
TensorFlow: A System for Large-Scale
Machine Learning

Abadi et al. 2015

Rohit Agrawal

CS598APK, Fall 2018

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

What is Tensorflow?

• An open source Machine Learning system operating at large scale and in heterogeneous
environments.

• Uses dataflow graphs to represent:

• Computations

• Shared state

• Unifies computation and state management.

• Provides flexibility to support experimentation into new ML models and system-level optimizations.

• C++ backend.

• C++ and Python frontend.

• Focused on training and inference of neural networks.

Neural Network

• A directed graph of layers.

• A layer can be different composition of mathematical operators.

• Fully connected layer – Ax + b

• Non-linearity – Element-wise non-linear function such as sigmoid, ReLu etc.

• Pooling – Max, Min, Avg etc.

• Typically terminates with a loss function.

• Quantifies the difference between ground truth and predicted value.

• Parameters of different layers are learnt during training.

• A learning algorithm updates the parameters to minimize the loss.

• Learnt parameters are used to perform inference from unknown data points.

A brief history: DistBelief (2011)

• Predecessor to Tensorflow.

• Uses parameter server architecture.

• A stateless worker process – performs computations.

• A stateful parameter server – maintains current version of model parameters.

• Worker process compute gradient independently and write back delta updates to each
parameter server which combines the updates with its current state.

Limitations of DistBelief

• Pre-defined layers in C++ and Python based scripting interface.

• Difficult to experiment with new layer architectures in less familiar C++ language.

• Experimenting with new optimization methods apart from vanilla SGD required modifying
the parameter server implementation.

• Execution pattern of DistBelief fails for RNNs (contains loops), Adversarial Networks,
Expectation Maximization and other traditional ML algorithms.

Design Principles

• Dataflow based programming abstraction.

• Represents individual mathematical operators as nodes.
• Easier to define new layers as a combination of these nodes.

• Eg: Matrix Multiplication, convolution etc.

• Deferred execution in two phases:
• Define the program as a dataflow graph with placeholders for input and states.

• Optimize the graph according to available devices and defer the execution until entire
program is available.

• A common abstraction to support CPUs, GPUs and custom ASICs (TPUs).

Programming Model

• A single dataflow graph to represent all states and computations including
parameters, their update rules, mathematical operations, and input processing.

• Supports multiple concurrent executions on overlapping subgraphs of the overall
graph.

• Mutable state of individual vertices can be shared between different execution
of the graph.

• makes in place update of large parameters possible so that the updates can be
propagated as soon as possible.

• parameter server with additional flexibility – execute arbitrary dataflow subgraphs on
machines with shared model parameters.

Variables

• No inputs.

• Owns a mutable buffer that stores a shared parameter.

• Produces a reference handle to read and write the buffer.

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes

W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

x = tf.placeholder(name="x") # Placeholder for input

Tensors

• N-dimensional array or list of int32, float32, double, string etc.

• Represents inputs to and results of the mathematical operators.

• All tensors are dense at the lowest level.

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes

W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

x = tf.placeholder(name="x") # Placeholder for input

Tensor

Operations and Kernels

• Takes >=0 tensors as input and produces >=0 tensors as outputs.

• Polymorphic – supports multiple data types.

• Kernel – An implementation of an operation that can be run on a device.

relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)

Operation

Sessions

• A way for programs to interact with tensorflow system.

• Session creates an empty graph.

• Nodes and edges can be added with an Extend method.

• Output nodes can be computed by the Run operation.

s = tf.Session() # Creates a session

….

result = s.run(<some graph>)

Example

import tensorflow as tf

b = tf.Variable(tf.zeros([100]))

W = tf.Variable(tf.random_uniform([784,100],-1,1))

x = tf.placeholder(name="x")

relu = tf.nn.relu(tf.matmul(W, x) + b)

C = [...]

s = tf.Session()

for step in xrange(0, 10):

input = ...construct 100-D input array ...

result = s.run(C, feed_dict={x: input})

print step, result

C

W x

MatMul

Add

ReLu

…

b

ReLu(Wx + b)

Example continued…
C

W x

MatMul

Add

ReLu

…

b

• Built-in support for automatic gradient
computation.

• BFS to find all backward paths from target
(loss function) to parameter and add a node
corresponding to each operation.

• Sum partial gradient along each path.

• Extensive memory usage due to re-use data
for gradient computations.

• Active area of improvement.

1

dC/
dW

dC/
dx

dMatMul

dAdd

dReLu

…

dC/
db

[db, dW, dx] = tf.gradients(C, [b, W, x])

Implementation

• Runs on windows, linux, Mac OS X, Android
and iOS, and x86, ARM CPUs and Kepler,
Maxwell and Pascal GPUs.

