
AlphaZ: A System for Analysis,
Transformation, and Code

Generation in the Polyhedral
Equational Model

Yuki et. Al. 2012, 2013

Malachi Phillips

Motivation for Polyhedral Model

• Some code optimizations are easy
• Constant folding
• Scalar replacement

• Others much harder
• Loop inversion
• Skewing
• Tiling

• Production compilers may not do the latter
• Polyhedral model offers ways of reasoning about harder optimizations

Polyhedral Model

• Representation of subset of C known as static control programs
• Do statements with affine bounds
• if conditionals with affine conditions
• Bounds and conditionals depend on outer loop counters, constants

• Iteration Domain – set of values of the iteration vector for which to
execute a statement

• Scattering function – an affine function specifying for each point in
the iteration domain, a new coordinate for a corresponding statement
instance

Scattering Function

• Several interpretations:
• Distribute iterations in space, i.e. processors, order in time, or both
• Space mapping – number corresponds to processor for executing statement
• Time mapping – order statements in some lexicographical order

• Target Mapping – execution strategies
• Schedule
• Memory Mapping
• Processor allocation
• Tiling
• Expressed as dependencies between indices

Example Target Mappings

•
• Identity mapping

•
• Projection onto plane

• ௌଵ , ௌଶ

Example: Cholesky Factorization

[Bastoul 2004]

[Bastoul 2004]

S2 bounds

[Bastoul 2004]

Modified S2 bounds

Pros/Cons of Polyhedral Compilation

• Pros:
• Detailed representation, analysis, optimization
• Loop transformation

• Cons:
• Polyhedral “search-space” is quite large
• AlphaZ – leave all of this for the user!

Why another polyhedral code transformation
tool?
• Supports Parametric tiling

• Tile sizes not fixed at compile time
• Enables empirical search for tile sizes

• Automatically manages re-allocation of memory
• “None of the existing polyhedral parallelizers for distributed memory even mention

data partitioning. Instead, they use the same memory allocation as the original
sequential program on all nodes.” [Yuki 2013]

• Focus on distributed memory parallelism
• Polyhedral machinery to:

• Apply loop transformations to expose coarse grained parallelism
• User defined target mapping – error prone!

• e.g. Set in build script: setMemoryMap(program, system, “var1”, “var2”, (i,j,k->i,j))

[Yuki 2013]

Static Control
Programs

AlphaZ
+

Build
Script

Human-in-the-loop

• Automatic parallelization is ultimate goal
• Yuki 2013 claims automatic tools are “restrictive”

• Difficult to surpass hard coded, domain specific knowledge
• AlphaZ aims to provide full control to the user

• Generate new transformations quickly, mostly through provided
build script

• Guide transformations with domain specific knowledge
• Any performance benchmark using AlphaZ required a human to

find those combinations of polyhedral transformations

“Hello, world!” Matrix Multiply in AlphaZ

• AlphaZ source code (what the user writes)
• N becomes runtime parameter in generated C code

Project indices i,j,k onto i,j
(projection function)

Maps ℤ → ℤ

In the entire iteration space with
i,j,k, only give me i,k (projection on
i-k plane)

In the entire iteration
space with i,j,k, only give
me k,j (projection onto k-j
plane)

When multiple points in the left-hand side are mapped to a same point in the right-
hand side, those values are combined using the reduction operator.

Equivalent to:

Parallel Matrix-Matrix Multiply

3rd dimension of array is a fictitious “time” dimension

• (Almost) minimum viable build script for this case
• If one removes either of the memory maps for temp_C, C, generated

c code will generate a 3D temporary array
• This is where the user specifies mappings, changes statement

orderings, processor allocation, tiling
• (i,j,k->i,j) repeated in both memory maps indicates a reduction
• CSpace represents actual matrix-matrix product result
• AlphaZ verifier can catch when dependency is broken

Result of commenting out the top line of the build script

Performance Evaluation

• Polybench
• Cray XT6m, CrayCC/5.04 –O3
• PLuTo comparison: --tile –parallel –noprevector
• Manually explore different tile sizes in PLuTo and AlphaZ
• No comparison to hand-tuned implementation, absolute

performance
• Performance normalized to speed up over single core PLuTO

implementation

[Yuki 2013]

Speed up compared to single core PLuTo implementation for matrix-matrix multiply [Yuki 2013]
Left: two matrix-matrix multiplies. Right: three matrix-matrix multiplies

Speed up compared to single core PLuTo implementation for stencil computations [Yuki 2013]
Left: 2d finite difference time domain kernel. Right: 2-D jacobi stencil computation.

Conclusion
Pros:
• Expose target mapping to user to allow exploration of polyhedral

code generation
• Can significantly outperform PLuTo for certain kinds of workloads

(stencils)
• Represented through simple Alpha language + transformation script
Cons:
• User-specified target mappings may not result in correct

implementation
• Only roughly as performant as PLuTo for some workloads (linear

algebra)

Sources
T. Yuki, ‘Beyond Shared Memory Loop Parallelism in the Polyhedral Model’,
Colorado State University, 2013.

C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in Proceedings. 13th International Conference on Parallel Architecture
and Compilation Techniques, 2004. PACT 2004., Antibes Juan-les-Pins,
France, 2004, pp. 7–16.

T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “AlphaZ: A System for
Design Space Exploration in the Polyhedral Model,” in Languages and
Compilers for Parallel Computing, vol. 7760, H. Kasahara and K. Kimura, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 17–31.

