TensorFlow: A System for Large-Scale
Machine Learning

Abadi et al. 2015

Rohit Agrawal
CS598APK, Fall 2018

I Computer Science

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

What is Tensorflow?

An open source Machine Learning system operating at large scale and in heterogeneous
environments.

Uses dataflow graphs to represent:
* Computations

 Shared state

Unifies computation and state management.
* Provides flexibility to support experimentation into new ML models and system-level optimizations.

C++ backend.
C++ and Python frontend.

Focused on training and inference of neural networks.

I Computer Science

Neural Network

A directed graph of layers.

A layer can be different composition of mathematical operators.
* Fully connected layer—Ax+ b
* Non-linearity — Element-wise non-linear function such as sigmoid, Relu etc.
* Pooling — Max, Min, Avg etc.
Typically terminates with a loss function.
* Quantifies the difference between ground truth and predicted value.
Parameters of different layers are learnt during training.

* Alearning algorithm updates the parameters to minimize the loss.

Learnt parameters are used to perform inference from unknown data points.

I Computer Science

A brief history: DistBelief (2011)

Predecessor to Tensorflow.

Uses parameter server architecture.

A stateless worker process — performs computations.

A stateful parameter server — maintains current version of model parameters.

Worker process compute gradient independently and write back delta updates to each
parameter server which combines the updates with its current state.

I Computer Science

Limitations of DistBelief

Pre-defined layers in C++ and Python based scripting interface.

» Difficult to experiment with new layer architectures in less familiar C++ language.

Experimenting with new optimization methods apart from vanilla SGD required modifying
the parameter server implementation.

Execution pattern of DistBelief fails for RNNs (contains loops), Adversarial Networks,
Expectation Maximization and other traditional ML algorithms.

I Computer Science

Design Principles

Dataflow based programming abstraction.

Represents individual mathematical operators as nodes.
* Easier to define new layers as a combination of these nodes.
* Eg: Matrix Multiplication, convolution etc.

Deferred execution in two phases:

* Define the program as a dataflow graph with placeholders for input and states.

* Optimize the graph according to available devices and defer the execution until entire
program is available.

A common abstraction to support CPUs, GPUs and custom ASICs (TPUs).

I Computer Science

Programming Model

* Asingle dataflow graph to represent all states and computations including
parameters, their update rules, mathematical operations, and input processing.

* Supports multiple concurrent executions on overlapping subgraphs of the overall
graph.

e Mutable state of individual vertices can be shared between different execution
of the graph.

makes in place update of large parameters possible so that the updates can be
propagated as soon as possible.

parameter server with additional flexibility — execute arbitrary dataflow subgraphs on
machines with shared model parameters.

I Computer Science

Variables

* No inputs.
 Owns a mutable buffer that stores a shared parameter.

* Produces a reference handle to read and write the buffer.

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input

I Computer Science

Tensors

N-dimensional array or list of int32, float32, double, string etc.
Represents inputs to and results of the mathematical operators.

All tensors are dense at the lowest level.

Tensor
b = tf.Variable(tf.zeros(][100])) # 100-d vector, init to zeroes
W = tf. Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input

I Computer Science

Operations and Kernels

* Takes >=0 tensors as input and produces >=0 tensors as outputs.
* Polymorphic —supports multiple data types.

 Kernel — An implementation of an operation that can be run on a device.

Operation

relu = tf.nn.relu(tf. matmul(W, x) + b) # Relu(Wx+Db)

I Computer Science

Sessions

A way for programs to interact with tensorflow system.
Session creates an empty graph.
Nodes and edges can be added with an Extend method.

Output nodes can be computed by the Run operation.

s = tf.Session() # Creates a session

result = s.run(<some graph>)

I Computer Science

Example

ReLu(Wx + b)

import tensorflow as tf [}
b = tf.Variable(tf.zeros([100])))
W = tf.Variable(tf.random_uniform([784,100],-1,1)) (RelLu]

relu = tf.nn.relu(tf.matmul(W, x) + b)
C=1[.] . Add

s = tf.Session()

for step in xrange(0, 10):
input = ...construct 100-D input array ... [MatMul]
result = s.run(C, feed_dict={x: input})
print step, result

I Computer Science

Example continued...

[db, dW, dx] = tf.gradients(C, [b, W, x]) @ @

Built-in support for automatic gradient e e
computation.

BFS to find all backward paths from target | Relu | dRelu
(loss function) to parameter and add a node |
corresponding to each operation. ~ Add ~ dAdd

Active area of improvement.

Sum partial gradient along each path.
Extensive memory usage due to re-use data ~ MatMul
for gradient computations.

I Computer Science

Implementation

Runs on windows, linux, Mac OS X, Android
and iOS, and x86, ARM CPUs and Kepler,
Maxwell and Pascal GPUs.

C APl separates user-level code from core
runtime.

Distributed master translates user requests
into execution across a set of tasks.

Dataflow executor in each task handles
requests from master and schedules
execution of kernels to local devices.

Training libraries

Inference libs

Python client

C++ client

C API

Distributed master

Dataflow executor

(Const] [Var] [MatMuIJ (ConvZDJ (ReLUJ (Oueue) .

Kernel implementations

RPC | |RDMA
Networking layer

CPU| |GPU
Device layer

I Computer Science

Layered tensorflow architecture

Order of execution respects /

dependencies.

Count of dependencies per node is kept.

Ready nodes are pushed into a Ready
Queue and are processed in some

unspecified order.

Single-device Execution

[client

W

Single process

(

)

session run

1

n1aster}

execute
subgraph

~

worker

6Py, | [ePu, | [

CPU,

.

