Introduction
Code Transformations

Performance Evaluation

Cross-Loop Optimization of Arithmetic Intensity
for Finite Element Local Assembly
F. Luporini et al.

Presented by: Thilina Ratnayaka

December 7, 2018

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

PDEs

» Authors start by emphasizing the importance of PDEs, used
in:
» Computational Fluid Dynamics (e.g., INS)
» Computational Electromagnetics
» Structural Mechanics
» Numerical methods used:
» FEM
» FVM
» Authors claim that the time required to execute the
computational kernels is a major issue, because:
> large number of cells in the domain

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

FEM, Local Assembly

» Authors focus on FEM.

» They claim that local assembly is the most expensive part,
consisting of 30% to 60% of total comuputation.
> During local assembly:
» Contributions of a specific cell to the linear system is
computed.
> Involves evaluating problem-specific integrals to produce an
element matrix and a vector.

» Authors try to optimize the local assembly phase, only talk
about generating the local element matrix, excludes the
vector.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Structure of a Local Assembly Kernel

Input: element matrix (2D array, initialized to 0), coordinates (array), coefficients (array, e.g. velocity)
Output: element matrix (2D array)

- Compute Jacobian from coordinates
- Define basis functions
- Compute element matrix in an affine loop nest

Fig. 1. Structure of a local assembly kernel.

Presented by: Thilina Ratnayaka oss-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction

Code Transformations
Performance Evaluation

FEM, Local Assembly, ctd.

» Authors focus on relatively low order finite element methods:
» assembly kernels working set is usually small enough to fit in
the L1 cache of traditional CPU.
» Authors claim that Low-order methods are employed in a wide
variety of fields, including climate and ocean modeling,
computational fluid dynamics, and structural mechanics.

» Also authors exclude the GPUs from the study as well.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Assembly Kernel, ctd.

» Authors claim that in low order FEM loop nests,
» Individual loops are rather small (between 3 and 30).
» Local element matrix is evaluated at the innermost loop.
» Authors claim that transformations for cache locality (e.g.,
blocking) are not helpful.
> Instead, authors focus on

» Optimization of floating-point operations.
> Register locality.
> Instruction-level parallelism (vectorization).

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Methodology

» Authors have automated a set of generic and model-driven
code transformations in COFFEE:
» A compiler for optimizing local assembly kernels.
» Uses kernel from [Firedrake 2014], a system for solving PDEs
using FEM, as input.
» In evaluating code transformations they vary:
» Polynomial order.
» Geometry of elements.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Local assembly code generated by Firedrake

» Given a finite element input problem expressed by
domain-specific Unified Form Language (UFL):
» Firedrake uses FEniCS form compiler (FFC) to generate an
abstract syntax tree (AST) of a assembly kernel.
> then compiles the kernel using an available vendor compiler.
» The main contribution of the paper is to enhance this
execution model by adding an optimization stage prior to the
generation of C code.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction

Code Transformations
Performance Evaluation

Example: Helmholtz problem

LISTING 1: Local assembly source code generated by Firedrake for a Helmholtz problem on a
2D triangular mesh using Lagrange p = 1 elements.

void helmholtz(double A[3][3], double **coords) {

/I K, det = Compute Jacobian (coords)

static const double W([3] = {.. .}
static const double X_D10[3][3] = {{
static const double X_D01([3][3] =

.
...
for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)
Afjllk] + = (Y[l k] *Y][]+
+((K1*X_D10[i] [k]+K3*X_DO01[i] [k])*(K1*X_D10 [i] [j]+K3*X_DO1[i] [j1))+

-+((K0*X_D10[i] [k]+K2*X_DO01[i] [k])*(K0*X_D10[i] [j]+K2*X_D01[il [j1))*
*det*WI[il);

Presented by: Thilina Ratnayaka

Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Example: Helmholtz problem, ctd.

Table I. Type and Variable Names Used in the Various Listings
to Identify Local Assembly Objects

Type Variable Name(s)

Object Name

Determinant of the Jacobian matrix double det
Inverse of the Jacobian matrix double K1, K2, ...
Coordinates double** coords
Fields (coefficients) double** w
double(] W

Numerical integration weights
Basis functions (and derivatives) double[][] X, Y, X1, ...
Element matrix double[][] A

Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Presented by: Thilina Ratnayaka

Introduction
Code Transformations

Performance Evaluation

Padding and Data Alignment

» Authors claim that the absence of stencils makes element
matrix computation easily auto vectorizable.
» Auto vectorization is not efficient if:

» data are not aligned to cache-line boundaries
» the length of the innermost loop is not a multiple of the vector
length VL

» They enforce data alignment in two steps:

» First, all arrays are allocated to addresses that are multiples of
VL.

» Then, 2D arrays are padded by rounding the number of
columns to the nearest multiple of VL.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Padding and Data Alignment, ctd.

