Legion: Expressing Locality and
Independence with Logical Regions

Authors: Bauer, M., Treichler, S., Slaughter, E., Aiken, A.
@International Conference on Supercomputing (SC 2012)

Presented by Alexey Voronin
For CSE598APK-FA18 @UIUC

Outline

e Whatis Legion
e Design Goals

Programming Model
o Data
o Tasks

Example

Mapping Interface
Run Time System
Conclusion
Afterword

Legion & Regent

Lua
Host language

e Legion
o A data-centric programming model
o Asynchronous many task C++ runtime system

e Regent
o Programming language for legion programming
model

Current implementation is embedded in Lua
Has an optimizing compiler

Regent Stack

System Architecture

Compiled
Regent
Applications

Regent Default Custom

Compiler C++ Legion Applications Mapper Mappers

Legion C++ Runtime API Mapper Interface

Legion Runtime

Realm Runtime

| e s e |

Additional
I Modules I

R p—— |

CUDA

System Architecture

Compiled

Regent Focus of the talk
Applications

Regent Default Custom

Compiler C++ Legion Applications Mapper Mappers

Legion C++ Runtime API Mapper Interface

Legion Runtime

Realm Runtime

| e s e |

Additional
CUDA I Modules I

R p—— |

Legion/Regent Design Goals

e Programmability

O Sequential Semantics
m Readable code
m Parallelism extracted automatically
e Throughput oriented
o Latency of single task is irrelevant
o Overall time is what matters
o Good performance on heterogeneous architectures
e Run time decision making
o Asynchronous execution

o Runtime decision making because of software/hardware
dynamics

1AV [2A9]-apou
+snouoJayduAs jyng

[aady

‘ol \Fa

00 Sor
.’:'.g TR

LNV J13sl|OH

Legion/Regent Design Goals

Programmability

O Sequential Semantics
m Readable code
m Parallelism extracted automatically
Throughput oriented —

@)

(@)

(@)

Latency of single task is irrelevant
Overall time is what matters
Good performance on heterogeneous architectures

Run time decision making

(@)

(@)

Asynchronous execution
Runtime decision making because of software/hardware
dynamics

How?
Every core has
- queue of independent work
- queue of transfers to do
Minimize synchronization points

Separation of Concerns

Legion Programs

Legion Mappers

understanding of data transfers

data

pr‘allelis'

Behavior

" Latency hiding

High Level View of Legion

Describe parallel execution
elements and algorithmic
operations with sequential
semantics, out-of-order execution

Tasks

(execution model)
[=](inti) { rho(i) = ... }

Describe decomposition of
computational domain.

Regions
(data model)
- Privileges (read-write, read-only, reduce)

- Coherence (exclusive, atomic)
Mapper Describes how tasks and regions

should be mapped to the target
architecture

Mapper allows architecture-specific optimization without

effectina the correctness of the task or domain descrintions
*(pic source in comments)

Logical Regions
e Typed Collection

o Structured (like arrays)
o Unstructured (like pointer data structures)

Suppose we want an array of cell_ts:

typedef struct cell_t {

double temp, pres; < Field Space >
} cell_t;
o _ _ temp pres
In Legion it would look like this - zgx cell 0 temp, pres,
§ cell 1 temp, pres,
é cell 2 temp, pres,
xE/ cell 3 temp, pres,

Structured Logical Regions

Regions are split into partitions

(@)

(@)

Enables parallelism and allows tasks to run on each piece
Same data can be partitioned multiple (overlapping) ways

<Index Space>

< Field Space >

temp

pres

cell 0

temp,

pres,

cell 2

temp,

cell 1 temp! pres;

pres,

cell 3

temp,

pres,

Subregion/Partition ->Task

Subregion/Partition ->Task

Tasks

e Units of parallel execution
e Runs until block or terminate
e Task that takes region arguments must declare what type of privileges it has
in the region
o Reads, writes, reduce

e Legion allows the user to define multiple different variants of the same task

o CPU, GP, CPU that supports AVX instructions, etc.
o Each variant is up to the user to implement
o Mapper chooses which variant to use

Electrical Circuit Simulation Example

The circuit consists of a collection of wires and nodes where wires meet.
At each time step the simulation calculates currents, distributes charges, and
updates voltages.

How to group data into regions?
How are regions partitioned into subregions?

