Decoupling Algorithms and Schedules for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley* Andrew Adams* Sylvain Paris* Marc Levoy‡ Saman Amarasinghe* Frédo Durand* * MIT CSAIL *Adobe ‡Stanford University

Presented by:

Sweta Yamini Pothukuchi

CS598 APK Class Presentation

Motivation

Naïve clean C++

```
void blur(const Image &in, Image &blurred) {
  Image tmp(in.width(), in.height());
  for (int y = 0; y < in.height(); y++)
    for (int x = 0; x < in.width(); x++)
    tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
  for (int y = 0; y < in.height(); y++)
    for (int x = 0; x < in.width(); x++)
    blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
}</pre>
```

Computation of a 3X3 box filter using a composition of a 1X3 and a 3X1 box filter on a quad-core x86 CPU

Hand-tuned C++

```
void fast_blur(const Image &in, Image &blurred) {
\_m128i one third = mm set1 epi16(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {</pre>
 _m128i a, b, c, sum, avg;
 _m128i tmp[(256/8) * (32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   _m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
    a = _mm_loadu_si128((\_m128i*)(inPtr-1));
    b = mm loadu si128((_m128i*)(inPtr+1));
    c = _mm_load_sil28((_ml28i*)(inPtr));
    sum = mm add epi16( mm add epi16(a, b), c);
     avg = mm mulhi epi16(sum, one third);
    _mm_store_sil28(tmpPtr++, avg);
    inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    _m128i *outPtr = (_m128i *)(&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
    a = _mm_load_si128(tmpPtr+(2*256)/8);
    b = _mm_load_si128(tmpPtr+256/8);
    c = _mm_load_sil28(tmpPtr++);
     sum = mm add epi16(mm add epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     mm store si128(outPtr++, avg);
```

```
}}}}
```

Motivation Naïve clean C++

```
void blur(const Image &in, Image &blurred) {
  Image tmp(in.width(), in.height());
  for (int y = 0; y < in.height(); y++)
    for (int x = 0; x < in.width(); x++)
    tmp(x,9)94inms pernmegapixe())/3;
  for (int y = 0; y < in.height(); y++)
    for (int x = 0; x < in.width(); x++)
    blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
</pre>
```

Computation of a 3X3 box filter using a composition of a 1X3 and a 3X1 box filter on a quad-core x86 CPU

Optimizations performed:

- Multithreading
- Vectorization
- Tiling
- Fusion

Hand-tuned C++

```
void fast blur(const Image &in, Image &blurred) {
 _m128i one third = mm set1 epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {</pre>
  _m128i a, b, c, sum, avg;
 _m128i t0 [90-%) * (32+2) ];
for (int0.790-mSriperimegapixe= 256) {
   _m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16 t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_loadu_si128((__m128i*)(inPtr-1));
     b = mm loadu si128((_m128i*)(inPtr+1));
     c = mm load sil28((_ml28i*)(inPtr));
     sum = mm add epi16( mm add epi16(a, b), c);
     avg = mm mulhi epi16(sum, one third);
     mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    _m128i *outPtr = (_m128i *)(&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = mm \log si128 (tmpPtr+(2*256)/8);
     b = mm load sil28(tmpPtr+256/8);
     c = mm load sil28(tmpPtr++);
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = mm mulhi epi16(sum, one third);
      mm store sil28(outPtr++, avg);
```

Motivation

- Main target Image processing pipelines
- Wide and deep workloads
 - Many data-parallel stages
 - Benefit from parallelization across pixels
 - Memory bound as they have little work per memory access
 - Tiling and fusion across stages improves producer-consumer locality
- Best optimizations are machine dependent

Key Idea

- Separate the algorithm from the schedule
- Algorithm specifies the computation to be performed
- Schedule specifies the optimizations and transformations to determine when an actual computation occurs

Key Idea

- Separate the algorithm from the schedule
- Algorithm specifies the computation to be performed
- Schedule specifies the optimizations and transformations to determine when an actual computation occurs

HALIDE

- Programmer provides both algorithm and schedule
- Compiler(halide) combines them to generate efficient code

BLUR in Halide

```
Func halide_blur(Func in) {
  Func tmp, blurred;
  Var x, y, xi, yi;
  // The algorithm
  tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
  blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
  // The schedule
  blurred.tile(x, y, xi, yi, 256, 32)
        .vectorize(xi, 8).parallel(y);
  tmp.chunk(x).vectorize(x, 8);
```

return blurred;
}

0.90 ms per megapixel

Halide

- Algorithm
 - Purely functional specification of the value at each point
- Schedule
 - Order of execution of points within the domain of a function, including parallelism and vectorization
 - Relative order of execution of points of one function to another, specifying fusion of functions
 - Specification of memory location to which an evaluated function is stored
 - Whether a value is recomputed or location from where it is to be loaded

