
Performance Evaluation of OpenMP’s Target Construct
on GPUs

- Exploring Compiler Optimizations -[2] 1

Shelby Lockhart
CS 598

1*All graphs and tables taken from paper unless otherwise noted.
Shelby Lockhart CS 598 1 / 29

How Is This Relevant to the Course?

This paper addresses the same types of questions we have discussed in class,
but in reference to OpenMP.

The target construct is a high level abstraction for offloading to GPUs.

Because the offloading is now hidden, there is the question of optimality.

Is the compiler actually generating the code I want?

Can I expect similar performance to hand-tuned CUDA code using these
constructs?

Shelby Lockhart CS 598 2 / 29

Outline

1 The OpenMP Accelerator Model
1 GPU Model

2 OpenMP target Constructs

2 Compiling OpenMP to GPUs
1 Compilation Flow for the Tested Compilers

2 OpenMP Threading Model on GPUs

3 Performance Evaluation
1 Benchmark Results

2 Comparisons with Naive CUDA Code

3 Comparisons with Highly-Tuned CUDA Code

4 Conclusions

5 References

Shelby Lockhart CS 598 3 / 29

The OpenMP Accelerator Model

Shelby Lockhart CS 598 The OpenMP Accelerator Model 4 / 29

GPU Model

*Image taken from [1]

Shelby Lockhart CS 598 The OpenMP Accelerator Model 5 / 29

target Constructs

Introduced in OpenMP 4.0

Designates portion of code to be offloaded to a device

1 #pragma omp t a r g e t
2 . . .

Designates data transfers between the host and the device

1 #pragma omp t a r g e t map(from : C) map(to : B, A)
2 . . .

Sets grid size - number of blocks and threads per block

1 #pragma omp t a r g e t map(from : C) map(to : B, A)
2 #pragma omp teams num teams (N/1024) t h r e a d l i m i t (1024)
3 . . .

Shelby Lockhart CS 598 The OpenMP Accelerator Model 6 / 29

target Constructs

Specifies the number of iterations per team and the iterations per thread

1 #pragma omp t a r g e t map(from : C) map(to : B, A)
2 #pragma omp teams num teams (N/1024) t h r e a d l i m i t (1024)
3 #pragma omp d i s t r i b u t e p a r a l l e l f o r \
4 d i s t s c h e d u l e (s t a t i c , d i s tChunk) s c h edu l e (s t a t i c , 1)
5 f o r (i n t i = 0 ; i < N; i++) {
6 C[i] = A[i] + B[i] ;
7 }

Scheduling 1 thread per iteration is necessary to take advantage of memory
coalescing

Shelby Lockhart CS 598 The OpenMP Accelerator Model 7 / 29

target Constructs

These constructs can be split across pragmas or placed on the same line, the
same as all other OpenMP constructs

1 #pragma omp t a r g e t map(from : C) map(to : B, A) \
2 teams num teams (N/1024) t h r e a d l i m i t (1024) \
3 d i s t r i b u t e p a r a l l e l f o r \
4 d i s t s c h e d u l e (s t a t i c , d i s tChunk) s c h edu l e (s t a t i c , 1)
5 f o r (i n t i = 0 ; i < N; i++) {
6 C[i] = A[i] + B[i] ;
7 }

clang+LLVM and IBM XL C compilers treat both variants the same ... so
they claim

Shelby Lockhart CS 598 The OpenMP Accelerator Model 8 / 29

Compiling OpenMP to GPUs

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 9 / 29

Tested Compilers

Tested compilers: clang+LLVM and IBM XL C

The main difference between these compilers is how they generate the PTX
GPU assembly code. clang+LLVM generates the PTX directly, while the IBM
XL C uses the NVVM IR.