» For example on AVX processor with 256 bit long vector and
64 bit doubles, 3x3 basis function array will have size 3x4.

» The compiler is explicitly notified about this using pragmas.
» For intel compilers, #pragma vector aligned is added.
» This causes the compiler to issue aligned data loads and
stores.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Generalized Loop-Invariant Code Motion

» In the Helmholtz equation, computation of local element
matrix only depends on two iteration variables.

» Authros claim that Vendor compilers only identify
subexpressions that are invariant with respect to the

innermost loop.

Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Presented by: Thilina Ratnayaka

Introduction
Code Transformations

Performance Evaluation

Generalized Loop-Invariant Code Motion, ctd.

» Authors work around these limitations with source-level
loop-invariant code motion.

» They pre-compute all values that an invariant subexpression
assumes along its fastest varying dimension.

» This is implemented by introducing a temporary array per
invariant subexpression and by adding a new loop to the nest.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction

Code Transformations
Performance Evaluation

Generalized Loop-Invariant Code Motion, ctd

LISTING 3: Local assembly source code for the Helmholtz problem in Listing 1 after application
of padding, data alignment, and loop-invariant code motion, for an AVX architecture. In this

example, subexpressions invariant to j are identical to those invariant to k, so they can be
precomputed once in the r loop.

void helmholtz(double A[3][4], double **coords) {
#define ALIGN __attribute__((aligned(32)))
/I K, det = Compute Jacobian (coords)

static const double W([3] ALIGN = {...}
static const double X _D10([3][4] ALIGN = {{...}}
static const double X _D01[3][4] ALIGN = {{...}}
for (inti= 0;i<3;i++) {
double L1.0[4] ALIGN;
double L1_1[4] ALIGN;
for (int r = 0; r<4; r++) {
LLO[r] = (K1*X.D10[i] [r))+(K3*X_D01[i] [r]));
LI1[r] = (KO*X_D10[i] [r))+(K2*X_DO1[il [r]));
)
for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)

Aljllk] += (Y[il [k] *Y[l][]J+LI O[k]*LIO[]+LI1[k*LI1[jD*det*WT[il);
}

}

Presented by:

Thilina Ratnayaka

oss-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Expression Splitting

> In complex kernels, and on certain architectures, achieving
effective register allocation can be challenging.

» If the number of variables independent of the innermost-loop
dimension is close to or greater than the number of available
CPU registers, then poor register reuse is likely.

» One potential solution to this problem consists of suitably
splitting the computation.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Expression Splitting, ctd.

LISTING 5: Local assembly source code generated by Firedrake for the Helmholtz problem in
which split has been applied on top of the optimizations shown in Listing 3. In this example, the
split factor is 2.

void helmholtz(double A[3][4], double **coords) {
// Same code as in Listing™3 up to the j loop
for (intj = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
Afjlk] += (Y[l][k]*Y[l][]]JrLI O[k]*LI_OD*det*WTIil;
for (intj = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
Aljl[k] += LI_1[k]*LI_1[jl*det*WIil;
}

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Overview of COFFEE

UFL Kernel Kernel Runtime compilation and

code AST C code (Paralle) execuion over the mesh,
(UFL >—>(FFC }—»(COFFEE l—»(PyoP2 > ‘.
‘Ge”e'a"md padding Loop Expression Vector-
2op imvanialg i datz interchange spitin register tlin
code motion alignment 9 plitting g g

Fig. 4. High-level view of Firedrake. COFFEE is at the core, receiving ASTs from a modified version of the
FFC and producing optimized C code kernels.

Presented by: Thilina Ratnayaka oss-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

How COFFEE works

» COFFEE applies an ordered sequence of optimization steps to
ASTs recieved from FFC.

» Loop invariant code motion and padding is always performed
in that order.

» Loop interchange, expression splitting and vector register
tiling is introduced based on a cost model.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Loop interchanges and unroll

» Loop interchanges are done such that the number of invariant
loads are smallest.

» Manual full unroll will exceed the instruction cache and inhibit
compiler auto-vectorization and hence not effective.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Cost Model

vV v v Y

1 Input: nouter.arrays, n.inner_arrays, n.consts, n_regs
2 Output: uaj_factor, split_factor

3 nouterregs = nregs / 2

4 split_factor = @

5 // Compute spltting factor

6 while nouter.arrays > n.outer.regs

7 n.outer_arrays = n.outer.arrays / 2

8 split_factor = split_factor + 1

9 // Compute unroll-and-jam factor for op-vect

10 nregs_avail = n.regs - (nouter_arrays + n.consts)
11 uaj-factor = nreg.avail / n_inner_arrays

12 // Estimate the benefit of permuting loops

13 permute = n,outer,arrays > n,inner,arrays

14 return <permute, split_factor, uaj-factor>

n_regs: number of registers available.
n_consts: variables independent of j and k.
n_inner_arrays: k-dependent variables.
n_outer_arrays: j-dependent variables.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations
Performance Evaluation

Experimental Setup

» Experiments were run on a single core of two Intel
architectures: a Sandy Bridge (17-2600 CPU, running at
3.4GHz, 32KB L1 cache, and 256KB L2 cache) and a Xeon
Phi (5110P, running at 1.05GHz in native mode, 32KB L1
cache, and 512KB L2 cache).

