Decoupling Algorithms and Schedules for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley* Andrew Adams* Sylvain Paris†
Marc Levoy‡ Saman Amarasinghe* Frédo Durand*

* MIT CSAIL †Adobe ‡Stanford University

Presented by:
Sweta Yamini Pothukuchi
CS598 APK Class Presentation
Motivation

Naïve clean C++

```cpp
void blur(const Image &in, Image &blurred) {
    Image tmp(in.width(), in.height());

    for (int y = 0; y < in.height(); y++)
        for (int x = 0; x < in.width(); x++)
            tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

    for (int y = 0; y < in.height(); y++)
        for (int x = 0; x < in.width(); x++)
            blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
}
```

Computation of a 3X3 box filter using a composition of a 1X3 and a 3X1 box filter on a quad-core x86 CPU

Hand-tuned C++

```cpp
void fast_blur(const Image &in, Image &blurred) {
    _m128i one_third = _mm_set1_epi6(21846);
    #pragma omp parallel for
    for (int yTile = 0; yTile < in.height(); yTile += 32) {
        _m128i a, b, c, sum, avg;
        _m128i tmp[(256/8)*32];
        for (int xTile = 0; xTile < in.width(); xTile += 256) {
            _m128i *tmpPtr = tmp;
            for (int y = -1; y < 32+1; y++) {
                const uint16_t *inPtr = &(in(xTile, yTile+y));
                for (int x = 0; x < 256; x += 8) {
                    a = _mm_loadu_si128((__m128i*)(inPtr-1));
                    b = _mm_loadu_si128((__m128i*)(inPtr+1));
                    c = _mm_loadu_si128((__m128i*)(inPtr));
                    sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
                    avg = _mm_mulhi_epi16(sum, one_third);
                    _mm_store_si128(tmpPtr++, avg);
                    inPtr += 8;
                }
                tmpPtr = tmp;
            }
        }
    }
}
```
Motivation

Naïve clean C++

Computation of a 3X3 box filter using a composition of a 1X3 and a 3X1 box filter on a quad-core x86 CPU

```c
void blur(const Image &in, Image &blurred) {
    Image tmp(in.width(), in.height());
    for (int y = 0; y < in.height(); y+)
        for (int x = 0; x < in.width(); x++)
            tmp(x, y) = (in(x, y-1) + in(x, y) + in(x, y+1))/3;
    blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
}
```

9.94 ms per megapixel

Optimizations performed:
- Multithreading
- Vectorization
- Tiling
- Fusion

Hand-tuned C++

```c
void fast_blur(const Image &in, Image &blurred) {
    __m128i one_third = _mm_set1_epi16(218846);
    #pragma omp parallel for
    for (int yTile = 0; yTile < in.height(); yTile += 32) {
        __m128i a, b, c, sum, avg;
        __m128i tmp = (__m128i)*32+2);
        for (int xTile = 0; xTile < in.width(); xTile += 256) {
            __m128i *tmpPtr = tmp;
            for (int y = -1; y < 32+1; y++) {
                const uint16_t *inPtr = &in(xTile, yTile+y));
                for (int x = 0; x < 256; x += 8) {
                    a = _mm_loadu_si128((__m128i)*inPtr-1));
                    b = _mm_loadu_si128((__m128i)*inPtr+1));
                    c = _mm_load_s128((__m128i)*inPtr);
                    sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
                    avg = _mm_mulhi_epi16(sum, one_third);
                    _mm_store_s128(tmpPtr++, avg);
                    inPtr += 8;
                }
                tmpPtr = tmp;
                for (int y = 0; y < 32; y++) {
                    __m128i *outPtr = (__m128i)*(&blurred(xTile, yTile+y)));
                    for (int x = 0; x < 256; x += 8) {
                        a = _mm_load_s128(tmpPtr+(2*256)/8);
                        b = _mm_load_s128(tmpPtr+256/8);
                        c = _mm_load_s128(tmpPtr++);
                        sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
                        avg = _mm_mulhi_epi16(sum, one_third);
                        _mm_store_s128(outPtr++, avg);
                    }
                }
            }
        }
    }
}
```

