
CHiLL
Authors:

Chun Chen, Jacqueline Chame and Mary Hall

Justin Szaday, CS598APK, October 5th, 2018

Introduction

• Source-level loop transformations are still necessary
for compilers to produce high-quality code1

• Manually applying transformations is tedious, and
makes the source code harder to read

• Enter CHiLL, a source-to-source translator for
Composing High-Level Loop transformations

[1] An empirical study of the effect of source-
level transformations on compiler stability,

Zhangxiaowen Gong, Zhi Chen, Justin Szaday,
et al., CPC2018

Overview

• CHiLL lets users compose high-level loop transformations
with ease

• CHiLL supports loops written in/with
C/C++, CUDA and Fortran

• CHiLL's operations are driven by a user-supplied
transformation script

• CHiLL verifies that all user-specified transformations
preserve the dependences between the statements of the
original code

• CHiLL uses a polyhedral loop representation with support for
complex loop nests (via CodeGen+ and Omega+)
• Thus, CHiLL does not need to generate intermediate code or rebuild

the dependence graph between transformations

Loop Representation in CHiLL

Figure from: Chen, Chun & Chame, Jacqueline & Hall, Mary. (2008). A
Framework for Composing High-Level Loop Transformations.

Transformation Script

• The transformation script is
written in Python, and
specifies the:
• Location of the source file
• Function and loops to

modify
• Known properties of

variables
• Transformations to apply

• The transformations’
parameters include: sets of
statements, loops, orders,
factors, etc.

from chill import *

source(’mm.c’)

destination(’mm_modified.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

permute([3,2,1])

print_code()

Example

from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an >
0’, ’bm > 0’])

distribute([0,1],1)

print_code()

void mm(float **A, float **B, float **C,
int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}

void mm(float **A, float **B, float **C,
int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i <= an - 1; i++)

for(j = 0; j <= bm - 1; j++)

C[i][j] = 0.0f;

for(i = 0; i <= an - 1; i++)

for(j = 0; j <= bm - 1; j++)

for(n = 0; n <= ambn - 1; n++)

C[i][j] += A[i][n] * B[n][j];

}

Original: mm.py: Transformed:

distribute(set<int> stmts, int loop)

Transformations

distribute(set<int> stmts, int loop) fuse(set<int> stmts, int loop)

nonsingular(matrix transform) peel(int stmt, int loop,
int amount = 1)

permute(set<int> stmts, vector<int> p) reverse(set<int> stmts, int level)

scale(set<int> stmts, int loop,
int amount)

shift(set<int> stmts, int loop,
int amount)

shift_to(int stmt, int loop, int amount) skew(set<int> stmts, int loop,
vector<int> amounts)

split(int stmt, int loop, string expr) tile(int stmt, int loop, int tile_size)

unroll(int stmt, int loop, int unroll_amount)

Transformations (details)

nonsingular(matrix transform)

Applies a unimodular or nonunimodular transformation
on a perfect loop nest, affecting all statements in the
loop nest. The only requirement for the matrix is that it
be invertible.

Figure from: The Composable High Level Loop Source-to-Source Translator.

Transformations (details)

split(int stmt, int loop, string expr)

Divide a loop’s iteration space using the condition
specified by expr, only one expression is allowed
(and it cannot contain logical operators).

for(i = 0; i < an; i++)
…

for(i = 0; i < min(an, 5); i++)
…

for(i = 5; i < an; i++)
…

split(…, n, “Ln < 5”)

In

Transform

Out

Transformations (details)

unroll(int stmt, int loop, int amount)

Unrolls a statement by a specified number of
iterations. Adds cleanup code if necessary.

for(i = 0; i < an; i++)
S1(i)

for(i = 0; i < an; i += 2)
S1(i)
S1(i+1)

known('an % 2 == 0')
unroll(1, n, 2)

In

Transform

Out

Other Features of CHiLL

• Users can bypass CHiLL's dependence analysis by
removing dependences from dependence graph
with: remove_dep(int stmt1, int stmt2)

• Users can print the dependences between all
statements with: print_dep()

• Users can display the iteration spaces for each
statement with: print_space()

Loop and Statement Identification
• The outermost loop of a nest is always loop level 1

• Individual loops within a loop nest are identified by their
nesting level and the statement(s) that they surround

• Statements are numbered in the order they appear from
top to bottom starting with zero

• The identification of a statement will not change after a
transformation for (i ...) {

S0
for (j ...) {
S1
for (k ...)

S2
}
for (j ...)
S3

}

Limitations of CHiLL

• Changes to the source code may change the
identifications assigned the loops and statements
• Breaks pre-existing CHiLL scripts, an alternative would be to

have users tag loops with invariant tags

• As a source-to-source translator, CHiLL has limited
bearing on the code produced by compilers
• It cannot, for example, insert pragmas or

prefetch instructions into the generated code

• Compilers may undo transformations performed by CHiLL

• Requires enough knowledge of the underlying
hardware to generate an optimization strategy

Applications of CHiLL

• CHiLL has been used as the backend for auto-tuning
frameworks, such as Active Harmony (Chen, 2009)

• Employs empirical search to identify a
variation that best meets a specific optimization
criteria, usually performance

• Active Harmony with CHiLL auto-tuned:
• Matrix Multiply (MM), for a 2.36x speedup
• Triangular Solver (TRSM), for a 3.62x speedup
• Jacobi, for a 1.35x speedup

• MM performed within 20% of ATLAS (a self-tuning
library)

Conclusions

• Transformations can improve the performance of
programs

• CHiLL allows users to apply transformations to their
programs in an easy way, that does not affect
readability

• CHiLL automatically verifies the correctness of user-
specified transformations using dependence
analysis

• CHiLL has a reasonably complete set of
transformations, encompassing most of the
common transformations

Multi-Transform Example