» These two architectures have been choosen because of the
differences in the number of logical registers and SIMD lanes
(16 256-bit registers in the Sandy Bridge and 32 512-bit
registers in the Xeon Phi), which can impact the optimization
strategy.

> The icc 13.1 compiler was used. Authors selected the best
optimization levels for each platform; -xAVX for
autovectorization and -O2 on the Sandy Bridge, and -O3 on
the Xeon Phi.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations
Performance Evaluation

Results

» Three problems were studied varying both the shape of mesh
elements and the polynomial order p of the method.

» Results are only shown for ijk loop order. Other interchanges
did not make any significant improvement according to the
authors.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

Loop Invariant Code Motion (LICM)

Table Il. Performance Improvement Due to Generalized Loop-Invariant Code Motion over the Original
Nonoptimized Code

Sandy Bridge Xeon Phi
problem shape pl p2 p3 pé4 pl p2 p3 P4
Helmholtz triangle 1.05 1.46 1.68 1.67 1.49 1.06 1.05 117
Helmholtz tetrahedron 1.36 2.10 2.64 2.27 1.28 1.29 2.05 1.73
Helmholtz prism 2.16 2.28 2.45 2.06 1.04 2.26 1.93 1.64
Diffusion triangle 1.09 1.68 1.97 1.64 1.07 1.06 118 1.16
Diffusion tetrahedron 1.30 2.20 3.12 2.60 1.00 1.38 2.02 1.74
Diffusion prism 2.15 1.82 2.71 2.32 1.11 2.16 1.85 2.83
Burgers triangle 1.53 1.81 2.68 2.46 121 1.42 2.34 2.97
Burgers tetrahedron 1.61 2.24 1.69 1.59 1.01 2.55 0.98 1.21
Burgers prism 2.11 2.20 1.66 1.32 1.39 1.56 1.18 1.04

» Gain tend to increase with computational cost of the kernels.

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

LICM + Padding and Data Alignment - LICM-AP

Table IlI. Performance Improvement Due to Generalized Loop-Invariant Code Motion, Data Alignment,
and Padding over the Original Nonoptimized Code

Sandy Bridge Xeon Phi
problem shape pl p2 p3 p4 pl p2 p3 p4
Helmholtz triangle 1.32 1.88 2.87 4.13 1.50 2.41 1.30 1.96
Helmholtz tetrahedron 1.35 3.32 2.66 3.27 1.41 1.50 2.79 2.81
Helmholtz prism 2.63 2.74 2.43 2.75 2.38 2.47 2.15 1.71
Diffusion triangle 1.38 1.99 3.07 4.28 1.08 1.88 1.20 1.97
Diffusion tetrahedron 141 3.70 3.18 3.82 1.05 1.51 2.76 3.00
Diffusion prism 2.55 3.13 2.73 2.69 241 2.52 2.05 2.48
Burgers triangle 1.56 2.28 2.61 2.77 2.84 2.26 3.96 4.27
Burgers tetrahedron 1.61 2.10 1.60 1.78 1.48 3.83 1.55 1.29
Burgers prism 2.19 2.32 1.64 1.42 2.18 2.82 1.24 1.25

Presented by: Thilina Ratnayaka Cross-Loop Optimization of Arithmetic Intensity for Finite Eleme

Introduction
Code Transformations

Performance Evaluation

LICM-AP + Expression splitting

Impact of split on the Burgers kernel (Sandy Bridge) Impact of split on the Burgers kernel (Xeon Phi)
o 7 a 16
8 Tiangles Tetrahedrons €M 8 Tangies Tetrahedrons M S
£ Tangies M viams £ THangies M o
2 Tetrahedrons Prisms.CM 2 ., Tetrahearons Prisms.CM
i £
E 3 £
@ K & ®
H g i £
g e o % £
-] X P, 3
£ g & 2
2 o6 " % &
p1 2
Polynomial Order Polynomial Order
(a) Sandy Bridge (b) Xeon Phi

Fig. 8. Performance improvement over licm-ap obtained by spli¢ in the Burgers kernel. Bars suffixed with
“CM” indicate that the cost model was used to transform the kernel.

Presented by: Thilina Ratnayaka ross-Loop Optimization of Arithmetic Intensity for Finite Eleme

	Introduction
	Code Transformations
	Performance Evaluation

