenCL ImplementationDecember 5, 2018 36 / 36

