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PDEs

I Authors start by emphasizing the importance of PDEs, used
in:

I Computational Fluid Dynamics (e.g., INS)
I Computational Electromagnetics
I Structural Mechanics

I Numerical methods used:
I FEM
I FVM

I Authors claim that the time required to execute the
computational kernels is a major issue, because:

I large number of cells in the domain
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FEM, Local Assembly

I Authors focus on FEM.

I They claim that local assembly is the most expensive part,
consisting of 30% to 60% of total comuputation.

I During local assembly:
I Contributions of a specific cell to the linear system is

computed.
I Involves evaluating problem-specific integrals to produce an

element matrix and a vector.

I Authors try to optimize the local assembly phase, only talk
about generating the local element matrix, excludes the
vector.
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Structure of a Local Assembly Kernel
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FEM, Local Assembly, ctd.

I Authors focus on relatively low order finite element methods:
I assembly kernels working set is usually small enough to fit in

the L1 cache of traditional CPU.

I Authors claim that Low-order methods are employed in a wide
variety of fields, including climate and ocean modeling,
computational fluid dynamics, and structural mechanics.

I Also authors exclude the GPUs from the study as well.
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Assembly Kernel, ctd.

I Authors claim that in low order FEM loop nests,
I Individual loops are rather small (between 3 and 30).
I Local element matrix is evaluated at the innermost loop.

I Authors claim that transformations for cache locality (e.g.,
blocking) are not helpful.

I Instead, authors focus on
I Optimization of floating-point operations.
I Register locality.
I Instruction-level parallelism (vectorization).

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly



7/26

Introduction
Code Transformations
Performance Evaluation

Methodology

I Authors have automated a set of generic and model-driven
code transformations in COFFEE:

I A compiler for optimizing local assembly kernels.
I Uses kernel from [Firedrake 2014], a system for solving PDEs

using FEM, as input.

I In evaluating code transformations they vary:
I Polynomial order.
I Geometry of elements.
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Local assembly code generated by Firedrake

I Given a finite element input problem expressed by
domain-specific Unified Form Language (UFL):

I Firedrake uses FEniCS form compiler (FFC) to generate an
abstract syntax tree (AST) of a assembly kernel.

I then compiles the kernel using an available vendor compiler.

I The main contribution of the paper is to enhance this
execution model by adding an optimization stage prior to the
generation of C code.
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Example: Helmholtz problem
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Example: Helmholtz problem, ctd.
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Padding and Data Alignment

I Authors claim that the absence of stencils makes element
matrix computation easily auto vectorizable.

I Auto vectorization is not efficient if:
I data are not aligned to cache-line boundaries
I the length of the innermost loop is not a multiple of the vector

length VL

I They enforce data alignment in two steps:
I First, all arrays are allocated to addresses that are multiples of

VL.
I Then, 2D arrays are padded by rounding the number of

columns to the nearest multiple of VL.
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Padding and Data Alignment, ctd.

I For example on AVX processor with 256 bit long vector and
64 bit doubles, 3x3 basis function array will have size 3x4.

I The compiler is explicitly notified about this using pragmas.
I For intel compilers, #pragma vector aligned is added.

I This causes the compiler to issue aligned data loads and
stores.
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Generalized Loop-Invariant Code Motion

I In the Helmholtz equation, computation of local element
matrix only depends on two iteration variables.

I Authros claim that Vendor compilers only identify
subexpressions that are invariant with respect to the
innermost loop.
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Generalized Loop-Invariant Code Motion, ctd.

I Authors work around these limitations with source-level
loop-invariant code motion.

I They pre-compute all values that an invariant subexpression
assumes along its fastest varying dimension.

I This is implemented by introducing a temporary array per
invariant subexpression and by adding a new loop to the nest.
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Generalized Loop-Invariant Code Motion, ctd.
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Expression Splitting

I In complex kernels, and on certain architectures, achieving
effective register allocation can be challenging.

I If the number of variables independent of the innermost-loop
dimension is close to or greater than the number of available
CPU registers, then poor register reuse is likely.

I One potential solution to this problem consists of suitably
splitting the computation.
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Expression Splitting, ctd.
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Overview of COFFEE

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly



19/26

Introduction
Code Transformations
Performance Evaluation

How COFFEE works

I COFFEE applies an ordered sequence of optimization steps to
ASTs recieved from FFC.

I Loop invariant code motion and padding is always performed
in that order.

I Loop interchange, expression splitting and vector register
tiling is introduced based on a cost model.
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Loop interchanges and unroll

I Loop interchanges are done such that the number of invariant
loads are smallest.

I Manual full unroll will exceed the instruction cache and inhibit
compiler auto-vectorization and hence not effective.
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Cost Model

I n regs: number of registers available.
I n consts: variables independent of j and k .
I n inner arrays: k-dependent variables.
I n outer arrays: j-dependent variables.
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Experimental Setup

I Experiments were run on a single core of two Intel
architectures: a Sandy Bridge (I7-2600 CPU, running at
3.4GHz, 32KB L1 cache, and 256KB L2 cache) and a Xeon
Phi (5110P, running at 1.05GHz in native mode, 32KB L1
cache, and 512KB L2 cache).

I These two architectures have been choosen because of the
differences in the number of logical registers and SIMD lanes
(16 256-bit registers in the Sandy Bridge and 32 512-bit
registers in the Xeon Phi), which can impact the optimization
strategy.

I The icc 13.1 compiler was used. Authors selected the best
optimization levels for each platform; -xAVX for
autovectorization and -O2 on the Sandy Bridge, and -O3 on
the Xeon Phi.
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Results

I Three problems were studied varying both the shape of mesh
elements and the polynomial order p of the method.

I Results are only shown for ijk loop order. Other interchanges
did not make any significant improvement according to the
authors.
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Loop Invariant Code Motion (LICM)

I Gain tend to increase with computational cost of the kernels.
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LICM + Padding and Data Alignment - LICM-AP
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LICM-AP + Expression splitting
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