0.90 ms per megapixel
Motivation

• Main target – Image processing pipelines
• Wide and deep workloads
 • Many data-parallel stages
 • Benefit from parallelization across pixels
 • Memory bound as they have little work per memory access
 • Tiling and fusion across stages improves producer-consumer locality
• Best optimizations are machine dependent
Key Idea

• Separate the algorithm from the schedule
• Algorithm – specifies the computation to be performed
• Schedule – specifies the optimizations and transformations to determine when an actual computation occurs
Key Idea

• Separate the algorithm from the schedule
• Algorithm – specifies the computation to be performed
• Schedule – specifies the optimizations and transformations to determine when an actual computation occurs

HALIDE

• Programmer provides both algorithm and schedule
• Compiler(halide) combines them to generate efficient code
BLUR in Halide

```cpp
Func halide_blur(Func in) {
    Func tmp, blurred;
    Var x, y, xi, yi;

    // The algorithm
    tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
    blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

    // The schedule
    blurred.tile(x, y, xi, yi, 256, 32)
        .vectorize(xi, 8).parallel(y);
    tmp.chunk(x).vectorize(x, 8);

    return blurred;
}
```

0.90 ms per megapixel
Halide

- **Algorithm** –
 - Purely functional specification of the value at each point

- **Schedule** –
 - Order of execution of points within the domain of a function, including parallelism and vectorization
 - Relative order of execution of points of one function to another, specifying fusion of functions
 - Specification of memory location to which an evaluated function is stored
 - Whether a value is recomputed or location from where it is to be loaded
Representing algorithms

• Each stage is a pure function defined over an infinite integer domain or a reduction over a bounded domain

• Expressions in functions include
 • Arithmetic and logical operations
 • Loads from external images
 • If-then-else expressions (semantically equivalent to ternary operator(?, :,) in C)
 • References to named values (other functions or expressions defined by functional let construct)
 • Calls to other scalar functions
Examples

Gradient

Func gradient("gradient");
gradient(x, y) = x + y;

Multistage

Func producer("producer"), consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)
+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Boundary Condition

Buffer<
uint8_t> input = load_image("images/rgb.png");
Func clamped("clamped");
Expr clamped_x = clamp(x, 0, input.width()-1);
// clamp(x, a, b) is equivalent to max(min(x, b), a).
Expr clamped_y = clamp(y, 0, input.height()-1);
clamped(x, y, c) = input(clamped_x, clamped_y, c);
Reductions

• Reductions require
 • An initial value function which specifies a value for each value in the output domain
 • A recursive reduction function which redefines the value at points given by the output coordinate expression in terms of prior values of function
 • A reduction domain bounded by minimum and maximum values in each dimension

• Reduction meaning may change depending on the order of application of the reduction, so the order is specified by the reduction domain
Example algorithm – Histogram equalization

```
UniformImage in(UInt(8), 2);
Func histogram, cdf, out;
RDom r(0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;

histogram(in(r.x, r.y))++;
cdf(i) = 0;
cdf(ri) = cdf(ri-1) + histogram(ri);
out(x, y) = cdf(in(x, y));
```
Example algorithm – Histogram equalization

```
UniformImage in(UInt(8), 2);
Func histogram, cdf, out;
RDom r(0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;

histogram(in(r.x, r.y))++; Reduction domain

cdf(i) = 0;
cdf(ri) = cdf(ri-1) + histogram(ri);
out(x, y) = cdf(in(x, y)); Reduction
```
UniformImage in(UInt(8), 2);
Func histogram, cdf, out;
RDom r(0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;

histogram(in(r.x, r.y))++;
cdf(i) = 0;
cdf(ri) = cdf(ri-1) + histogram(ri);
out(x, y) = cdf(in(x, y));

Example algorithm – Histogram equalization
Schedules

• For each pipeline stage, specify how its inputs are evaluated starting from the final output of the pipeline

• Caller-callee relationships:
 • Inline – compute as needed, do not store
 • Root – precompute entire required region
 • Chunk – compute, use and discard subregions
 • Reuse – load from an existing buffer

• Within a function:
 • Sequential, parallel, unroll, vectorize, transpose, split (tile), gpu
 • Can chain schedules, e.g., `im.root().vectorize(x, 4).parallel(x)`

• Reductions:
 • A schedule for initialization
 • A Schedule for the reduction (deduced from the reduction domain by default)
Schedules
Schedule demonstration

