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Motivation for Polyhedral Model

• Some code optimizations are easy
• Constant folding
• Scalar replacement

• Others much harder
• Loop inversion
• Skewing
• Tiling

• Production compilers may not do the latter
• Polyhedral model offers ways of reasoning about harder optimizations



Polyhedral Model

• Representation of subset of C known as static control programs
• Do statements with affine bounds
• if conditionals with affine conditions
• Bounds and conditionals depend on outer loop counters, constants

• Iteration Domain – set of values of the iteration vector for which to 
execute a statement

• Scattering function – an affine function specifying for each point in 
the iteration domain, a new coordinate for a corresponding statement 
instance



Scattering Function

• Several interpretations:
• Distribute iterations in space, i.e. processors, order in time, or both
• Space mapping – number corresponds to processor for executing statement
• Time mapping – order statements in some lexicographical order

• Target Mapping – execution strategies
• Schedule
• Memory Mapping
• Processor allocation
• Tiling
• Expressed as dependencies between indices



Example Target Mappings

•
• Identity mapping

•
• Projection onto plane

• ௌଵ , ௌଶ



Example: Cholesky Factorization

[Bastoul 2004]



[Bastoul 2004]

S2 bounds



[Bastoul 2004]

Modified S2 bounds



Pros/Cons of Polyhedral Compilation

• Pros:
• Detailed representation, analysis, optimization
• Loop transformation

• Cons:
• Polyhedral “search-space” is quite large
• AlphaZ – leave all of this for the user!



Why another polyhedral code transformation 
tool?
• Supports Parametric tiling

• Tile sizes not fixed at compile time
• Enables empirical search for tile sizes

• Automatically manages re-allocation of memory
• “None of the existing polyhedral parallelizers for distributed memory even mention 

data partitioning. Instead, they use the same memory allocation as the original 
sequential program on all nodes.” [Yuki 2013]

• Focus on distributed memory parallelism
• Polyhedral machinery to:

• Apply loop transformations to expose coarse grained parallelism
• User defined target mapping – error prone!

• e.g. Set in build script: setMemoryMap(program, system, “var1”, “var2”, (i,j,k->i,j))



[Yuki 2013]

Static Control 
Programs

AlphaZ
+

Build 
Script



Human-in-the-loop

• Automatic parallelization is ultimate goal
• Yuki 2013 claims automatic tools are “restrictive”

• Difficult to surpass hard coded, domain specific knowledge
• AlphaZ aims to provide full control to the user

• Generate new transformations quickly, mostly through provided 
build script

• Guide transformations with domain specific knowledge
• Any performance benchmark using AlphaZ required a human to 

find those combinations of polyhedral transformations



“Hello, world!” Matrix Multiply in AlphaZ

• AlphaZ source code (what the user writes)
• N becomes runtime parameter in generated C code



Project indices i,j,k onto i,j
(projection function)

Maps ℤ → ℤ

In the entire iteration space with 
i,j,k, only give me i,k (projection on 
i-k plane)

In the entire iteration 
space with i,j,k, only give 
me k,j (projection onto k-j 
plane)

When multiple points in the left-hand side are mapped to a same point in the right-
hand side, those values are combined using the reduction operator.

Equivalent to:



Parallel Matrix-Matrix Multiply

3rd dimension of array is a fictitious “time” dimension



• (Almost) minimum viable build script for this case
• If one removes either of the memory maps for temp_C, C, generated 

c code will generate a 3D temporary array
• This is where the user specifies mappings, changes statement 

orderings, processor allocation, tiling
• (i,j,k->i,j) repeated in both memory maps indicates a reduction
• CSpace represents actual matrix-matrix product result
• AlphaZ verifier can catch when dependency is broken





Result of commenting out the top line of the build script



Performance Evaluation

• Polybench
• Cray XT6m, CrayCC/5.04 –O3
• PLuTo comparison: --tile –parallel –noprevector
• Manually explore different tile sizes in PLuTo and AlphaZ
• No comparison to hand-tuned implementation, absolute 

performance
• Performance normalized to speed up over single core PLuTO

implementation



[Yuki 2013]



Speed up compared to single core PLuTo implementation for matrix-matrix multiply  [Yuki 2013]
Left: two matrix-matrix multiplies. Right: three matrix-matrix multiplies



Speed up compared to single core PLuTo implementation for stencil computations [Yuki 2013]
Left: 2d finite difference time domain kernel. Right: 2-D jacobi stencil computation.



Conclusion
Pros:
• Expose target mapping to user to allow exploration of polyhedral 

code generation
• Can significantly outperform PLuTo for certain kinds of workloads 

(stencils)
• Represented through simple Alpha language + transformation script
Cons:
• User-specified target mappings may not result in correct 

implementation
• Only roughly as performant as PLuTo for some workloads (linear 

algebra)
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