AlphaZ: A System for Analysis,

Transformation, and Code

Generation in the Polyhedral
Equational Model

Yuki et. Al. 2012, 2013

Malachi Phillips

Motivation for Polyhedral Model

* Some code optimizations are easy
* Constant folding
* Scalar replacement

e Others much harder
* Loop inversion
e Skewing
* Tiling
* Production compilers may not do the latter
* Polyhedral model offers ways of reasoning about harder optimizations

Polyhedral Model

* Representation of subset of C known as static control programs

* Do statements with affine bounds
* if conditionals with affine conditions
* Bounds and conditionals depend on outer loop counters, constants

* Iteration Domain — set of values of the iteration vector for which to
execute a statement

* Scattering function — an affine function specifying for each point in
the iteration domain, a new coordinate for a corresponding statement

instance

Scattering Function

 Several interpretations:
 Distribute iterations in space, i.e. processors, order in time, or both
* Space mapping — number corresponds to processor for executing statement
» Time mapping — order statements in some lexicographical order

* Target Mapping — execution strategies
* Schedule
* Memory Mapping
Processor allocation
Tiling
Expressed as dependencies between indices

Example Target Mappings

0 =C(,j>1ij)
* Ildentity mapping
0 =C(,j,k—1j)
* Projection onto i, j plane
* 051 =(,j = 1,0,)), 052 = () > 1,1]))
for (i=0; i < N; 1i++)
for (j=0; j < N; j++)
51
for (j=03 j £ N; j++)
o2

Example: Cholesky Factorization |

S1

S2
S3

S4

S5
S6

do i=1, n

X = a(i,1i)
do j=1, i-1
| X = x = al(izg)**2

| x =
a(j,1i)

pl{i)y = 1.0/sgrti(x)
do j=i+1l, n
X = a(i,])
do k=1, 1i-1

¥ - @] lk)*al1,k)

= %*p (1)

[Bastoul 2004]

| 1>:=1 i<=nl fesieg
1+ » _ j}=l
1 2 n 2n 3n i
S2 bounds

S1

S2
S3

S4

S5
S6

do i=1, n

X = a(i,1i)
do j=1, 1i-1
| ¥ = x = allipg)**2

p(i) = 1.0/sgrt (x)

do j=i+1l, n

x = a(i,])

do k=1, 1-1

| x = x - a(3,k)*a(i, k)
a{jr1i) = x*p (i)

[Bastoul 2004]

L
n-
N rfﬂ/fIHTdﬂigrjf
'l -
T T T T T T T T T Y T T -
1 2 n 2n 3n 1’

Modified S2 bounds

S1

S2
S3

S4

S5
S6

052 — (l'] — Zl'])

do i=l, n

X = a(i,1)
do j=1, i-1
| X =x = a(iyjg)**2

pli)y = 1.0fsgrt ifx)

do j=i+l, n

x = a(i,Jj)

do k=1, 1-1

| x = x - a(j,k)*a(i, k)
a{Jsl) = x*p(i)

[Bastoul 2004]

Pros/Cons of Polyhedral Compilation

* Pros:
* Detailed representation, analysis, optimization
* Loop transformation

* Cons:
* Polyhedral “search-space” is quite large
* AlphaZ — leave all of this for the user!

Why another polyhedral code transformation
tool?

e Supports Parametric tiling
* Tile sizes not fixed at compile time
* Enables empirical search for tile sizes

e Automatically manages re-allocation of memory

* “None of the existing polyhedral parallelizers for distributed memory even mention
data partitioning. Instead, they use the same memory allocation as the original
sequential program on all nodes.” [Yuki 2013]

* Focus on distributed memory parallelism

e Polyhedral machinery to:
* Apply loop transformations to expose coarse grained parallelism

* User defined target mapping — error prone!
* e.g. Set in build script: setMemoryMap(program, system, “varl”, “var2”, (i,j,k->i,j))

Static Control
Programs)
[] P r
" , Transformations
AlphaZz '
~p.| Intermediate
+ Representation _
Bu I_Id Analyses
Script :
y
Code Gens 4— Target Mapping

[n]
C+OpenMPJ B C+MPI]

[Yuki 2013]

2
C+CUDA J

Human-in-the-loop

e Automatic parallelization is ultimate goal
* Yuki 2013 claims automatic tools are “restrictive”
* Difficult to surpass hard coded, domain specific knowledge