Representing algorithms

- Each stage is a pure function defined over an infinite integer domain or a reduction over a bounded domain
- Expressions in functions include
 - Arithmetic and logical operations
 - Loads from external images
 - If-then-else expressions (semantically equivalent to ternary operator(?:) in C)
 - References to named values (other functions or expressions defined by functional *let* construct)
 - Calls to other scalar functions

Examples

Gradient
Func gradient("gradient");
gradient(x, y) = x + y;

Multistage

Boundary Condition

Buffer<uint8_t> input = load_image("images/rgb.png); Func clamped("clamped"); Expr clamped_x = clamp(x, 0, input.width()-1); // clamp(x, a, b) is equivalent to max(min(x, b), a). Expr clamped_y = clamp(y, 0, input.height()-1); clamped(x, y, c) = input(clamped_x, clamped_y, c);

Reductions

- Reductions require
 - An initial value function which specifies a value for each value in the output domain
 - A recursive reduction function which redefines the value at points given by the output coordinate expression in terms of prior values of function
 - A reduction domain bounded by minimum and maximum values in each dimension
- Reduction meaning may change depending on the order of application of the reduction, so the order is specified by the reduction domain

Example algorithm – Histogram equalization

```
UniformImage in(UInt(8), 2);
Func histogram, cdf, out;
RDom r(0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;
```

```
histogram(in(r.x, r.y))++;

cdf(i) = 0;

cdf(ri) = cdf(ri-1) + histogram(ri);

out(x, y) = cdf(in(x, y));
```

Example algorithm – Histogram equalization

UniformImage in(UInt(8), 2); Func histogram, cdf, out; RDom r(0, in.width(), 0, in.height()), ri(0, 255); Var x, y, i; Reduction domain histogram(in(r.x, r.y))++; Reduction cdf(i) = 0;cdf(ri) = cdf(ri-1) + histogram(ri);out(x, y) = cdf(in(x, y));

Example algorithm – Histogram equalization

UniformImage in(UInt(8), 2);
Func histogram, cdf, out;
RDom r(0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;
Reduction domain

histogram(in(r.x, r.y))++; cdf(i) = 0; Initial value cdf(ri) = cdf(ri-1) + histogram(ri); Scan out(x, y) = cdf(in(x, y));

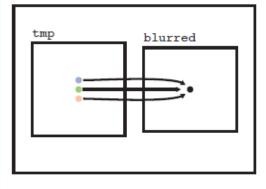
Schedules

- For each pipeline stage, specify how its inputs are evaluated starting from the final output of the pipeline
- Caller-callee relationships:
 - Inline compute as needed, do not store
 - Root precompute entire required region
 - Chunk compute, use and discard subregions
 - Reuse load from an existing buffer
- Within a function:
 - Sequential, parallel, unroll, vectorize, transpose, split (tile), gpu
 - Can chain schedules, e.g., im.root().vectorize(x, 4).parallel(x)
- Reductions:
 - A schedule for initialization
 - A Schedule for the reduction (deduced from the reduction domain by default)

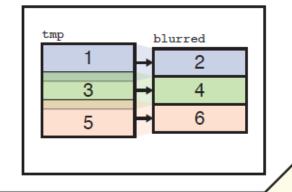
Schedules

Inline

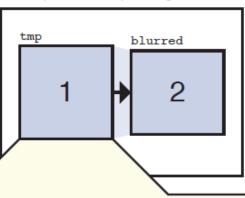
Compute as needed, do not store



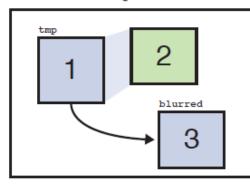
Chunk Compute, use, then discard subregions



Root Precompute entire required region



Reuse Load from an existing buffer



Serial y, Serial x

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

Serial x, Serial y

1							57
	10						
3	11	19	27	35	43	51	59
	12	_	_	_	_	_	_
	13						
	14						
	15						
8	16	24	32	40	48	56	64

