
Programming for Parallelism
and Locality with Hierarchically

Tiled Arrays

Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi , Basilio B.
Fraguela , María J. Garzarán, David Padua and Christoph von Praun

Insight

§ Advantages of tiling:
§ Increased locality
§ Improves parallelism

§ But, most programming languages lack language constructs
for tiling

2

§ Multi-level tiling:
§ Cache-oblivious / recursive algorithms

§ Numerical/linear algebra
§ Sorting
§ Scanning

§ Stencil codes
§ ODEs and PDEs

§ Single-level tiling
§ Wide range of applications

3

Application Areas

§ Good number of citations ~150
§ But, idea didn’t really catch on

§ Not much work on multiple level tiling since 2010

§ Work has been much more focused on single-tiling:
§ Automatic tiling
§ Optimizing & Dynamic Tiling
§ Tiling for GPUs & Distributed Systems
§ Overlapping tiling
§ Tiling across the memory hierarchy
§ Edge cases

4

Impact of Work

5

What is an HTA?
§ An array partitioned into tiles.

§ Tiles are either conventional arrays or lower level HTAs
§ Can have any number of dimensions

§ Tiles can be distributed across processors or stored locally

hta(M, { [1,3,5], [1,3,5] })

P1 P2 P1

P3 P4 P3

P1 P2 P1

P1 P2

P3 P4

Processor Grid

hta(M, { [1,3,5], [1,3,5] }, [2,2] , “cyclic”)

Local HTA

Distributed HTA

(Ref - Construction of an HTA [1, p.49])
(1)

(1) Construction of an HTA [1, p. 49]

§ Follows SPMD model
§ Communication: 2-sided message passing (MPI)
§ Computation: each processor applies on locally owned tiles

6

Distributed Programming Model

P1 P2 P1

P3 P4 P3

P1 P2 P1

* 2C =

P1 P2 P1 P2 P1 P2 P1 P2
P1 P2 P1 P2 P1 P2 P1 P2
P1 P2 P1 P2 P1 P2 P1 P2

7

Distribu)on Types
Cyclic

Block

P1 P2

P1 P1 P1 P1 P2 P2 P2 P2
P1 P1 P1 P1 P2 P2 P2 P2
P1 P1 P1 P1 P2 P2 P2 P2

P1 P1 P2 P2 P1 P1 P2 P2
P1 P1 P2 P2 P1 P1 P2 P2
P1 P1 P2 P2 P1 P1 P2 P2

Block-Cyclic

Processor Grid (1x2)

HTA (3x8)

P1 P2 P1 P2
P3 P4 P3 P4
P1 P2 P1 P2
P3 P4 P3 P4

8

Distribution Types (Continued)

Cyclic

P1 P1 P2 P2
P1 P1 P2 P2
P3 P3 P4 P4
P3 P3 P4 P4

Block

P1 P2

P3 P4

Processor Grid

HTA (4x4)

§ Not addressed in this paper

§ HTAs have a machine mapping that specifies:
§ where the HTA is allocated in a distributed system

§ Distribution class: specifies the home location of the scalar data for each
of the tiles of an HTA

§ the memory layout of the scalar data array underlying the HTA
§ MemoryMapping class: specifies the layout (row-major across tiles, row-

major per tile etc.), size and stride of the flat array data underlying the
HTA

9

Machine Mapping

Accessing HTAs

§ 3 methods
§ Hierarchically – addressing using each level of tile
§ Flat – addresses the elements of an HTA by their absolute indices, as a normal

array
§ A combination of the two – applying flattening at any level of the hierarchy

§ Takeaway – provides a simple method for selecting elements of HTAs that
bridges the gap between HTA and non-HTA applications

10(1) Accessing the contents of an HTA [1, p.49])

(1)

§ 3 methods
§ Can use begin:step:end indexing for any access method
§ Can use : notation to refer to the whole range of values for an index
§ Can use Boolean arrays for logical indexing

§ Takeaway: access methods cover all use cases

11

Accessing Regions of HTAs

(1)

(2)

(1) Accessing the contents of an HTA [1, p. 49]
(2) Logical indexing in HTA [1, p. 50]

§ HTA ⊕ Scalar
§ each scalar of the HTA is operated with the

scalar

§ HTA ⊕Matrix
§ each lowest level tile of the HTA is operated

with the matrix

§ HTA ⊕ HTA
§ Same topology -> corresponding tiles are

operated on
§ Produces an HTA with the same topology

§ Otherwise, the operation acts like HTA ⊕
Matrix

12

Rules for Binary Operations &
Assignment 1 2

3 4 * 2 =
2 4
6 8

* =
8
18

2
3

1 2
3 4

1 2
3 4

7 10

15 22
* =

1 2
3 4 = 2 →

2 2
2 2

1 2
3 4

5
6

1 2
3 4

= → 5 5
6 6

= →
1 2
3 4

5 6
7 8

5 6
7 8

§ Overloaded array operations that, when applied to HTAs,
operate on the tile level (instead of individual array elements)
§ Assignment
§ Binary operations
§ Indexing
§ Other frequently-used array functions

§ transpose
§ permute
§ circshift
§ repmat

§ Methods that apply only to HTAs
§ reduceHTA - a generalized reduction method that operates on HTA tiles
§ parHTA - applies in parallel the same function to each tile of an HTA

