
Kokkos: Performance, 
Portability and Productivity 

H. Carter Edwards, Christian R Trott, Daniel Sunderland

Sandia National Laboratories

Slides prepared by Vikram Sharma Mailthody for CS598APK course at UIUC.

The paper goes over abstractions, APIs and some unit test results on different 
applications



Timeline

Stolen from Kokkos website

Paper coverage



Motivation

Multicore Manycore GPU CPU + GPU

Power9 
CPU

DDR4 (256GB)

Volta V100
16GB

Volta V100
16GB

120GB/s

NVLink
150GB/s

Power9 
CPU

DDR4 (256GB)

Volta V100
16GB

Volta V100
16GB

120GB/s

NVLink
150GB/s

X-bus 
64GB/s



Motivation
• Many core –threads     Memory per thread      and Heterogeneity 

• To meet HPC requirement and maintain scalability (load balance, 
resilience)
• Need to exploit fine-grain parallelism offered by diverse architecture

• Shift from MPI-Only model

• Major obstacle to performance portability is the diverse and conflicting 
set of constraints on memory access patterns across devices. 

Multicore Manycore GPU CPU + GPU

Power9 
CPU

DDR4 (256GB)

Volta V100
16GB

Volta V100
16GB

120GB/s

NVLink
150GB/s

Power9 
CPU

DDR4 (256GB)

Volta V100
16GB

Volta V100
16GB

120GB/s

NVLink
150GB/s

X-bus 
64GB/s



Motivation

• Contemporary programming 
models – Good for manycore 
parallelism

• But fail to address memory
access patterns



Goals

• To build a C++ library that is efficient 
• Template based library

• Obtain same performance as a variant of code that is written to the 
specific device
• Support best data layout strategies specific to architecture

• That provides a programming model with performance portability 
across diverse devices
• By unifying abstractions for fine-grain parallelism and memory access 

patterns

• Targeted to scientific and engineering codes. 
• Supports from sparse linear algebra to broadly usable libraries (mini – apps 

specific)



Kokkos: Programming model abstractions
Kokkos

Slide taken (and modified) from 
Kokkos Tutorial deck

2018

Arch dependent index maps, Views, subviews, user specific

Data structures

Memory space (where)

Memory layouts (How)

Memory Traits(what)

Multiple levels, logical space to support UVMs)

Access intent (stream, random)
Access behavior (atomic)
Specialized load primitives - textures

Parallel Execution

Execution space (where)

Execution pattern (How)

Execution Policy(what)

Support heterogenous, N -levels

Parallel_for/reduce/scan, nesting, task 
spawn

Range, team, etc
Dynamic/static scheduling
Non-persistent scratch-pads, etc



Kokkos: PM abstractions - Fundamentals

1. Execute computation kernels are in fine-grain data parallel within 
an execution spaces.  

2. Computational kernels operate on multidimensional arrays resides
in memory spaces.

3. Multidimensional arrays supports polymorphic data layout.

In other words:

• Execution space is just where the program executes.  (Threads in 
execute space, data in memory space. )

• Execution space has accessibility and performance relationship with
memory space. (CPU-GPU – UVM)



Polymorphic data layout

Lets say we have a base abstract class with 
implementation derived1, derived2, and derived3
Then, memory layout of std::vector<base*> shown 
above.

Adjacent elements are not allocated continuously. 
Issues with dynamic polymorphism. 

Even though the derived types are unknown, they 
typically become available during compile time. 

Build a container with internal data structure 
pointing to as many vectors or segments as there 
are derived class.

SOA AOS



Kokkos: Multidimensional arrays
1. Consists of 

1. a set of datums {𝑥𝑖} of the same value type 

2. an index 𝑋𝑠 defined by the Cartesian product of integer ranges

3. A layout 𝑋𝐿 - a bijective map between the previous two.

2. A function contains
1. A sequence of nested loops over dimensions of an array 𝑋𝑠

2. Access array datums via the layout 𝑋𝐿

To change the memory access pattern – one either needs to change the
memory layout or the dimension ordering of 𝑋𝑠

Kokkos array layouts are chosen at compile time!
Using “Views”



Kokkos: 
Arrays –
Declaration, 
allocation 
and access

Views

• C++ class with a pointer to array data and metadata

• Semantics similar to std::shared_ptr

• Supports multi-dimensions - scalar, vector, matrix ...

• Size and #dimension is fixed at the compile time 

• Copy constructs and assignments are shallow

• Automatic deallocation when last view of the 
memory is destroyed or reassigned. (ref counting)

• Supports deep_copy. Layout, memory traits and 
memory space. 



Kokkos: Arrays – Declaration, allocation and access

Other Available memory spaces: HostSpace, CudaSpace, CudaUVMSpace, HostMirror, etc. 