Multistage

```
Func producer("producer"),
    consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)
    + producer(x, y+1)
    + producer(x+1, y)
    + producer(x+1, y+1))/4;
```

*image from http://halide-lang.org/tutorials/tutorial.lesson_08.scheduling.2.html
Schedule demonstration

Multistage

```
Func producer("producer"),
    consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)
    + producer(x, y+1)
    + producer(x+1, y)
    + producer(x+1, y+1))/4;
```

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
Schedule demonstration

Func producer("producer"),
 consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)
 + producer(x, y+1)
 + producer(x+1, y)
 + producer(x+1, y+1))/4;

producer.store_root();
producer.compute_at(consumer, y);

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
Schedule demonstration

Multistage

```plaintext
Func producer("producer"),
    consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) + producer(x, y+1) + producer(x+1, y) + producer(x+1, y+1))/4;
producer.store_root();
producer.compute_at(consumer, x);
```

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
Schedule demonstration

Var x_outer, y_outer, x_inner, y_inner;
consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
producer.compute_at(consumer, x_outer);

Multistage

Func producer("producer"), consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)
 + producer(x, y+1)
 + producer(x+1, y)
 + producer(x+1, y+1))/4;

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
Schedule demonstration

Multistage

Func producer("producer"),
 consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)
 + producer(x, y+1)
 + producer(x+1, y)
 + producer(x+1, y+1))/4;

Var yo, yi;
consumer.split(y, yo, yi, 16);
consumer.parallel(yo);
consumer.vectorize(x, 4);
producer.store_at(consumer, yo);
producer.compute_at(consumer, yi);
producer.vectorize(x, 4);

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
Compiler

Partial Schedule → Schedule Generation → Lowering to imperative representation → Bounds inference → Architecture-specific LLVM bitcode → JIT-compiled function pointer

Halide Functions → Desugaring → Lowering to imperative representation → Bounds inference → Architecture-specific LLVM bitcode → Statically-compiled object file and header
Code generation

• Generates machine code for ARM/NEON, x86/SSE and GPU/PTX
• Lowering to imperative form
 • Works on the pilepine from the output backwards and generates loopnests
• Bounds inference
 • Performed using symbolic interval arithmetic
 • Users can assist using min, max and clamp functions in schedule
 • Function realizations are added after bounds inference
• CPU code generation
 • LLVM IR code is generated from the imperative form
 • Parallelization is performed using a threadpool
 • Vectorization is performed using peephole optimizations to replace with architecture specific intrinsics
• GPU code generation
 • Generates both host and device code
 • Partitions and schedule are determined by the schedule
Results
Operations:
Denoise and demosaic are nearest neighbor stencils, Color correct and tone curve are element-wise operations

Schedule:
Output is tiled, each stage is computed in chunks within those tiles, and then vectorized
Operations:
Mixes images of different resolutions using gaussian and laplacian image pyramids

Schedule:
Inlining some stages, computing the rest as root, With parallelization and vectorization
Operations:
- Weighted histogram, blurred with a stencil,
- Trilinear interpolations at irregular data-driven locations

Schedule:
- Parallelizing each stage
Operations:
Iterative computation composed of simple 3X1 and 1X3 filters and nonlinear point-wise operations

Schedule:
Three pipelines
Two initialization ones,
One performing one iteration of the iterative process

Fully fused iteration steps

Snake Image Segmentation
Vectorized MATLAB: 67 lines
Quad-core x86: 3800 ms

Halide algorithm: 148 lines
schedule: 7 lines
Quad-core x86: 55 ms
2.2x longer
70x faster

CUDA GPU: 3 ms (1250x)
Conclusions

• Halide provides a system to specify complex code transforms in simple terms keeping the code readable and manageable
• It provides a platform for easy exploration of optimizations
• It provides a framework that is amenable to both user interaction and to automate the process of efficient code generation
What’s next?

• This paper was published in 2012
• Automatic generation of tuned Halide schedules
 • Autotuning using genetic search
 • Autotuning using opentuner
 • Analytically
• Halide for distributed memory systems
Thank you!

All images and code in this presentation are picked from the paper - Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, Frédo Durand. SIGGRAPH 2012