• C API separates user-level code from core
runtime.

• Distributed master translates user requests
into execution across a set of tasks.

• Dataflow executor in each task handles
requests from master and schedules
execution of kernels to local devices.

Layered tensorflow architecture

Single-device Execution

• Order of execution respects
dependencies.

• Count of dependencies per node is kept.

• Ready nodes are pushed into a Ready
Queue and are processed in some
unspecified order.

client master

GPU0 GPU1
... CPU0

worker

Single process

session run

execute
subgraph

Multi-device Execution

• Two important decisions
• Node placement

• Cross-device communication

client
process

master
process

GPU0 GPU1

... CPU0

worker process 1

session
run

execute
subgraph

GPU0 GPU1

... CPU0

worker process n

…

Multi-device Execution: Node placement

• Cost model based on input and output
size and computation time for a device.

• Can be heuristic or based on measured
time for previous placement decisions.

• Device for a node is selected greedily.

• Load balancing might be a problem in
synchronous execution.

• Placement algorithm is an area of ongoing
development.

client
process

master
process

GPU0 GPU1

... CPU0

worker process 1

session
run

execute
subgraph

GPU0 GPU1

... CPU0

worker process n

…

Multi-device Execution: Cross-device
Communication

• Communication using explicit send and
receive nodes.

• Single receive node for all users of a
tensor – avoids multiple transmission.

• Takes care of scheduling and makes the
system scalable.

b c

W

y

Device B

a

Device A

x

cb

W

y
Device B

a

Device A

x

send send

recv recv

Partial Execution

• Running just a subgraph of the entire
execution graph.

• Exact subgraph can be run using the name
of input and output nodes.

• Graph is changed to add feed and fetch
nodes for input and output respectively.

e f

c

ba

d

f

c

a
Feed

Fetch

Control Flow

• Primitives similar to [1] to handle control flow.

• Switch (multiplixer) and Merge (demultiplexer) allow conditional execution of entire
subgraph.

• Enter, Leave and NextIteration for expressing iterations.

• Tags and Frames similar to MIT Tagged Token Machine [2] to allow simultaneous
execution of multiple iterations.

[1] Arvind et al. Dataflow architectures. In Annual Review of Computer Science Vol. 1, 1986, pages 225–253. Annual Reviews Inc., 1986.
[2] Arvind et al. Executing a program on the MIT tagged-token dataflow architecture. IEEE Trans. Comput., 39(3):300–318, 1990.

Training

• Asynchronous
• Each worker updates the

parameters asynchronously.

• High throughput.

• Synchronous
• A blocking queue for workers

to read same parameters.

• Slow workers limit overall
throughput.

• Synchronous w/ backup
• Aggregates first m of n

updates produced.

• Improves throughput by 10%
in image classification.

Evaluation

Single Machine Execution

• Performs within 6% of latest version of Torch – both use same cuDNN library.

• Neon outperforms due to hand optimized kernels written in assembly.

Chintala benchmark of convolutional model on Intel Core i7-
5930K CPU at 3.5GHz and Nvidia Titax X GPU

Image Classification

• Inception-v3 model with 7 PS tasks and varying worker tasks.

• Intel Xeon E5 servers with Nvidia K80 GPUs.

Language Modeling

• LSTM-512-512 on Billion Word benchmark.

• Vocabulary size limits training performance – limited to 40k words instead of 800k.

Conclusions

• Offers a set of uniform abstractions for harnessing large-scale heterogeneous
systems for both production and experimentation.

• Enables power users to achieve excellent performance.

• Default policies that work for all users yet to be determined.

• Placement algorithm, memory management and scheduling are being actively
improved.

• Static dataflow graph doesn’t work for deep reinforcement learning.

What Next?
Tensorflow 2.0!

• Eager execution as the default execution mode.
• Should make Tensorflow easy to learn and apply.

• Primarily to compete with PyTorch.

• Cleanup.
• Deprecated APIs removed.

• Duplication reduced significantly.

• Heavy reliability on Keras API.
• More object-oriented and Python-like.

• Makes reusability of variables easier.

• Simpler code.

References

• Arvind et al. Dataflow architectures. In Annual Review of Computer Science Vol. 1,
1986, pages 225–253. Annual Reviews Inc., 1986.

• Arvind et al. Executing a program on the MIT tagged-token dataflow architecture.
IEEE Trans. Comput., 39(3):300–318, 1990.

• Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015.

• Abadi et al. TensorFlow: A System for Large-Scale Machine Learning, 2015.