/

I Computer Science

Multi-device Execution

process | run

| process

* Two important decisions [elient) session [master}

* Node placement

« Cross-device communication /Nteh
subgrap

/worker process 1 O

GPU,

GPU,

- CPU, |

)

I Computer Science

a worker process n N

' GPU, | | GPU, |

' CPU,

%) |),

Multi-device Execution: Node placement

Cost model based on input and output
size and computation time for a device.

Can be heuristic or based on measured
time for previous placement decisions.

Device for a node is selected greedily.

Load balancing might be a problem in
synchronous execution.

Placement algorithm is an area of ongoing
development.

I Computer Science

[client W sessioné(master }

process | run | process

execute
subgraph
K worker process 1 \ f worker process n \

- GPU, | - GPU, |

| GPU, | GPU,

' CPU, |

J

| CPU, |

/

U &

Multi-device Execution: Cross-device
Communication

Communication using explicit send and
receive nodes. /" Device B /" Device B

Single receive node for all users of a
tensor — avoids multiple transmission.

Takes care of scheduling and makes the
system scalable.

_ Device A J _ Device A J

I Computer Science

Partial Execution

Running just a subgraph of the entire
execution graph.

Exact subgraph can be run using the name
of input and output nodes.

Graph is changed to add feed and fetch
nodes for input and output respectively.

I Computer Science

Control Flow

* Primitives similar to [1] to handle control flow.

e Switch (multiplixer) and Merge (demultiplexer) allow conditional execution of entire
subgraph.

* Enter, Leave and Nextlteration for expressing iterations.

e Tags and Frames similar to MIT Tagged Token Machine [2] to allow simultaneous
execution of multiple iterations.

[1] Arvind et al. Dataflow architectures. In Annual Review of Computer Science Vol. 1, 1986, pages 225-253. Annual Reviews Inc., 1986.
[2] Arvind et al. Executing a program on the MIT tagged-token dataflow architecture. IEEE Trans. Comput., 39(3):300-318, 1990.

I Computer Science

Training

* Asynchronous e Synchronous * Synchronous w/ backup
e Each worker updates the * Ablocking queue for workers e Aggregates first mofn
parameters asynchronously. to read same parameters. updates produced.
* High throughput. e Slow workers limit overall * Improves throughput by 10%
throughput. in image classification.
PS

Worker 1

Worker 2

Worker 3

I Computer Science

Evaluation

I Computer Science

Single Machine Execution

* Performs within 6% of latest version of Torch —both use same cuDNN library.

* Neon outperforms due to hand optimized kernels written in assembly.

Training step time (ms)
Library AlexNet Overfeat OxfordNet GoogleNet

Caffe [38] 324 823 1068 1935
Neon [58] 87 211 320 270
Torch [17] 81 268 529 470
TensorFlow 81 279 540 445

Chintala benchmark of convolutional model on Intel Core i7-
5930K CPU at 3.5GHz and Nvidia Titax X GPU

I Computer Science

Images/second/worker

30
25
20
15

10

Image Classification

Inception-v3 model with 7 PS tasks and varying worker tasks.

Intel Xeon E5 servers with Nvidia K80 GPUs.

(a) Baseline performance vs. MXNet

—&— TensorFlow

- o MXNet
1 1 1 1 1
14 8 16 32 50

Number of workers

Images/second

3000
2500
2000
1500
1000

500

(b) Coordination scalability

—— Asynchronous
- - Synchronous

25 50

100
Number of workers

200

Step time (seconds)

25
2.4
2.3
2.2
2.1
2.0

1.9

I Computer Science

(c) Backup worker effectiveness

—— Step time

— Speedup

1 1 1 1

1 2 3 - 5

Number of backup workers

1.10

1.08

1.06

1.04

1.02

1.00

Normalized speedup

Language Modeling

e LSTM-512-512 on Billion Word benchmark.

* Vocabulary size limits training performance — limited to 40k words instead of 800k.

(a) Full softmax (b) Sampled softmax
10° 10°
© ©
o C
- S .4
o 10 o 10
@ 0
2 2
2 10° E 2 10°
3 - 3
& F. —— 256 workers & 2 B —— 256 workers
g 10° F — 32 workers g 10 — 32 workers
S - 4 workers S I 4 workers
101 1 1 ! ! 1 101 1 1 ! 1 1
1 2 4 8 16 32 1 2 - 8 16 32
Number of PS tasks Number of PS tasks

I Computer Science

Conclusions

Offers a set of uniform abstractions for harnessing large-scale heterogeneous
systems for both production and experimentation.

Enables power users to achieve excellent performance.
Default policies that work for all users yet to be determined.

Placement algorithm, memory management and scheduling are being actively
improved.

Static dataflow graph doesn’t work for deep reinforcement learning.

I Computer Science

What Next?
Tensorflow 2.0!

* Eager execution as the default execution mode.
* Should make Tensorflow easy to learn and apply.
* Primarily to compete with PyTorch.

* Cleanup.
* Deprecated APIs removed.
* Duplication reduced significantly.

* Heavy reliability on Keras API.
* More object-oriented and Python-like.
* Makes reusability of variables easier.
* Simpler code.

I Computer Science

References

Arvind et al. Dataflow architectures. In Annual Review of Computer Science Vol. 1,
1986, pages 225-253. Annual Reviews Inc., 1986.

Arvind et al. Executing a program on the MIT tagged-token dataflow architecture.
IEEE Trans. Comput., 39(3):300-318, 1990.

Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015.

Abadi et al. TensorFlow: A System for Large-Scale Machine Learning, 2015.

I Computer Science