Other Available Behavioral traits: StreamingLoad, StreamingStore, RandomRead, RandomWrite

Memory Traits: Atomics, ReadOnce, ReadWrite, RandomAccess



Kokkos: Memory Access – quick look

• Every View has a Layout set at compile-time through a template 
parameter.

• LayoutRight (row major) and LayoutLeft (column major) are common.

• Views in HostSpace default to LayoutRight and Views in CudaSpace
default to LayoutLeft. (caching vs coalesced)

• Layouts are extensible and flexible.

• Kokkos maps parallel work indices and multidimensional array layout 
for performance portable memory access patterns.

• There is nothing in OpenMP, OpenACC, or OpenCL to manage layouts. 
You'll need multiple versions of code or pay the performance 

penalty



Kokkos: Parallel Execution

Kokkos maps work to the cores: 

• Each iteration of computation body is a unit of work 

• An iteration index identifies particular unit of work 

• Iteration range identifies the amount of work

Kokkos maps each iteration indices to cores and then run them in 
parallel. 

for( idx = 0; idx < Max; ++idx){

sum[idx] = calSum(..data..);

}



Kokkos: Parallel Execution
Computation bodies or kernels are given as functors or function 
objects.

ParallFunctor functor;

Kokkos::parallel_for(numIteration, functor); 

Work items are assigned to functors one-by-one

struct Functor{

void operator()(const size_t idx) const {…}

}



Kokkos: Parallel Execution
Computation bodies or kernels are given as functors or function 
objects.

ParallFunctor functor;

Kokkos::parallel_for(numIteration, functor); 

Work items are assigned to functors one-by-one

struct Functor{

void operator()(const size_t idx) const {…}

}



Kokkos: Parallel Execution
Computation bodies or kernels are given as functors or function 
objects.

ParallFunctor functor;

Kokkos::parallel_for(numIteration, functor); 

Work items are assigned to functors one-by-one

struct Functor{

void operator()(const size_t idx) const {…}

}

Kokkos runtime does not guarantee concurrency and ordering

Parallel functor body must have access to all the data it needs 
through functor’s data members 



Kokkos: What more?
Taken from the 
reports. 



Kokkos: Parallel Execution - AXPBY
void axpby(int n, double* z, double alpha, const double* x,  
double beta, const double* y){

for(int i=0; i<n; i++)

z[i] = alpha*x[i] + beta*y[i];

}

void axpby(int n, View<double*> z, double alpha, View<const 
double*> x, double beta, View<const double*y){

parallel_for("AXpBY", n, KOKKOS_LAMDA (const int& i){

z[i] = alpha*x[i] + beta*y[i];

});

}

Parallel pattern: for loop



Kokkos: Parallel Execution - AXPBY
void axpby(int n, double* z, double alpha, const double* x,  
double beta, const double* y){

for(int i=0; i<n; i++)

z[i] = alpha*x[i] + beta*y[i];

}

void axpby(int n, View<double*> z, double alpha, View<const 
double*> x, double beta, View<const double*y){

parallel_for("AXpBY", n, KOKKOS_LAMDA (const int& i){

z[i] = alpha*x[i] + beta*y[i];

});

}

String Label for debug



Kokkos: Parallel Execution - AXPBY
void axpby(int n, double* z, double alpha, const double* x,  
double beta, const double* y){

for(int i=0; i<n; i++)

z[i] = alpha*x[i] + beta*y[i];

}

void axpby(int n, View<double*> z, double alpha, View<const 
double*> x, double beta, View<const double*y){

parallel_for("AXpBY", n, KOKKOS_LAMDA (const int& i){

z[i] = alpha*x[i] + beta*y[i];

});

}

Exec Policy: do n itrs



Kokkos: Parallel Execution - AXPBY
void axpby(int n, double* z, double alpha, const double* x,  
double beta, const double* y){

for(int i=0; i<n; i++)

z[i] = alpha*x[i] + beta*y[i];

}

void axpby(int n, View<double*> z, double alpha, View<const 
double*> x, double beta, View<const double*y){

parallel_for("AXpBY", n, KOKKOS_LAMDA (const int& i){

z[i] = alpha*x[i] + beta*y[i];

});

}

Its handle: integer index



Kokkos: Parallel Execution - AXPBY
void axpby(int n, double* z, double alpha, const double* x,  
double beta, const double* y){

for(int i=0; i<n; i++)

z[i] = alpha*x[i] + beta*y[i];

}

void axpby(int n, View<double*> z, double alpha, View<const 
double*> x, double beta, View<const double*y){

parallel_for("AXpBY", n, KOKKOS_LAMDA (const int& i){

z[i] = alpha*x[i] + beta*y[i];

});

}

Loop body



Kokkos: Parallel Execution – Dot product
double dot(int n, const double* n, const double* y){

double sum = 0.0;

for(int i=0;i<n;i++)

sum += x[i] * y[i]

return sum;