13

HTA Methods

14

Example – transpose and permute

§ dpermute – the data permuted, but the shape of the
containing HTA remains the same (# of tiles in each
dimension)

(1)

(1) Transpose and dpermute [1, p. 50]

15

Example – 3D matrix & dpermute

§ Implicit parallel communication from HTA assignment
§ fft is applied in parallel on local tiles
§ 1st and 2nd dimensions are local, so use dpermute to make

the 3rd dimension local to the processor for fft can be applied
(1) Data Permutation in FFT.(a)-Pictorial view.(b)-code [1, p. 50]

(1)

§ Cannon’s Algorithm – MMM
§ Shifts tiles in row i of A to the left i-1 times
§ Shifts tiles in column i of B up i-1 times
§ Matrix multiplication is done locally -> C is left distributed 16

Example – circshift

§ Aggregates data into a tile for communication
§ Increased locality from matrix-matrix multiplication (instead

of element by element multiplication)
§ Can further increase cache locality by using HTAs with more

levels, and applying matrix multiplication recursively
§ C = parHTA (@matmul, A, B, C)

17

Advantages of Tiled Cannon’s and
parHTA Example

§ Normal Summa algorithm
For (k = 1 … M)

For (i = 1 … M)
For (j = 1 … M)

C (i, j) = C (i , j) + a(i, k) * b (k, j)

§ Tiled version:

18

Example - repmat

§ Tiled version:

§ Multiplication is then done locally 19

Example – repmat (continued)

P1 P2 P3
P4 P5 P6
P7 P8 P9

A: Col k

P1 P2 P3
P4 P5 P6
P7 P8 P9

B: Row k

§ Wavefront computation - Normal code:

§ Can parallelize by computing in parallel the element of each
diagonal of the matrix:

20

Example – logical indexing

(1) 2-D wavefront computation [1, p. 52]

(1)

(1)

§ Wavefront computation

§ Select tiles on the diagonal using “x+y == k”
§ Implicit communication

21

Example – logical indexing

(1) 2-D wavefront computation [1, p. 52]

(1)

(1)

22

parHTA and reduceHTA example

1 2 3
4 5 6
7 8 9

a b c
a b c
a b c

a b cA V

B

a a a
b b b
c c c

B = BT

1*a 2*a 3*a

4*b 5*b 6*b
7*c 8*c 9*c

A * B
1*a+2*a+3*a

4*b+5*b+6*b

7*c+8*c+9*c

Sum(A * B) all-to-all
d d d
e e e
f f f

§ Implemented as a class for:
§ MATLAB
§ C++

§ Uses object oriented capabilities of these languages

23

Implementations

§ To identify the set of operations on tiles needed to develop
parallel programs
§ Examples seem fairly comprehensive

§ To implement these operations so that they are:
§ Readable / easy to use
§ Efficient

24

Goals

25

Results – Performance of MATLAB
Implementation
§ NAS Performance Benchmarks

§ Takeaways:
§ For each configuration, MATLAB+HTA is slower
§ EP, FT, CG: 128 parallel MATLAB performs 30.9, 8.8, and 29.3X faster

than sequential Fortran
§ MG, LU, BT(not shown): slow sequential, 128 parallel MATLAB

performs close to the same or worse than sequential Fortran
(1) Execution times in seconds for some of the applications in the NAS benchmarks [1, p. 53]

(1)

§ Largely the same
§ Differences

§ Focused on performance
§ Array operators not overloaded (fixed later)

26

C++ Implementation

27

C++ Example

§ Takeaway: C++ implementation, with type declarations and
without array operators, is much less readable

(1)

(1) Recursive matrix multiplication in C++ using HTAs [1, p. 54]

28

Results - Performance of C++
Implementation

§ One level of HTA introduces an overhead of between 8 –
13.5%

§ Naïve use produces little benefit

§ INTEL MKL is the only version that uses INTEL SSE2 vector
extensions, all others use scalar code

(1) Performance in MFLOPS for different versions of matrix-matrix multiplication [1, p. 55[]

(1)

§ Reduces complexity (measured in terms of lines of code)
§ Communication: assignments vs. message passing
§ Data decomposition: single HTA constructor vs. computing assignment

29

Results – Program Complexity

(1)

(1) Linecount of key sections of HTA and MPI programs [1, p. 55]

§ Library approach
§ Easy to use, can make small modifications to existing code

§ Global data view & single threaded view
§ Reduced program complexity

§ Hierarchical tiling
§ Recursion
§ Can use multiple levels of parallelism

30

Advantages of HTAs

§ Programming burden:
§ Creating distributed, tiled algorithms is challenging
§ Insufficient documentation

§ Difficulty optimizing code:
§ Interprocess communication is hidden from the user
§ SPMD Model limits ability to use irregular parallelism
§ Library overhead

31

Disadvantages of HTAs

§ C++ implementation
§ Operator overloading
§ Optimizations
§ Additional functionality

§ Asynchronous communication
§ Map-reduce framework
§ Overlapped tiling
§ Data layering

32

Future Work

§ [1] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B.
Fraguela, M. J. Garzara ́n, D. Padua, and C. von Praun,
“Programming for parallelism and locality with hierarchically
Jled arrays”, in PPoPP ’06, pages 48–57, New York, NY, USA,
2006. ACM.

33

References

