
Legion: Expressing Locality and
Independence with Logical Regions

Authors: Bauer, M., Treichler, S., Slaughter, E., Aiken, A.
@International Conference on Supercomputing (SC 2012)

Presented by Alexey Voronin
For CSE598APK-FA18 @UIUC

Outline
● What is Legion
● Design Goals
● Programming Model

○ Data
○ Tasks

● Example
● Mapping Interface
● Run Time System
● Conclusion
● Afterword

Legion & Regent
● Legion

○ A data-centric programming model
○ Asynchronous many task C++ runtime system

● Regent
○ Programming language for legion programming

model
○ Current implementation is embedded in Lua
○ Has an optimizing compiler

Regent Stack

System Architecture

System Architecture

Focus of the talk

Legion/Regent Design Goals
● Programmability

○ Sequential Semantics
■ Readable code
■ Parallelism extracted automatically

● Throughput oriented
○ Latency of single task is irrelevant
○ Overall time is what matters
○ Good performance on heterogeneous architectures

● Run time decision making
○ Asynchronous execution
○ Runtime decision making because of software/hardware

dynamics

Legion/Regent Design Goals
● Programmability

○ Sequential Semantics
■ Readable code
■ Parallelism extracted automatically

● Throughput oriented
○ Latency of single task is irrelevant
○ Overall time is what matters
○ Good performance on heterogeneous architectures

● Run time decision making
○ Asynchronous execution
○ Runtime decision making because of software/hardware

dynamics

How?
Every core has

- queue of independent work
- queue of transfers to do

Minimize synchronization points

Separation of Concerns

High Level View of Legion

*(pic source in comments)

Logical Regions
● Typed Collection

○ Structured (like arrays)
○ Unstructured (like pointer data structures)

Suppose we want an array of cell_ts:

In Legion it would look like this -

Field Space

In
de

x
Sp

ac
e

Structured Logical Regions

Field Space

In
de

x
Sp

ac
e Subregion/Partition ->Task

Subregion/Partition ->Task

● Regions are split into partitions
○ Enables parallelism and allows tasks to run on each piece
○ Same data can be partitioned multiple (overlapping) ways

Tasks
● Units of parallel execution
● Runs until block or terminate
● Task that takes region arguments must declare what type of privileges it has

in the region
○ Reads, writes, reduce

● Legion allows the user to define multiple different variants of the same task
○ CPU, GP, CPU that supports AVX instructions, etc.
○ Each variant is up to the user to implement
○ Mapper chooses which variant to use

Electrical Circuit Simulation Example
The circuit consists of a collection of wires and nodes where wires meet.
At each time step the simulation calculates currents, distributes charges, and
updates voltages.

How to group data into regions?
How are regions partitioned into subregions?

Electrical Circuit Simulation Example
How to group data into regions?
How are regions partitioned into subregions?

Regions:
- Nodes

- Private
- Shared
- Ghost

- Wires

Piec
e 1

Piece 2

Piece 3

Circuit Example

This region tree data structure plays an
important role in scheduling tasks for
out-of-order execution

Specifies that the regions are accessed
with read-write privileges and
exclusive coherence (i.e., no other task
can access these two regions
concurrently).

Specifies that the regions are accessed
with read-write privileges and exclusive
coherence (i.e., no other task can
access these two regions concurrently).

Specifies that the regions are accessed
with read-write privileges and exclusive
coherence (i.e., no other task can
access these two regions concurrently).

spawn indicates a task call.
→ parallelism

interpass dependencies are
determined automatically based on
the region access declarations.

Circuit Example (cont.)

Circuit Example (cont.)

Legion uses tasks’ region arguments to compute which tasks can run in parallel

Mapping Interface
● Isolates mapping decisions from application code
● Gives programmers control over where tasks run and

where region instances are placed
● Allows for dynamic decision making based on input data
● Currently done at Legion level

Properties:

● Program correctness is unaffected by mapper decisions
● Isolates machine-specific decisions to the mapper,

resulting in portability of Legion programs

Mapping Interface
Consists of 10 methods that Legion runtime system call for mapping
decisions.
A mapper implementing these methods has access to following properties
● List of processors and their type (e.g. CPU, GPU)
● List of memories visible to each processor
● Related latencies and bandwidths