Electrical Circuit Simulation Example

How to group data into regions?
How are regions partitioned into subregions?

Regions:
- Nodes

- Private
: - Shared
Piece 2 - Ghost
- Wires

Circuit Example

(d) S
Fig. 1.

(e) gi
Partitions of r_all_nodes.

all nodes

p_nodes_pvs

T TN S e

p_pvt_nodes/ % p_shr_nodes /4 p_ghost_nodes

(a) Node region tree.

This region tree data structure plays an
important role in scheduling tasks for
out-of-order execution

[
N - O

)

[TCR RS S S S T
N - LY I O

"~
=]

30

struct Node { float voltage, new_charge, capacitance; };
struct Wire(rn) { Node@rn in_node, out_node; float current, ... ; };
struct Circuit { region r_all_nodes; /* contains all nodes for the circuit */
region r_all_wires; /* contains all circuit wires */ };
struct CircuitPiece {
region rn_pvt, rn_shr, rn_ghost: /* private, shared, ghost node regions */
region rw_pvt; /¥ private wires region */ }.

Specifies that the regions are accessed

void simulate_circuit(Circuit ¢, float dt) : RWE(c.r_all_nodes, c.r_all_wires) | mu—m)p with read-write privileges and

1
// Partition of wires into MAX_PIECES pieces
partition(disjoint) p_wires = c.r_all_wires.partition(wire_owner_map);
// Partition nodes into two parts for all—private vs. all—shared
partition(disjoint) p_nodes_pvs = c.r_all_nodes.partition(node_sharing map):

// Partition all—private into MAX_PIECES disjoint circuit pieces
partition (disjoint) p_pvt_nodes = p_nodes_pvs[0].partition(node_owner_map);
// Partition all—shared into MAX_PIECES disjoint circuit pieces
partition (disjoint) p_shr_nodes = p_nodes_pvs[1].partition(node_owner_map);
// Partition all—shared into MAX_PIECES ghost regions, which may be aliased

partition (aliased) p_ghost_nodes = p_nodes_pvs|1].partition(node_neighbor_map);

CircuitPiece pieces[MAX_PIECES]:

for(i = 0; 1 < MAX_PIECES; i++)
pieces[i] = { rn_pvt: p_pvt_nodes[i], rn_shr: p_shr_nodes][i],

rn_ghost: p_ghost_nodes[i], rw_pvt: p_wires[i] }:

for (t = 0; t < TIME_STEPS:; t++) {
spawn (i = 0; i < MAX_PIECES; i++) calc_new_currents(pieces|i]);
spawn (i = 0; i < MAX_PIECES; i++) distribute_charge(pieces[i], dt);
spawn (i = 0; i < MAX_PIECES; i++) update_voltages(pieces]i]):

}

}

exclusive coherence (i.e., no other task
can access these two regions
concurrently).

[
N - O

)

[TCR RS S S S T
N - LY I O

"~
=]

30

struct Node { float voltage, new_charge, capacitance; };
struct Wire(rn) { Node@rn in_node, out_node; float current, ... ; };
struct Circuit { region r_all_nodes; /* contains all nodes for the circuit */

region r_all_wires; /* contains all circuit wires */ };

struct CircuitPiece {

region rn_pvt, rn_shr, rn_ghost: /* private, shared, ghost node regions */
region rw_pvt; /¥ private wires region */ }.

Specifies that the regions are accessed

void simulate_circuit(Circuit ¢, float dt) : RWE(c.r_all_nodes, c.r_all_wires) | mu—m)p with read-write privileges and exclusive

1

coherence (i.e., no other task can

// Partition of wires into MAX_PIECES pieces access these two regions Concurrenﬂy)_
partition(disjoint) p_wires = c.r_all_wires.partition(wire_owner_map);

// Partition nodes into two parts for all—private vs. all—shared

partition(disjoint) p_nodes_pvs = c.r_all_nodes.partition(node_sharing map):

// Partition all—private into MAX_PIECES disjoint circuit pieces

partition (disjoint) p_pvt_nodes = p_nodes_pvs[0].partition(node_owner_map);

// Partition all—shared into MAX_PIECES disjoint circuit pieces

partition (disjoint) p_shr_nodes = p_nodes_pvs[1].partition(node_owner_map);

// Partition all—shared into MAX_PIECES ghost regions, which may be aliased
partition (aliased) p_ghost_nodes = p_nodes_pvs|1].partition(node_neighbor_map);