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 10 / 29

OpenMP Threading Model on GPUs

OpenMP code can generally include sequential and parallel sections
interleaved

1 #pragma omp t a r g e t teams { // GPU r e g i o n
2 // s e q u e n t i a l r e g i o n 1 execu ted by the master t h r ead o f each team
3 i f (. . .) {
4 // p a r a l l e l r e g i o n 1
5 #pragma omp p a r a l l e l f o r
6 f o r () {}
7 } e l s e {
8 . . .
9 }

10 }

How does this work on GPUs?

State Machine Execution
Master/Worker Execution

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 11 / 29

State Machine Execution

1 boo l f i n i s h e d = f a l s e ;
2 wh i l e (! f i n i s h e d) {
3 sw i t c h (l a b e lN e x t) {
4 ca se SEQUENTIAL REGION1 :
5 i f (t h r e a d I d x . x != MASTER)

break ;
6 // code f o r s e q u e n t i a l r e g i o n

1
7 i f (. . .) {
8 l a b e lN e x t =

PARALLEL REGION1 ;
9 }

10 break ;
11 ca se PARALLEL REGION1 :
12 // code f o r p a r a l l e l r e g i o n 1
13 i f (t h r e a d I d x . x == MASTER) {
14 // update l a b e lN e x t ;
15 }
16 break ;
17 // o th e r c a s e s
18 ca se END:
19 l a b e lN e x t = −1;
20 f i n i s h e d = t r u e ;
21 break ;
22 }
23 s y n c t h r e a d s () ;
24 }

Sequential and parallel regions
are assigned different states

State transitions occur
dynamically

Drawbacks:

Register pressure can increase

Large numbers of
control-flow instructions can
be generated

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 12 / 29

Master/Worker Execution

1 i f (masterWarp) {
2 // code f o r s e q u e n t i a l r e g i o n 1
3 i f (. . .) {
4 // code f o r p a r a l l e l r e g i o n 1
5 [a c t i v a t e worke r s]
6 bar . sync 0 // s y n c h r o n i z a t i o n
7 bar . sync 0 // s y n c h r o n i c a t i o n
8 }
9 } e l s e {

10 // Worker Warps
11 bar . sync 0 // s y n c h r o n i z a t i o n
12 // get a chunk o f p a r a l l e l l oop
13 // and exe cu t e i t i n p a r a l l e l
14 e x e c u t eP a r a l l e l L o o p () ;
15 bar . sync 0 // s y n c h r o n i z a t i o n
16 }
17 // o u t l i n e d work f o r worker warps
18 e x e c u t eP a r a l l e l L o o p () ;

Similar to OpenMP standard
fork/join model

Runtime distinguishes a master
warp within each block and all
other warps are worker warps

Advantages

Simplifies code generation

Less register pressure than
State Execution Model

Can support orphaned
parallel directives in external
functions

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 13 / 29

Alternative Code Generation Scheme

Generated when there is no sequential region within a target region

There is no performance penalty from control-flow instructions

clang+LLVM supports this only for combined constructs

IBM XL C can generate the appropriate execution scheme for combined and
non-combined constructs

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 14 / 29

Potential Optimizations

Using shared memory and the read-only data cache on GPUs can improve
kernel performance

Neither compiler optimizes target constructs to use shared memory

NVPTX backend and libNVVM use read-only cache for all data when the
target architecture is sm 35 or later

Placing all possible data in the read-only data cache can cause performance
slowdown

Leveraging the instruction level paralellism (ILP) on GPUs

The thread level parallelism of the OpenMP model cannot always be
interchanged with the ILP of GPUs

clang+LLVM, NVPTX backend, and libNVVM take advantage of ILP by
unrolling sequential loops to increase ILP when possible

Shelby Lockhart CS 598 Compiling OpenMP to GPUs 15 / 29

Performance Evaluation

Shelby Lockhart CS 598 Performance Evaluation 16 / 29

Experimental Setup

Testing - look at potential compiler optimizations for OpenMP in terms of
kernel performance

Comparing against naive CUDA implementation, then hand-tuned CUDA
against ’optimized’ OpenMP