* AlphaZ aims to provide full control to the user

* Generate new transformations quickly, mostly through provided
build script

* Guide transformations with domain specific knowledge

* Any performance benchmark using AlphaZ required a human to
find those combinations of polyhedral transformations

“Hello, world!” Matrix Multiply in AlphaZ

affine SquareMM {N|N>0}
given

float A, B {1,]j] O<=(1,])<N};
returns

float C {i,j]| O<=(1i,])<N};
using // No local variables
through

Cla.jl = reduce(+, [k], A[i,k]*B[k,j]);

* AlphaZ source code (what the user writes)
* N becomes runtime parameter in generated C code

Cli,]]

85 follc=b:2 4 41

reduce(+, [k], A[i,k]*B[k,jl);

Project indices i,j,k onto i,
(projection function) L.)

(1;]:k=>k,])EB)
Maps Z"* — Z™ (i,j,k=->i,k)CQA In the entire iteration
space with i,j,k, only give
me k,j (projection onto k-j
plane)

In the entire iteration space with
i,j,k, only give me i,k (projection on
i-k plane)

When multiple points in the left-hand side are mapped to a same point in the right-
hand side, those values are combined using the reduction operator.

Equivalent to:

C = reduce(+, (i,j,k->i,j), (i,j,k->i,k)@A * (i,j,k->k,j)@B);

Parallel Matrix-Matrix Multiply

affine matrix_product {P, Q, R|P>1 && Q>1 && R>1}
input float A {i,k| O<=i<P && 0O<=k<Q};
float B {k,j| O<=k<Q && 0O<=j<R};
output float C {i,j,k| O<=i<P && 0O<=j<R && k==Q+1};
local
float temp C {i,j,k|0O<=i<P && O<=j<R && O<=k<=Q};
let
temp C[1i,j,k] = case
{|k=0} : temp C[i,j,k-1] + A[i,k-1]1*B[k-1,j];
{|k==0} : 0; // Initialization of the accumulator
esac;
C = temp_C;

34 dimension of array is a fictitious “time” dimension

setMemoryMap(prog, system, "“temp C", "CSpace", "(1,j,k->1,3)")
setMemoryMap(prog, system, "C", "CSpace", "(i,j,k->1,3)");

setParallel(prog, system, . k)

e (Almost) minimum viable build script for this case
* |If one removes either of the memory maps for temp_C, C, generated
c code will generate a 3D temporary array
* This is where the user specifies mappings, changes statement
orderings, processor allocation, tiling
* (i,j,k->i,j) repeated in both memory maps indicates a reduction
* CSpace represents actual matrix-matrix product result
* AlphaZ verifier can catch when dependency is broken

#define SO(i,j,k) CSpace(i,j) = (CSpace(i,j))+((A(i,k-1))*(B(k-1,3)))
#define S1(i,j,k) CSpace(i,j) =0

#define S2(i,j,k) CSpace(i,j) = CSpace(i,j)

{

//Domain

//{1,].k|P>=2 && Q>=2 && R>=2 && k>=1 && 1>=0 && P>=i+l && j>=0 && R>=j+1 && Q>=k}
[7{1,].k|k==0 && P>=2 && Q>=2 && R>=2 && P>=i+l1 && R>=j+1 && j>=0 && 1>=0}
//{1,],.k|k==Q+1 && 1i>=0 && P>=i+l && j>=0 && R>=j+l1 && Q>=2 && R>=2 && P>=2}

ant cl.c2.¢c3;

#pragma omp parallel for private(c2,c3)

for(cl=0;cl <= P-1;cl+=1)

{
#pragma omp parallel for private(c3)
for(c2=0;c2 <= R-1;c2+=1)
i
S1((cl),(c2),(0));
for(c3=1;c3 <= Q;c3+=1)
1
S0((cl),(c2),(c3));
¥
S2((cl),(c2),(Q+l));
¥
¥