}

CircuitPiece pieces[MAX_PIECES]:
for(i = 0; 1 < MAX_PIECES; i++)
pieces[i] = { rn_pvt: p_pvt_nodes[i], rn_shr: p_shr_nodes][i],
rn_ghost: p_ghost_nodes[i], rw_pvt: p_wires[i] }:
for (t = 0; t < TIME_STEPS:; t++) {
spawn (i = 0; i < MAX_PIECES; i++) calc_new_currents(pieces|i]);
spawn (i = 0; i < MAX_PIECES; i++) distribute_charge(pieces[i], dt);
spawn (i = 0; i < MAX_PIECES; i++) update_voltages(pieces]i]):
}

[S RS A S N S I S N I S~
XN DN B W N - D

30
31
32
33
34
35
36

struct Node { float voltage, new_charge, capacitance; };
struct Wire(rn) { Node@rn in_node, out_node; float current, ... ; };
struct Circuit { region r_all_nodes; /* contains all nodes for the circuit */
region r_all_wires; /* contains all circuit wires */ };
struct CircuitPiece {
region rn_pvt, rn_shr, rn_ghost: /* private, shared, ghost node regions */
region rw_pvt; /¥ private wires region */ }.

void simulate_circuit(Circuit ¢, float dt) : RWE(c.r_all_nodes, c.r_all_wires)

1
// Partition of wires into MAX_PIECES pieces
partition(disjoint) p_wires = c.r_all_wires.partition(wire_owner_map);
// Partition nodes into two parts for all—private vs. all—shared
partition(disjoint) p_nodes_pvs = c.r_all_nodes.partition(node_sharing map):

Specifies that the regions are accessed
memmm) With read-write privileges and exclusive

coherence (i.e., no other task can

access these two regions concurrently).

// Partition all—private into MAX_PIECES disjoint circuit pieces
partition (disjoint) p_pvt_nodes = p_nodes_pvs[0].partition(node_owner_map);
// Partition all—shared into MAX_PIECES disjoint circuit pieces
partition (disjoint) p_shr_nodes = p_nodes_pvs|1].partition(node_owner_map);
// Partition all—shared into MAX_PIECES ghost regions, which may be aliased

partition (aliased) p_ghost_nodes = p_nodes_pvs|1].partition(node_neighbor_map);

CircuitPiece pieces[MAX_PIECES]:
for(i = 0; 1 < MAX_PIECES: i++)
pieces[i] = { rn_pvt: p_pvt_nodes[i], rn_shr: p_shr_nodes]i],

rn_ohost: n ohost nodeslil rw nvt: n wireslil -
= P==5 - (S8 =I P= 8 e

spawn indicates a task call.
— parallelism

for (t = 0; t < TIME_STEPS: t++) {
spawn (i = 0; i < MAX_PIECES; i++) calc_new_currents(pieces|i]);
spawn (i = 0; i < MAX_PIECES; i++) distribute_charge(pieces[i], dt);
spawn (i = 0; i < MAX_PIECES; i++) update_voltages(pieces]i]):

}

interpass dependencies are
determined automatically based on
the region access declarations.

}

Circuit Example (cont.)

-

// ROE = Read—Only— Exclusive
void calc_new_currents(CircuitPiece piece):
RWE(piece.rw_pvt), ROE(piece.rn_pvt, piece.rn_shr, piece.rn_ghost) {
foreach(w : piece.rw_pvt)
w—current = (w—in_node—voltage — w—rout_node—voltage) / w—resistance;
}
// RdA = Reduce—Atomic

void distribute_charge(CircuitPiece piece, float dt):
ROE(piece.rw_pvt), RdA(piece.rn_pvt, piece.rn_shr, piece.rn_ghost) {
foreach(w : piece.rw_pvt) {
w—rin_node—new_charge += —dt * w—current;
w—rout_node—new_charge += dt * w—current;

}
}

void update_voltages(CircuitPiece piece): RWE(piece.rn_pvt, piece.rn_shr) {
foreach(n : piece.rn_pvt, piece.rn_shr) {
n—voltage += n—new_charge / n—capacitance;
n—new_charge = 0;
}
}

Circuit Example (cont.)