Serial y, Vectorized x

1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16

Parallel y, Vectorized x

1	2
1	2
1	2
1	2
1	2
1	2
1	2
1	2

Split x into 2x₀+x_i, Split y into 2y₀+y_i, Serial y₀, x₀, y_i, x_i

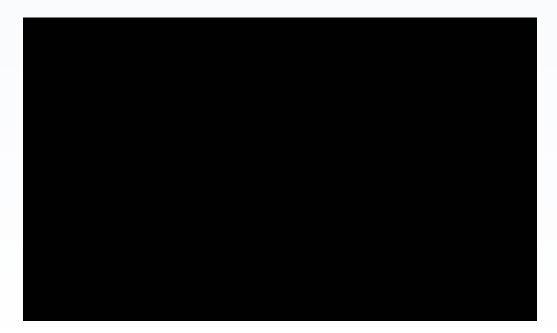
1	2	5	6	9	10	13	14
3	4	7	8	11	12	15	16
17	18	21	22	25	26	29	30
19	20	23	24	27	28	31	32
33	34	37	38	41	42	45	46
35	36	39	40	43	44	47	48
49	50	53	54	57	58	61	62
51	52	55	56	59	60	63	64

Multistage

producer.compute_root();

Multistage

producer.compute_at(consumer, y);



Multistage

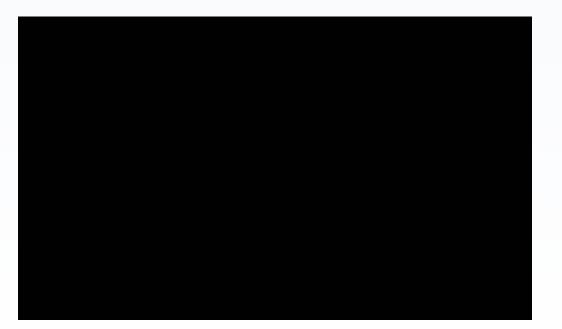
producer.store_root();
producer.compute_at(consumer, y);

Multistage

producer.store_root();
producer.compute_at(consumer, x);

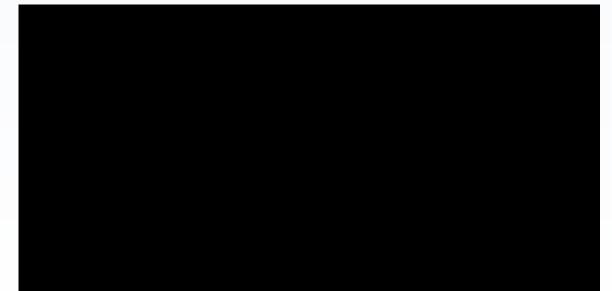
Multistage

producer.compute_at(consumer, x_outer);



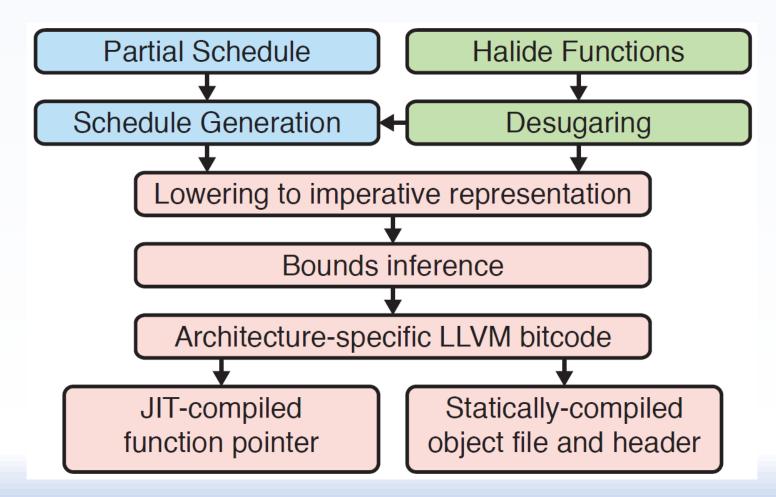
Multistage

Var yo, yi; consumer.split(y, yo, yi, 16); consumer.parallel(yo); consumer.vectorize(x, 4); producer.store_at(consumer, yo); producer.compute_at(consumer, yi); producer.vectorize(x, 4);



(Image size of 160X160)

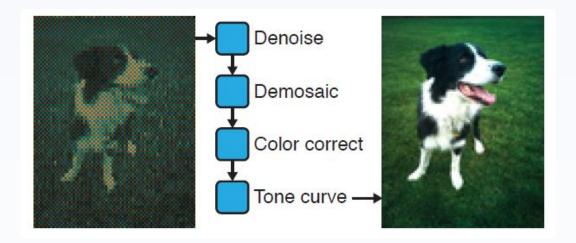
Compiler



Code generation

- Generates machine code for ARM/NEON, x86/SSE and GPU/PTX
- Lowering to imperative form
 - Works on the pilepine from the output backwards and generates loopnests
- Bounds inference
 - Performed using symbolic interval arithmetic
 - Users can assist using min, max and clamp functions in schedule
 - Function realizations are added after bounds inference
- CPU code generation
 - LLVM IR code is generated from the imperative form
 - Parallelization is performed using a threadpool
 - Vectorization is performed using peephole optimizations to replace with architecture specific intrinsics
- GPU code generation
 - Generates both host and device code
 - Partitions and schedule are determined by the schedule

