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Overview
• Why a New Abstraction?


• Data-Flow Programming


• Parameterized Task Graphs in PaRSEC


• Comparing PTG against Competing Abstractions


• Task Affinity and Scheduling in PaRSEC


• PaRSEC Performance
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Why not MPI + X?
• MPI + X: OpenMP, OpenACC, OpenCL, CUDA, etc

• Deeply coupled:

• Data distribution

• Parallelism

• Load balancing
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Coarse Grain Parallelism

• Coarse Grain Parallelism with explicit message passing


• Essentially serial code with some explicit calls to a 
communication library


• Communication/computation overlap hard to expose: 
must be specified explicitly by the programmer


• Tends to lead to bulk-synchronous parallel programs
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Data-Flow Programming

• Work units modeled as a graph, rather than sequentially


• Edges define data flow


• Runtime can automatically schedule tasks and overlap 
communication/computation
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Data-Flow Programming

• Units of work are tasks


• Programs are collections of tasks & data-flow


• Reduced control flow
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Parameterized Task Graph

• Originally by Cosnard et al. (1995, 1999)


• Program as a collection of task classes


• Representation independent of problem size
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PTG Task Classes

• Class name


• Parameters and valid value ranges


• Affinity (to data)


• Precedence constraints: data input/output & logic


• Code region
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PTG Ping-Pong
PING(s) 
  s = 0..max_steps-1 
  : A(s) 
  RW   A0 <- A(s) 
          -> A0 PONG(s) 
  READ A1 <- (s != 0) ? PONG(s-1)  
BODY verify_response(A0, A1); END 

PONG(s) 
  s = 0..max_steps-2 
  : A(s+1) 
  RW   A0 <- A0 PING(s) 
          -> A1 PING(s+1) 
BODY /* do nothing on data */ END
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PTG Comparisons
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Dynamic Task Graph
• Asynchronous tasks generated by code at runtime


• Dynamic discovery of task graph


• Used by other task execution runtimes:


• Legion


• StarPU


• OpenMP


• PaRSEC, as an extension (see Hoque et al., ScalA17)
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Dynamic Task Graph
for (k = 0; k < MT; k++) { 
  Insert_Task( geqrt, A[k][k], INOUT, T[k][k], OUTPUT); 
  for (m = k+1; m < MT; m++) { 
    Insert_Task( tsqrt, A[k][k], INOUT | REGION_D|REGION_U, 
                        A[m][k], INOUT | LOCALITY, 
                        T[m][k], OUTPUT); 
    } 
    for (n = k+1; n < NT; n++) { 
        Insert_Task( unmqr, A[k][k], INPUT | REGION_L, 
                            T[k][k], INPUT, 
                            A[k][m], INOUT); 
        for (m = k+1; m < MT; m++) { 
            Insert_Task( tsmqr, A[k][n], INOUT, 
                                A[m][n], INOUT | LOCALITY, 
                                A[m][k], INPUT, 
                                T[m][k], INPUT); 
        } 
    } 
}
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DTG Drawbacks
• Task instances unknown prior to discovery


• Memory requirements grow with problem size; task 
instances require independent memory


• Skeleton program that submits tasks to runtime; must 
build DAG based on dynamic properties of the program


• Fixed-size window of executing tasks can be used to 
reduce memory requirements, but restricts parallelism


• Restricted by control flow adherence
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PTG vs DTG: Chains

for (i=0; i<W; i++) { 
    Task1( RW:Data[i][0] ); 

    for (j=1; j<c*W; j++) { 
        Task2( R:Data[i][j-1], W:A[i][j] ); 
    } 
}
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PTG vs DTG: Chains
Task1(i) 
  i = 0..W-1 
  : Data(i,0) 
  A <- Data(i,0)  
    -> A Task2(i,1) 
BODY ... END 

Task2(i,j) 
  i  = 0..W-1 
  j  = 1..c*W-1 
  : Data(i,j) 
  A <- (j == 1)    ? A Task1(i) 
    <- (j > 1)     ? A Task2(i,j-1) 
    -> (j < c*W-1) ? A Task2(i,j+1) 
    -> Data(i,j) 
BODY ... END 

!26



PTG vs DTG: Chains

SDTG = cW + (W − 1)(c − 1)W

SPTG =
cW2

P

Speedup =
SDTG

SPTG
= P (1 −

1
c

+
1

cW ) = O(P)
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PTG vs CGP

• Doesn’t deal well (or at all) with varying parallelism


• Idle time: bulk synchronous and load imbalance / noise


• Communication/computation overlapping


• Memory-hierarchy-awareness loses portability


• Multiple models for compute heterogeneity: MPI + X
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PTG vs CGP
QR factorization
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Task Affinity and 
Scheduling

• Task scheduling is a well-studied problem: NP-complete, 
efficient heuristics and approximations usually used


• Tasks scheduled on nodes with task affinity hints


• Within a node, several strategies are used:


• Memory locality


• Starvation minimization


• User-defined priorities



Task Affinity and 
Scheduling

• Memory locality:


• Hierarchy of ready task queues mapped to memory 
hierarchy: one per core/socket/node


• Since child tasks are put into same queues as parent, 
this guarantees some level of memory locality



Task Affinity and 
Scheduling

• Starvation minimization:


• Shared task queue ensures compute resources aren’t 
starved of tasks (and thus idle)


• Antithetical to memory locality



Task Affinity and 
Scheduling

• Hybrid scheduling:


• Short local queues improve locality of ready tasks


• Excess ready tasks are placed on a shared queue, 
reducing starvation


• User-provided priorities are versatile and can be used 
instead for regular algorithms that are well-understood
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Performance

• Comparison with applications/libraries using MPI


• Several libraries:


• LibSCI: vendor ScaLAPACK tuned for Cray


• DPLASMA: dense linear algebra on top of PaRSEC
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Conclusion

• Current and upcoming HPC systems will require a new 
abstraction to take full advantage of.


• PTG is proposed as the solution:


• More flexible


• Exposes more parallelism


• Lower overheads than DTG



Questions?