-

37 // ROE = Read—Only— Exclusive

38 void calc_new_currents(CircuitPiece piece):

39 |RWE(piece.rw_pvt), ROE(piece.rn_pvt, piece.rn_shr, piece.rn_ghost)|{
40 foreach(w : piece.rw_pvt)

41 w—current = (w—in_node—voltage — w—rout_node—voltage) / w—rresistance;
2 }

43 // RdA = Reduce—Atomic

44 void distribute_charge(CircuitPiece piece, float dt):

45 |ROE(piece.rw_pvt), RdA(piece.rn_pvt, piece.rn_shr, piece.rn _ghost)|{
46 foreach(w : piece.rw_pvt) {

47 w—rin_node—new_charge += —dt * w—current;

48 w—rout_node—new_charge += dt * w—current;

49 }

50}

51

52 void update_voltages(CircuitPiece piece): |RWE(piece.m_pvt, piece.m_shr)| {
53 foreach(n : piece.rn_pvt, piece.rn_shr) {

54 n—voltage += n—new_charge / n—capacitance;

55 n—new_charge = 0;

56 }

57

Legion uses tasks’ region arguments to compute which tasks can run in parallel

Mapping Interface

[=](int i) { rho(i) = ... }

e Isolates mapping decisions from application code

e Gives programmers control over where tasks run and
where region instances are placed

e Allows for dynamic decision making based on input data

e Currently done at Legion level

Properties:

e Program correctness is unaffected by mapper decisions
e Isolates machine-specific decisions to the mapper,
resulting in portability of Legion programs

Mapping Interface

Consists of 10 methods that Legion runtime system call for mapping
decisions.
A mapper implementing these methods has access to following properties
e List of processors and their type (e.g. CPU, GPU
e List of memories visible to each processor , * Memories

. _ Processors - GLOBAL
e Related latencies and bandwidths - Loc - SYSTEM
- TOC - RDMA
- PROC_SET - FRAME_BUFFER
Three most important interface calls: Sumoy ZERO. 00PY
e select initial_processor - HDFA

e permit task steal
e map_ task region

Mapping Interface

Three most important interface calls:

e select initial_processor
o SOOP will ask for a processor for a task ¢
o Mapper can keep task t local or send it to any other processor
e permit task steal
o SOOP asks which tasks can be stolen
o If no stealing allowed, return empty set
e map_task region
o For each logical region r used by a task, a SOOP asks for a prioritized list of memories where
a physical instance of r should be placed

o Mapper returns a priority list of memories in which the SOOP should attempt to either reuse or
create a physical instance of r

Default Mapping Interface

Legion provides a default mapping interface for a quick start:

e select initial_processor
o Mapper checks the type of processors for which task t has implementations
o If the fastest implementation is for the local processor, the mapper keeps t local
e permit task steal
o Mapper inspects the logical regions for the task being stolen and marks that other tasks using
the same logical regions should be stolen as well
e map_task region
Select the final (set of) processor(s) that the task will be executed on
Select the variant of the task to execute
Select the physical instances to hold the data for each logical region
Optionally select the task priority

O O O O

Software Out of Order Processor (SOOP)

e Dynamically schedules a stream of tasks
e Constrained by region dependences
e Pipelined, distributed, and extracts nested

parallelism from subtasks

e Must hide extremely long latencies

o Deferred execution model

Tasks run until they block or terminate
Blocking does not prevent independent

work from being done

Blocking does prevent the task from
continuing and launching more tasks

§ e 48
..-:%"; " e
G s - b
o q'"‘;, ' T
- (3 R
5 g e
.'1"! . 13 g'u-*'
! 1L Sl o TES
~ '}i’ - e
: & : ‘j;.u.-' »
. - |y
”- :. ,: > .-'
:‘ ' " s

Control flow graph of one step on one node of
a mini app *(pic source in comments)

More on (Non-)Blocking Execution

e Futures
o Objects which represent a pending return value from a task
o Two ways to use them,
m Blocking
e Task pauses until the subtask that is completing the
future returns (bad for performance)
m Non-blocking
e Can pass it as an argument to a function, which won't
execute until the result becomes available
o Allows the Legion runtime to discover as much
task-level parallelism as possible.