/** Memory allocations -- not needed in the previous case! **/
float* _1lin_temp C = (float*)malloc(sizeof (float)*((P) * (R) * (Q+1)));
mallocCheck(_lin_temp_C, ((P) * (R) * (Q+1)), float);
float*** temp C = (float***)malloc(sizeof (float**)*(P));
mallocCheck(temp C, (P), float*x¥);
for (mzl=0;mzl < P; mzl++) {
temp C[mzl] = (float**)malloc(sizeof (float*)*(R));
mallocCheck(temp C[mzl], (R), float*);
for (mz2=0;mz2 < R; mz2++) {
temp_C[mzl] [mz2] = & lin_temp C[(mz1*((R) * (Q+1))) + (mz2*(Q+1l))];
b
}
#define SO(1i,j,k) temp C(1,], k) (temp_C(i,j,k-1))+((A(1i,k-1))*(B(k-1,3)))
#define S1(1i,j,k) temp C(i,j,k) 0]
#define S2(1i,j,k) CSpace(i,j) = temp C(i,j,k-1)

/** Code similar as before **/

Result of commenting out the top line of the build script

Performance Evaluation

* Polybench

* Cray XTém, CrayCC/5.04 —03

* PLuTo comparison: --tile —parallel —noprevector

* Manually explore different tile sizes in PLuTo and AlphaZ

* No comparison to hand-tuned implementation, absolute
performance

* Performance normalized to speed up over single core PLUTO
implementation

Speed Up with respect to PLuTo with 1 core

40 60 80 100

20

Summary of AlphaZ Performance Comparison with PLuTo

=
(|
=
|

PLuTo 24 cores
AlphaZ 24 cores
PLuTo 96 cores (extrapolated)
AlphaZ 96 cores
AlphaZ 96 cores (No Bcast) — -

correlation covariance 2mm 3mm gemm syr2k syrk lu fdtd-2d

Figure 7.5: Summary of performance of our code generator in comparison with PLuTo. Numbers for PLuTo
with 96 cores are extrapolated (multiplied by 4) from the speed up with 24 cores. MPIC (No Beast) are
number with the time to broadcast inputs removed. Broadcast of inputs takes no more than 2.5 seconds,
but have strong impact on performance for the problem sizes used. This is a manifestation of the well known
Amdahl’s Law, and is irrelevant to weak scaling that we focus on. With the cost of broadcast removed. our
code generator matches or exceeds the scaling of shared memory parallelization by PLuTo.

[Yuki 2013]

jacobi-2d
imper

seidel-2d

Speed Up with respect to PLuTo with 1 core

16 24 48 72 96

8

0

2mm 3mm

48

e
__O_.

PLuTo o | 7B PLuTo
AlphaZ —— AlphaZ
AlphaZ (No Bcast) --&-- AlphaZ (No Bcast)

72

16 24

8

0

0 8 16 24 48 72 96

0 8 16 24 48 T2 96
Number of Cores Number of Cores

Speed Up with respect to PLuTo with 1 core
48

Speed up compared to single core PLuTo implementation for matrix-matrix multiply [Yuki 2013]
Left: two matrix-matrix multiplies. Right: three matrix-matrix multiplies

Speed Up with respect to PLuTo with 1 core

16 24 48 72 96

8

0

fdtd-2d jacobi-2d-imper
=== PlLulb o | B PLuTo
—o— AlphaZ —o— AlphaZ
--&- AlphaZ (No Bcast) --&-- AlphaZ (No Bcast)

72

16 24

8

0

0

8

I I I I I
16 24 48 72 96

Number of Cores

M T I I I I
0 8§ 16 24 48 72

Number of Cores

Speed Up with respect to PLuTo with 1 core
48

Speed up compared to single core PLuTo implementation for stencil computations [Yuki 2013]
Left: 2d finite difference time domain kernel. Right: 2-D jacobi stencil computation.

96

Conclusion

Pros:

* Expose target mapping to user to allow exploration of polyhedral
code generation

 Can significantly outperform PLuTo for certain kinds of workloads
(stencils)

* Represented through simple Alpha language + transformation script
Cons:

» User-specified target mappings may not result in correct
implementation

* Only roughly as performant as PLuTo for some workloads (linear
algebra)

Sources

T. Yuki, ‘Beyond Shared Memory Loop Parallelism in the Polyhedral Model,
Colorado State University, 2013.

C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in Proceedings. 13th International Conference on Parallel Architecture
and Compilation Techniques, 2004. PACT 2004., Antibes Juan-les-Pins,
France, 2004, pp. 7-16.

T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “AlphaZ: A System for
Design Space Exploration in the Polyhedral Model,” in Languages and
Compilers for Parallel Computing, vol. 7760, H. Kasahara and K. Kimura, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 17-31.

