Chapel

Sam White
CS 598-APK
10-12-18

Overview

e Chapter written by Bradford Chamberlain
o Excerpted from “Programming Models for Parallel
Computation”, edited by Pavan Balaji

Background and motivation
Chapel language features
Performance

Conclusions

Background

e DARPA HPCS Program (2002 - 2012)
o HPCS = High Productivity Computing Systems
o 3 vendors funded to develop new languages for high
productivity parallel programming
m IBM: X10
m Sun/Oracle: Fortress
m Cray: Chapel

Motivation

e Goals of the language:
o General Parallelism: nested data and task parallelism
o Multithreaded execution: users write tasks, not
processes
o Global-view programming: global data structures, with
ability to escape them
o Multiresolution design: allow high and low level control

Motivation

e Goals of the language:

o Control over locality: PGAS memory model
Data-centric synchronization
Clearly define the roles of the user vs the compiler
Make HPC easier to adopt
Start from scratch

O O O O

Chapel Language

e Sequential/Base language features:
o Type inference
o (Generic programming
o Object-oriented programming
o Variables can be compile-time (param) or run-time
(const) constants
o Variables can be set at command-line (config)

Chapel: Fibonacci

iter fib(n) {
var current = 0,
next = 1;

for 1 in 1..n {
yield current;
current += next;

current <=> next;

config const n = 10;

for (i, f)
writeln (

in

Chapel Language

e Rich support for arrays, domains, tuples, and iterators:
o Arrays can be multidimensional with user-defined
memory layouts
m domain: an index set, can be dense, sparse,
associative, or unstructured
o Supports promotion of scalar expressions to whole
array operations

Arrays & Domains

const HistSpace: domain(l) = {-3..3},
MatSpace = {0..#n, 0..#n},
Rows = {1l..n},
Cols: [Rows] domain(l) = [i in Rows]

var Hist: [HistSpace] int,
Mat: [MatSpace] complex,

Tris [1 In Rows]

[Cols[i]] real;

forall i in HistSpace do

Hist[i] = 0;

L

-i};

Chapel Language

e Unstructured task parallelism:

O

O

O

begin { ... }: defines an anonymous task

sync { ... }: waits on completion of all tasks in scope
sync variables for finer-grain (full/lempty bit)
synchronization

m Can be optimized for single-assignment

atomic variables for lock-free programming

10

Chapel Language

e Structured task parallelism:
o cobegin { ... }. creates tasks for each statement
m Implicit synchronization (join) between original task
and its children
o coforalliin 1..n do: for-loop with each iteration a
separate task, with implicit join at end

11

Unstructured Task Parallelism

cobegin {
producer () ;
consumer () ;
}
// ‘sync’ types store full/empty state along with value
var buff$: [0..#buffersize] sync real;

proc producer () {
var i = 0;

for .. {
i = (i+1l) % buffersize;
loliEie® [[a] = o // reads block until empty, leave full
o}
proc consumer () {
var i = 0;
while .. {
i= (i+l1l) % buffersize;
AOEIETES (4] o // writes block until full, leave empty

b}

12

Structured Task Parallelism

| coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of

Nt)| ok W
I 111 11C4 oo \
L Lillidlly /11 = v ¥ 4

tid, numTasks, here.name);

| prompt> chpl taskParallel.chpl —o taskParallel |

prompt> ./taskParallel --numLocales=2

Hello from task 1
Hello from task 2
Hello from task 2
Hello from task 1

of 2 running on
of 2 running on

of 2 running on

of 2 running on

nl033
nl032
nl033
nl032

13

Chapel Language

e Data parallelism:
o foralliin 1..n do: a for-loop with an arbitrary number
of tasks
m Mapping of iterations to tasks can be dynamic or
user-defined via domains
o reduce and scan primitives, can be user-defined

14

Data Parallelism

config const n = 1000;
var D = {l..n, 1l..n};

var A: [D] real;
forall (i,J) in D do

Ali,J] =i + (3 - 0.5)/n;
writeln (A) ;

15

Chapel Language

e PGAS provides global namespace, but difference in local
vs remote memory access is critical to performance

e |ocales
o A type used for reasoning about locality and affinity
m Can be a node, socket, core, PU, etc.
o Number of locales specified on command line
o on clause maps a task to a specific locale
m Can be combined with begin, coforall, etc.