Circuit Simulation

e Machines
o Linux based
o Pthreads for managing CPU threads
o CUDA for GPUs
o GASNet for inter-node communication
e Legion Set-up
o Runtime handles all of the resource allocation, scheduling, and data movement across the
cluster of GPUs.
m Mapper queries the list of GPUs in the machine and identifies each GPU’s framebuffer
memory and zero-copy memory
m Circuit partitions are assigned a home GPU in round-robin fashion

Tasks and data for the circuit simulation on a cluster of GPUs

aul[aWi| UonNI8xg

<

i-th GPU DRAM

Calc New Currents
w, : RWE p, : ROE
w,: ROE g :ROE

P

Distribute Charge
w,:ROE p,: RWE
s :RdS ¢ :RdS

Update Voltage
p:RWE s :RWE

Calc New Currents
w,: RWE p,:ROE
s,: ROE g¢,:ROE

i-th Zero-Co

Y

GASNet Mem

S

9

All-
Shared
Nodes

Key
«— Copy Operation
<« — Reduction Operation
- |[_] Valid Data Instance

I_ _| Stale Data Instance
* Reduction Instance

Reductions
| from other
nodes

Copies
to other
nodes

>

Copies
— from other
nodes

. Copies
to other
nodes

Circuit simulation speed relative to single-GPU implementation

Speedup vs. Hand-Coded Single GPU

70

T T T

10
60- & ¢
[=R=
|m =

50-EO-O

Linear ;
Keeneland P=48}
Keeneland P=96§
Viz P=48 :
Viz P=96

Sapling P=48

Sapling P=96

Total GPUs

Cluster | Sapling Viz Keeneland
Nodes 4 10 32 (120)
CPUs/Node 2x Xeon 5680 2x Xeon 5680 2x Xeon 5660
HyperThreading on off off
GPUs/Node 2x Tesla C2070 5x Quadro Q5000 3x Tesla M2090
DRAM/Node 48 GB 24 GB 24 GB
Infiniband 2x QDR QDR 2x QDR

Circuit simulation speed relative to single-GPU implementation

Speedup vs. Hand-Coded Single GPU

70 - - :
' Linear ; :
Keeneland P=48}
Keeneland P=96 |
Viz P=48 :
Viz P=96
Sapling P=48
Sapling P=96

{0 <
oo
{o o
II

50‘%0—0

Total GPUs

Cluster |

Sapling

Viz Keeneland

Percentage of Execution Time

Nodes 4

CPUs/Node
HyperThreading
GPUs/Node
DRAM/Node
Infiniband

100f
90
80
70f
60
50F
401
301
20F
10r

on

48 GB
2x QDR

2x Xeon 5680

2x Tesla C2070

10
2x Xeon 5680
off
5x Quadro Q5000
24 GB
QDR

32 (120)
2x Xeon 5660
off
3x Tesla M2090
24 GB
2x QDR

I Application
I Mapper

[SOOP Runtime
1 oS

HEl Communication

4

8 16
Node Count

32

(b) Overhead of circuit simulation on Keeneland with 3 GPUs/node.

Applications Using Legion

e Snap
o Neutral Particle Transport mini-app
o Results

m Different mappers allows the application to specialize itself for
different target architectures
m Verbose codebase due to many tasks variants
m Legion specific calls amount to only in 2% of overall code
e Legion Version of High Performance Conjugate Gradients (HPCG) Benchmark
o No performance results published
e Lux
o A distributed multi-GPU system for fast graph processing.

o Much better multi-GPU performance than competitors, mostly due to
smarter load balancing

Conclusion

Legion Goals

e High Performance
e Performance Portability
e Programmability (using sequential semantics)

Central role of Legion

e Schedule tasks in a way that preserves “locality” and “independence”
e Determine when to run the tasks

What legion doesn'’t do

e Automatically generate tasks
e Automatically map tasks/data to hardware

Afterword

e Don’t spend too much on the paper
e Go to https://legion.stanford.edu
o Tutorials
m Rudimentary
o Bootcamp
m 20+ hours of ‘getting started’ videos
e Regent
e ATPESC training video
e Asynchronous Many-Task Runtime System Analysis and Assessment for
Next Generation Platforms Report (Sandia, 2015)
e Copper Mountain Conference on Multigrid Methods Presentation (2015)

https://legion.stanford.edu
http://regent-lang.org/
https://www.youtube.com/watch?v=aQinPy3jeSE&list=PLGj2a3KTwhRZ27MGmWkskykQGsSPmrMi_&index=6
https://share-ng.sandia.gov/darma/_assets/documents/L2Debrief-presentation.pdf
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-15-22037

