
Decoupling Algorithms and Schedules
for Easy Optimization of

Image Processing Pipelines
Jonathan Ragan-Kelley* Andrew Adams* Sylvain Paris†

Marc Levoy‡ Saman Amarasinghe* Frédo Durand*
* MIT CSAIL †Adobe ‡Stanford University

Presented by:

Sweta Yamini Pothukuchi

CS598 APK Class Presentat ion

Motivation
Naïve clean C++ Hand-tuned C++

Computation of a 3X3 box filter using a composition of a
1X3 and a 3X1 box filter on a quad-core x86 CPU

Motivation
Naïve clean C++ Hand-tuned C++

Computation of a 3X3 box filter using a composition of a
1X3 and a 3X1 box filter on a quad-core x86 CPU

Optimizations performed:
• Multithreading
• Vectorization
• Tiling
• Fusion

9.94 ms per megapixel 0.90 ms per megapixel

Motivation

• Main target – Image processing pipelines

• Wide and deep workloads
• Many data-parallel stages

• Benefit from parallelization across pixels

• Memory bound as they have little work per memory access

• Tiling and fusion across stages improves producer-consumer locality

• Best optimizations are machine dependent

Key Idea

• Separate the algorithm from the schedule

• Algorithm – specifies the computation to be performed

• Schedule – specifies the optimizations and transformations to
determine when an actual computation occurs

Key Idea

• Separate the algorithm from the schedule

• Algorithm – specifies the computation to be performed

• Schedule – specifies the optimizations and transformations to
determine when an actual computation occurs

• Programmer provides both algorithm and schedule

• Compiler(halide) combines them to generate efficient code

HALIDE

BLUR in Halide

0.90 ms per megapixel

Halide

• Algorithm –
• Purely functional specification of the value at each point

• Schedule –
• Order of execution of points within the domain of a function, including

parallelism and vectorization

• Relative order of execution of points of one function to another, specifying
fusion of functions

• Specification of memory location to which an evaluated function is stored

• Whether a value is recomputed or location from where it is to be loaded

Representing algorithms

• Each stage is a pure function defined over an infinite integer domain
or a reduction over a bounded domain

• Expressions in functions include
• Arithmetic and logical operations

• Loads from external images

• If-then-else expressions (semantically equivalent to ternary operator(? :) in C)

• References to named values (other functions or expressions defined by
functional let construct)

• Calls to other scalar functions

Examples
Func gradient("gradient");
gradient(x, y) = x + y;

Gradient

Func producer("producer"), consumer("consumer");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

Boundary Condition
Buffer<uint8_t> input = load_image("images/rgb.png);
Func clamped("clamped”);
Expr clamped_x = clamp(x, 0, input.width()-1);
// clamp(x, a, b) is equivalent to max(min(x, b), a).
Expr clamped_y = clamp(y, 0, input.height()-1);
clamped(x, y, c) = input(clamped_x, clamped_y, c);

Reductions

• Reductions require
• An initial value function which specifies a value for each value in the output

domain

• A recursive reduction function which redefines the value at points given by
the output coordinate expression in terms of prior values of function

• A reduction domain bounded by minimum and maximum values in each
dimension

• Reduction meaning may change depending on the order of
application of the reduction, so the order is specified by the reduction
domain

Example algorithm – Histogram equalization

Example algorithm – Histogram equalization

Reduction domain

Reduction

Example algorithm – Histogram equalization

Reduction domain

Scan

Initial value

Schedules

• For each pipeline stage, specify how its inputs are evaluated starting from
the final output of the pipeline

• Caller-callee relationships:
• Inline – compute as needed, do not store
• Root – precompute entire required region
• Chunk – compute, use and discard subregions
• Reuse – load from an existing buffer

• Within a function:
• Sequential, parallel, unroll, vectorize, transpose, split (tile), gpu
• Can chain schedules, e.g., im.root().vectorize(x, 4).parallel(x)

• Reductions:
• A schedule for initialization
• A Schedule for the reduction (deduced from the reduction domain by default)

Schedules

Schedule demonstration

producer.compute_root();

Func producer("producer"),
consumer("consumer");

producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

Schedule demonstration

producer.compute_at(consumer, y);

Func producer("producer"),
consumer("consumer");

producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

Schedule demonstration

producer.store_root();
producer.compute_at(consumer, y);

Func producer("producer"),
consumer("consumer");

producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

Schedule demonstration

producer.store_root();
producer.compute_at(consumer, x);

Func producer("producer"),
consumer("consumer");

producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

Schedule demonstration Var x_outer, y_outer, x_inner, y_inner;
consumer.tile(x, y, x_outer, y_outer,

x_inner, y_inner, 4, 4);

producer.compute_at(consumer, x_outer);

Func producer("producer"),
consumer("consumer");

producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

Schedule demonstration

Func producer("producer"),
consumer("consumer");

producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y)

+ producer(x, y+1)
+ producer(x+1, y)
+ producer(x+1, y+1))/4;

Multistage

Var yo, yi;
consumer.split(y, yo, yi, 16);
consumer.parallel(yo);
consumer.vectorize(x, 4);
producer.store_at(consumer, yo);
producer.compute_at(consumer, yi);
producer.vectorize(x, 4);

(Image size of 160X160)

*image from http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

http://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html

Compiler

Code generation
• Generates machine code for ARM/NEON, x86/SSE and GPU/PTX

• Lowering to imperative form
• Works on the pilepine from the output backwards and generates loopnests

• Bounds inference
• Performed using symbolic interval arithmetic
• Users can assist using min, max and clamp functions in schedule
• Function realizations are added after bounds inference

• CPU code generation
• LLVM IR code is generated from the imperative form
• Parallelization is performed using a threadpool
• Vectorization is performed using peephole optimizations to replace with architecture specific

intrinsics

• GPU code generation
• Generates both host and device code
• Partitions and schedule are determined by the schedule

Results

Schedule:
Output is tiled,
each stage is computed in
chunks within those tiles,
and then vectorized

Operations:
Denoise and demosaic are
nearest neighbor stencils,
Color correct and tone
curve are element-wise
operations

Operations:
Mixes images of different
resolutions using gaussian
and laplacian image
pyramids

Schedule:
Inlining some stages,
computing the rest as root,
With parallelization and
vectorization

Operations:
Weighted histogram,
blurred with a stencil,
Trilinear interpolations at
irregular data-driven
locations

Schedule:
Parallelizing each stage

Operations:
Iterative computation
composed of simple 3X1
and 1X3 filters and
nonlinear point-wise
operations

Schedule:
Three pipelines
Two initialization ones,
One performing one
iteration of the iterative
process

Fully fused iteration steps

Conclusions

• Halide provides a system to specify complex code transforms in
simple terms keeping the code readable and manageable

• It provides a platform for easy exploration of optimizations

• It provides a framework that is amenable to both user interaction and
to automate the process of efficient code generation

What’s next?

• This paper was published in 2012

• Automatic generation of tuned Halide schedules
• Autotuning using genetic search
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. PLDI '13.

• Autotuning using opentuner
Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O'Reilly,
and Saman Amarasinghe. 2014. OpenTuner: an extensible framework for program autotuning. PACT ‘14.

• Analytically
Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016.
Automatically scheduling halide image processing pipelines. ACM Trans. Graph.

• Halide for distributed memory systems
Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. 2016. Distributed Halide. PPoPP ‘16.

Thank you!

*All images and code in this presentation are picked from the paper -

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, Frédo Durand.

SIGGRAPH 2012