NVIDIA GPUs

Tesla K80 - 13 SMs w/ 192 cores each, speed of 875 MHz, 12 GB of memory
Tesla P100 - 56 SMs w/ 64 cores each, speed of 1.36 GHz, 4 GB of memory

Benchmarks

Shelby Lockhart CS 598 Performance Evaluation 17 / 29

Performance Evaluation : Naive Code Comparisons

Shelby Lockhart CS 598 Performance Evaluation : Naive Code Comparisons 18 / 29

Results - IBM POWER8 + NVIDIA Tesla K80

CUDA (baseline): A CUDA version with the read-only data cache disabled
CUDA-ROC (K80 only): All read-only arrays within a kernel are accessed through
the read-only data cache

Shelby Lockhart CS 598 Performance Evaluation : Naive Code Comparisons 19 / 29

Results - IBM POWER8 + NVIDIA Tesla P100

*CUDA-ROC gone because read-only data cache no longer available in P100 GPUs

Shelby Lockhart CS 598 Performance Evaluation : Naive Code Comparisons 20 / 29

Results - Overhead of OpenMP’s Execution Model

Non-Combined vs Combined Pragmas
IBM XL C shows the same speedup for both pragma types
clang+LLVM sees worse performance for non-combined pragmas, and the
assembly code showed more integer, control flow, and load-store instructions

OpenMP Runtime Library Overhead
clang+LLVM eliminated unnecessary OpenMP runtime calls on the P100
GPU, but not the K80
IBM XL C failed to eliminate unnecessary OpenMP runtime calls on either
GPU
For the vector addition benchmark, this overhead accounted for 85% of the
execution time for clang+LLVM combined and 75.3% of execution time for
IBM XL C combined

1 #pragma omp t a r g e t teams num teams (N/1024) t h r e a d l i m i t (1024) \
2 d i s t r i b u t e p a r a l l e l f o r s c h edu l e (s t a t i c , 1)
3 f o r (i n t i = 0 ; i < N; i++) {
4 ; // do no th ing
5 }

Shelby Lockhart CS 598 Performance Evaluation : Naive Code Comparisons 21 / 29

Results - Math Function Code Generation

Subtracting the overhead of OpenMP from the BlackScholes benchmark
which has a large number of floating point operations, the CUDA version is
fastest with IBM XL C coming in second.

Benchmarking the math function code generation

1 // a [] and b [] a r e f l o a t a r r a y s
2 #pragma omp t a r g e t teams d i s t r i b u t e p a r a l l e l f o r . . .
3 f o r (i n t i = 0 ; i < N; i++) {
4 f l o a t T = exp (a [i]) ; // doub l e exp (doub l e)
5 b [i] = (f l o a t) l o g (a [i]) /T; // doub l e l o g (doub l e)
6 }

clang+LLVM generates double-precision versions of exp() and log()
Both nvcc for CUDA version and IBM XL C generate single-precision versions
of exp() and log(), and inline the functions in PTX assembly
Both clang+LLVM and IBM XL C use libdevice
nvcc compiled CUDA uses the CUDA Math API

Shelby Lockhart CS 598 Performance Evaluation : Naive Code Comparisons 22 / 29

Results - FMA and Memory Coalescing

Fused-Multiply-Add (FMA) instructions

clang+LLVM does not generate FMA instructions by default

Users can force clang+LLVM to generate FMA instructions when converting
to PTX by providing the flags: -mllvm -nvptx-fma-level=1 or 2

schedule(static, 1) for memory access coalescing

Scheduling a chunk size of 1 for each thread allows consecutive threads to
access consecutive global memory locations
Default scheduling is implementation defined, so it’s best to specify a chunk
size of 1 because performance degrades as chunk size increases, as seen below
for the VecAdd benchmark