Results



Camera Raw Pipeline

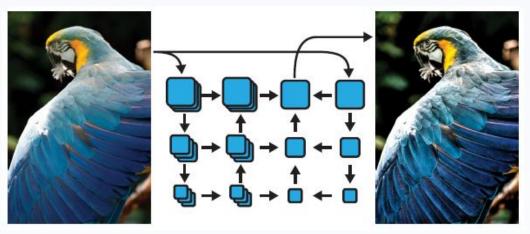
Optimized NEON ASM: 463 lines Nokia N900: 772 ms

Operations:

Denoise and demosaic are nearest neighbor stencils, Color correct and tone curve are element-wise operations Halide algorithm: 145 lines schedule: 23 lines Nokia N900: 741 ms

2.75x shorter 5% faster than tuned assembly Schedule: Output is tiled, each stage is computed in chunks within those tiles, and then vectorized

Quad-core x86: 51 ms



Local Laplacian Filter

C++, OpenMP+IPP: 262 lines Quad-core x86: 335 ms

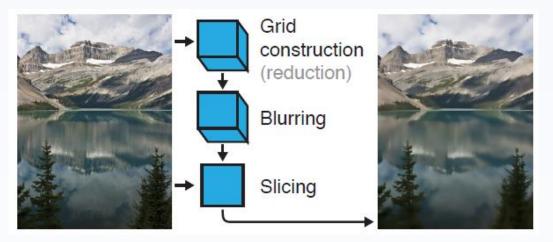
Operations:

Mixes images of different resolutions using gaussian and laplacian image pyramids Halide algorithm: 62 lines schedule: 7 lines Quad-core x86: 158 ms

> 3.7x shorter 2.1x faster

Schedule: Inlining some stages, computing the rest as root, With parallelization and vectorization

CUDA GPU: 48 ms (7x)



Bilateral Grid

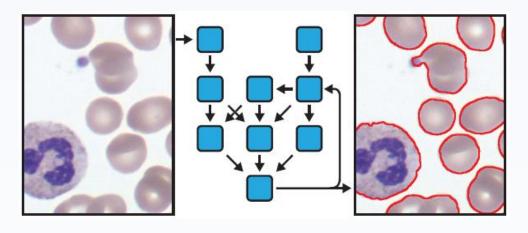
Tuned C++: 122 lines Quad-core x86: 472ms

Operations: Weighted histogram, blurred with a stencil, Trilinear interpolations at irregular data-driven locations Halide algorithm: 34 lines schedule: 6 lines Quad-core x86: 80 ms

> 3x shorter 5.9x faster

Schedule: Parallelizing each stage

CUDA GPU: 11 ms (42x) Hand-written CUDA: 23 ms [Chen et al. 2007]



Snake Image Segmentation

Vectorized MATLAB: 67 lines Quad-core x86: 3800 ms

Operations: Iterative computation composed of simple 3X1 and 1X3 filters and nonlinear point-wise operations Halide algorithm: 148 lines schedule: 7 lines Quad-core x86: 55 ms

> 2.2x longer 70x faster

CUDA GPU: 3 ms (1250x)

Schedule: Three pipelines Two initialization ones, One performing one iteration of the iterative process

Fully fused iteration steps

Conclusions

- Halide provides a system to specify complex code transforms in simple terms keeping the code readable and manageable
- It provides a platform for easy exploration of optimizations
- It provides a framework that is amenable to both user interaction and to automate the process of efficient code generation

What's next?

- This paper was published in 2012
- Automatic generation of tuned Halide schedules
 - Autotuning using genetic search

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. PLDI '13.

• Autotuning using opentuner

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O'Reilly, and Saman Amarasinghe. 2014. OpenTuner: an extensible framework for program autotuning. PACT '14.

• Analytically

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016. Automatically scheduling halide image processing pipelines. *ACM Trans. Graph.*

• Halide for distributed memory systems

Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. 2016. Distributed Halide. PPoPP '16.

Thank you!

*All images and code in this presentation are picked from the paper -

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, Frédo Durand. SIGGRAPH 2012