
Stencil Computation Optimization and
Auto-tuning on State-of-the-Art Multicore

Architectures

Kaushik Datta∗†, Mark Murphy†, Vasily Volkov†, Samuel Williams∗†, Jonathan
Carter∗, Leonid Oliker∗†, David Patterson∗†, John Shalf∗, and Katherine Yelick∗†

∗CRD/NERSC, Lawrence Berkeley National Laboratory
†Computer Science Division, University of California at Berkeley

Publication Date: 2008

Presented by: Lukas Spies, 2018-12-05



Motivation:

I Stencils commonly used in Scientific Computing
Applications

I challenge: small re-use of data
I common approach: tiling
I this paper: study of various optimizations and

architectures
I Sample stencil: 7-point stencil (representative)





Optimization #1:

Problem Decomposition:
Division of work into node blocks, core blocks, thread blocks
and register blocks



Optimization #2:

Data Allocation:
NUMA’s “first touch” page mapping

I remote memory latency > local memory latency
I remote memory bandwidth < local memory bandwidth



Optimization #3:

Bandwidth Optimizations:
I hide memory latency
I minimize memory traffic

Circular queue optimization:

planes are streamed into a queue containing the current time step, processed, written

to out queue, and streamed back → minimizes memory traffic



Optimization #4:

In-Core Optimizations:
I inner loop transformations
I handwritten SIMD code

// N = 4*512;
for(int i = 0; i < N; ++i) {

val[i] = in1[i]*in2[i];
}

// when unrolled manually becomes

for(int i = 0; i < N/4; ++i) {
val[4*i ] = in1[4*i ]*in2[4*i ];
val[4*i +1] = in1[4*i +1]*in2[4*i +1];
val[4*i +2] = in1[4*i +2]*in2[4*i +2];
val[4*i +3] = in1[4*i +3]*in2[4*i +3];

}



Auto-tuner:

I Not many details provided
I Consisting of two components:

1. Perl code generator producing multithreaded C code:
allows evaluation of a large optimization space

2. auto-tuning benchmark that searches parameter space



Problem set up:

I Sample problem: 2563 stencil calculation
⇒ 262MB of memory

I Double precision
I not all techniques/optimizations available on every

platform

Details not provided/available:
I No code provided for any of the test run
I some of the specific optimizations are not described



Clovertown

I notable performance benefits:
core blocking (1.7), cache bypass (1.1)

I uniform memory access → NUMA optimizations no effect
I poor multicore scaling → memory bandwidth limited



Barcelona

I notable performance benefits:
NUMA optimizations (2.15), core-blocking (1.7), cache
bypass (1.55)

I memory bandwidth limited
I register blocking, software prefetching little to no effect



Victoria Falls

I notable performance benefits:
array padding and core/register blocking (6.1), thread
blocking (1.1)

I provides better per-core cache behavior
I large parameter search space (lengthy process)



Cell Blade

I generic microprocessor-targeted source code cannot be
naively compiled → DMA local-store version as baseline

I computationally bound (1-4 cores) → SIMD
I memory bandwidth limited (8+ cores) → NUMA



GTX280

I naive version: one CUDA thread responsible for single
calculations (one stencil)

I 2 categories: naive CUDA in host, naive CUDA in device
I bottleneck: PCIe x16 sustained bandwidth of only 3.4 GB/s
I low arithmetic intensity limiting factor



Conclusions:
I parallelism discovery only small part of performance

challenge: hardware parallelism and memory hierarchy
optimizations of equal importance

I large number of simpler processors (GTX280) offer higher
performance potential than small number of more complex
processors (Clovertown)

I novel strategies for hiding memory latency effective, but at
expense of programming productivity

I GPU provides very good on-device performance, PCIe
bandwidth bottleneck

I cache-based architectures show complete lack of multicore
scalability without auto-tuning:
naive implementations do not profit from more cores

I Compilers can do a lot of optimizations, but more is often
possible


	motivation
	architectures
	optimizations
	performance results
	conclusion