Three most important interface calls:
● select_initial_processor
● permit_task_steal
● map_task_region

Mapping Interface
Three most important interface calls:

● select_initial_processor
○ SOOP will ask for a processor for a task t
○ Mapper can keep task t local or send it to any other processor

● permit_task_steal
○ SOOP asks which tasks can be stolen
○ If no stealing allowed, return empty set

● map_task_region
○ For each logical region r used by a task, a SOOP asks for a prioritized list of memories where

a physical instance of r should be placed
○ Mapper returns a priority list of memories in which the SOOP should attempt to either reuse or

create a physical instance of r

Default Mapping Interface
Legion provides a default mapping interface for a quick start:

● select_initial_processor
○ Mapper checks the type of processors for which task t has implementations
○ If the fastest implementation is for the local processor, the mapper keeps t local

● permit_task_steal
○ Mapper inspects the logical regions for the task being stolen and marks that other tasks using

the same logical regions should be stolen as well

● map_task_region
○ Select the final (set of) processor(s) that the task will be executed on
○ Select the variant of the task to execute
○ Select the physical instances to hold the data for each logical region
○ Optionally select the task priority

Software Out of Order Processor (SOOP)

Control flow graph of one step on one node of
a mini app *(pic source in comments)

● Dynamically schedules a stream of tasks
● Constrained by region dependences
● Pipelined, distributed, and extracts nested

parallelism from subtasks
● Must hide extremely long latencies

○ Deferred execution model
■ Tasks run until they block or terminate
■ Blocking does not prevent independent

work from being done
■ Blocking does prevent the task from

continuing and launching more tasks

More on (Non-)Blocking Execution

● Futures
○ Objects which represent a pending return value from a task
○ Two ways to use them,

■ Blocking
● Task pauses until the subtask that is completing the

future returns (bad for performance)
■ Non-blocking

● Can pass it as an argument to a function, which won’t
execute until the result becomes available
○ Allows the Legion runtime to discover as much

task-level parallelism as possible.

Circuit Simulation
● Machines

○ Linux based
○ Pthreads for managing CPU threads
○ CUDA for GPUs
○ GASNet for inter-node communication

● Legion Set-up
○ Runtime handles all of the resource allocation, scheduling, and data movement across the

cluster of GPUs.
■ Mapper queries the list of GPUs in the machine and identifies each GPU’s framebuffer

memory and zero-copy memory
■ Circuit partitions are assigned a home GPU in round-robin fashion

Tasks and data for the circuit simulation on a cluster of GPUs

E
xecution Tim

eline

Circuit simulation speed relative to single-GPU implementation

Circuit simulation speed relative to single-GPU implementation

Applications Using Legion
● Snap

○ Neutral Particle Transport mini-app
○ Results

■ Different mappers allows the application to specialize itself for
different target architectures

■ Verbose codebase due to many tasks variants
■ Legion specific calls amount to only in 2% of overall code

● Legion Version of High Performance Conjugate Gradients (HPCG) Benchmark
○ No performance results published

● Lux
○ A distributed multi-GPU system for fast graph processing.
○ Much better multi-GPU performance than competitors, mostly due to

smarter load balancing

Conclusion
Legion Goals

● High Performance
● Performance Portability
● Programmability (using sequential semantics)

Central role of Legion

● Schedule tasks in a way that preserves “locality” and “independence”
● Determine when to run the tasks

What legion doesn’t do

● Automatically generate tasks
● Automatically map tasks/data to hardware

Afterword
● Don’t spend too much on the paper
● Go to https://legion.stanford.edu

○ Tutorials
■ Rudimentary

○ Bootcamp
■ 20+ hours of ‘getting started’ videos

● Regent
● ATPESC training video
● Asynchronous Many-Task Runtime System Analysis and Assessment for

Next Generation Platforms Report (Sandia, 2015)
● Copper Mountain Conference on Multigrid Methods Presentation (2015)

https://legion.stanford.edu
http://regent-lang.org/
https://www.youtube.com/watch?v=aQinPy3jeSE&list=PLGj2a3KTwhRZ27MGmWkskykQGsSPmrMi_&index=6
https://share-ng.sandia.gov/darma/_assets/documents/L2Debrief-presentation.pdf
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-15-22037