}

double dot(int n, View<const double*> n, View<const double*> y){

double x_dot_y= 0.0;

parallel_reduce(“Dot”, n, KOKKOS_LAMDA( const int&i, double& sum){

sum += x[i] * y[i];

}, x_dot_y);

return x_dot_y;

}



Kokkos: Parallel Execution – Dot product
double dot(int n, const double* n, const double* y){

double sum = 0.0;

for(int i=0;i<n;i++)

sum += x[i] * y[i]

return sum;

}

double dot(int n, View<const double*> n, View<const double*> y){

double x_dot_y= 0.0;

parallel_reduce(“Dot”, n, KOKKOS_LAMDA( const int&i, double& sum){

sum += x[i] * y[i];

}, x_dot_y);

return x_dot_y;

}
Parallel pattern: loop with reduction



Kokkos: Parallel Execution – Dot product
double dot(int n, const double* n, const double* y){

double sum = 0.0;

for(int i=0;i<n;i++)

sum += x[i] * y[i]

return sum;

}

double dot(int n, View<const double*> n, View<const double*> y){

double x_dot_y= 0.0;

parallel_reduce(“Dot”, n, KOKKOS_LAMDA( const int&i, double& sum){

sum += x[i] * y[i];

}, x_dot_y);

return x_dot_y;

}
Itr index + thread-local reduction Variable. 



Kokkos: Parallel Execution – Inner product
Kokkos :: parallel_reduce (N,

KOKKOS_LAMBDA ( const int row , double & valueToUpdate ) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++ col ) {

thisRowsSum += A(row ,col) * x( col );

}

valueToUpdate += y( row ) * thisRowsSum ;

}, result );

What if we don't have enough rows to saturate the GPU?
1. Atomics

2. Thread Teams

Poor performance 
Doing each individual row with atomics is 
like doing scalar integration with atomics.



Kokkos: Parallel Execution – Inner product

High-level strategy: 

1. Do one parallel launch of 
N teams of M threads. 

2. Each thread performs 
one entry in the row. 

3. The threads within teams 
perform a reduction. 

4. The thread teams 
perform a reduction

How many threads in a team



Kokkos: Another 
example

How many lanes in a vector 
(SIMD abstraction)



Kokkos: Evaluation

miniMD

miniFE



Kokkos: Evaluation



Kokkos: Evaluation



Kokkos: Shh…! Secret…



Kokkos: Pros and cons
• Pros: 

• is a C++ library, not a new language or language extension. 
• It is widely used and backbone of Trilinos – Big package for multi-package apps
• supports clear, concise, thread-scalable parallel patterns.
• lets you write algorithms once and run on many architectures
• minimizes the amount of architecture-specific implementation details users must know. (if 

you need perf – better understand the system)
• solves the data layout problem by using multi-dimensional arrays with architecture-

dependent layouts

• Cons:
• Rewrite of complete application, need to worry about abstraction, arch, etc
• kokkos kernels are used by scientist and they don’t deal with how to write kokkos kernels! 

(that’s the complexity!)
• Not a compile time transformation
• Its TEMPLATE – unreadable.
• Surprise – some application require to device specific optimization using Kokkos to get 

performance… Ex: MiniFE.



More details/References
• https://www.sciencedirect.com/science/article/pii/S07437315140012

57

• https://github.com/kokkos/kokkos/wiki/The-Kokkos-Programming-
Guide (only few contents written)

• https://github.com/kokkos/kokkos

• https://github.com/kokkos/kokkos-tutorials

• http://on-demand.gputechconf.com/gtc/2014/presentations/S4213-
kokkos-manycore-device-perf-portability-library-hpc-apps.pdf

• http://extremecomputingtraining.anl.gov/files/2017/08/ATPESC_201
7_Track-2_7_8-3_315pm_Edwards-Kokkos.pdf

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-tutorials
http://on-demand.gputechconf.com/gtc/2014/presentations/S4213-kokkos-manycore-device-perf-portability-library-hpc-apps.pdf
http://extremecomputingtraining.anl.gov/files/2017/08/ATPESC_2017_Track-2_7_8-3_315pm_Edwards-Kokkos.pdf


Kokkos: Questions and answer

1. UVM - https://devblogs.nvidia.com/unified-memory-cuda-
beginners/

2. Views: https://github.com/kokkos/kokkos/wiki/View

3. Nested parallelism : 
https://github.com/kokkos/kokkos/wiki/HierarchicalParallelism

4. Compilation: https://github.com/kokkos/kokkos/wiki/Compiling

5. Sorry – Kokkos View is a potentially reference counted multi 
dimensional array with compile time layouts and memory space. 
(not runtime as I mentioned)

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://github.com/kokkos/kokkos/wiki/View
https://github.com/kokkos/kokkos/wiki/HierarchicalParallelism
https://github.com/kokkos/kokkos/wiki/Compiling