Shelby Lockhart CS 598 Performance Evaluation : Naive Code Comparisons 23 / 29

Performance Evaluation : Highly Tuned Code
Comparisons

Shelby Lockhart CS 598
Performance Evaluation : Highly Tuned Code

Comparisons 24 / 29

Hand Tuning Kernel in SP Benchmark

1 #pragma omp t a r g e t teams d i s t r i b u t e . . .
2 f o r (i n t k = 1 ; k <= nz2 ; k++) {
3 #pragma omp p a r a l l e l f o r . . .
4 f o r (i n t j = 1 ; j <= ny2 ; j++) {
5 // loop1
6 f o r (i n t i = 0 ; i <= gp01 ; i++) {
7 rhonX [k∗RHONX1 + j ∗RHONX2 + i] = . . . ;
8 }
9 // loop2

10 f o r (i n t i = 1 ; i <= nx2 ; i++) {
11 l h sX [0∗LHSX1 + k∗LHSX3 + j] = 0 . 0 ;
12 . . .
13 }
14 }
15 }

Memory accesses for loop2 are coalesced, but not loop1

Transform the kernel by splitting the j-loop into 2 different loops and making
both have coalesced memory accesses

Additionally, rhonX and lhsX could be loaded into shared memory, but only
for the CUDA implementation

Shelby Lockhart CS 598
Performance Evaluation : Highly Tuned Code

Comparisons 25 / 29

Hand Tuning Kernel in SP Benchmark

Performance Results

Transformed Kernel

1 #pragma omp t a r g e t teams d i s t r i b u t e . . .
2 f o r (i n t k = 1 ; k <= nz2 ; k++) {
3 #pragma omp p a r a l l e l f o r . . .
4 f o r (i n t i = 0 ; i <= gp01 ; i++) {
5 /∗ l oop1 ∗/ f o r (i n t j = 1 ; j <= ny2 ; j++) {
6 rhonX [k∗RHONX1 + j ∗RHONX2 + i] = . . . ;
7 }
8 }
9 #pragma omp p a r a l l e l f o r . . .

10 f o r (i n t j = 1 ; j <= ny2 ; j++) {
11 /∗ l oop2 ∗/ f o r (i n t i = 1 ; i <= nx2 ; i++) {
12 l h sX [0∗LHSX1 + k∗LHSX3 + j] = 0 . 0 ;
13 . . .
14 }
15 }
16 }

Shelby Lockhart CS 598
Performance Evaluation : Highly Tuned Code

Comparisons 26 / 29

Hand Tuned MM Benchmark

Transformed Matrix Multiply Kernel by employing loop tiling for more
coalesced memory accesses for the OpenMP variants

The CUDA kernel employed loop tiling and utilized shared memory

Shelby Lockhart CS 598
Performance Evaluation : Highly Tuned Code

Comparisons 27 / 29

Conclusions

The OpenMP target construct is not consistently slower or faster than
CUDA implementations

Areas for improvement:

Minimizing OpenMP runtime overheads

Better data placement policy for the read-only cache and shared memory

Improving code generation for threads
(math functions and coalesced memory accesses)

Employing the use of high-level loop transformations

Shelby Lockhart CS 598
Performance Evaluation : Highly Tuned Code

Comparisons 28 / 29

References I

Imen Chakroun, Nouredine Melab, Mohand-Said Mezmaz, and Daniel
Tuyttens.
Combining multi-core and gpu computing for solving combinatorial
optimization problems.
Journal of Parallel and Distributed Computing, 73:1563–1577, 12 2013.

Shirako J. Tiotto E. Ho R. Hayashi, A. and V. Sarkar.
Performance evaluation of openmp’s target construct on gpus’.
International Journal of High Performance Computing and Networking,
x(x):xxx–xxx.

Shelby Lockhart CS 598
Performance Evaluation : Highly Tuned Code

Comparisons 29 / 29

	The OpenMP Accelerator Model
	Compiling OpenMP to GPUs
	Performance Evaluation
	Performance Evaluation : Naive Code Comparisons
	Performance Evaluation : Highly Tuned Code Comparisons