16

Chapel Language

e Locality control cont'd
o dmapped:. domain maps allow mapping data
structures across locales
m Global-view, distributed data structures
m Enables easily porting applications from shared to
distributed memory systems
m Block, Cylic, BlockCyclic, and user-defined types

17

Distributed Data Parallelism

use CyclicDist;
config const n = 1000;

var D = {l..n; 1l..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,7) in D do

Blayal = 2 & G = 0.8}
writeln (A) ;

Chapel Language

Local parallel:

Distributed serial:

Distributed parallel:

coforall 1 in 1..msgs do
writeln (“Hello from task ”,

i);]

writeln (“Hello from locale 0!”);

on Locales[1l] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

\

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln (“Hello from task ”,

i,

“ running on locale ”, here.id);

~

19

Chapel Language

e Comparison to other parallel programming models:

O

O O O O

Language rather than library

Global-view of data

Communication is implicit, but can be reasoned about
Parallelism and locality are orthogonal

How does performance compare?

20

Chapel Performance

e Not much detail on compiler and runtime optimizations in

this overview chapter
o Chapel’'s abstractions enable various optimizations

m Limited aliasing: forall or array programming

-> vectorization

m Prefetching of remote data

m Aggregation of small messages
o But can require runtime bounds checking for locality

21

Chapel Performance

e Chapel compilation
o Default compiler generates C code, then passed to a
native compiler
m Generates aligned memory allocations
m Uses restrict and alignment hints
m Pragmas for vectorization
o Development of an LLVM Chapel backend underway

22

Chapel Performance

e No performance results here, but provided elsewhere in
various papers and presentations
o HPC benchmarks: CLBG, HPCC, Intel PRK, and
various DOE mini-apps
o Performance optimization is work in progress, with
most progress in the past ~5 years

23

Chapel Performance
e Cross-Language Benchmark Games (10/2017)

zs chapel
B csharpcore
N dart

N erlang
B fpascal
. fsharp
|44

. shc

N gnat

s ph
.\\ php

Smalltalk g mm rust.

Execution Time
(normalized to fastest entry)
I

cke PHP__Ha
OCaml [Racket = = :zp pt
N yarv

Dart] - e * ® -smallest

FD@V@S@B’B@E.Q. u . ﬁ .‘__ D Lﬂgp g Zm::n-fastest
ypescript DQ. u--Rg® ﬁ,‘ s

Chapel “ =

Compressed Code Slze (normalized to smallest entry)

Chapel Performance

e Chapel v1.7 (2013) vs v1.17 (2018)

180 I~

L7
160 be Chapel 1.17

140
120

g 100

L]

E s

=

60

40

20

LCALS Serial Time (seconds)

| Locale (x 28 cores)

25

Chapel Performance

LCALS Serial Kernels (Normalized to Ref)

EEE Chapel |.|7 ™= Reference

14
1.2
Q
E 1
|_
T 08
E
«
g 0.6
g 04
Z
0.2
0
S ~ > ¢ X
N oQ \(\\C’&gb 3 (o 8 eb\ $ b & & '}b
e/ 237 O \<°Q/ S 2P S A A
@7 o ¢ K/ <7 oo QT QV &7 S
PN & & o & N s Q
& & S s o
Q 4 &

| Locale (x 28 cores)

26

Chapel Performance

ISx Time (seconds)

N

Chapel 1.7 —@—
.8 I* Chapel 1.17 ——
6

e - -

Time (sec)

Locales (x 28 cores / locale)

Chapel Performance

ISx Time (seconds)

Chapel |.17 —®—

Time (sec)

16 32 64 128

Locales (x 36 cores / locale)

28

Chapel Performance

LCALS: Chapel 1.17 vs. Reference

LCALS Serial Kernels (Normalized to Ref)

—apel 117 Relerene

\
ANy

Normalized Time

& B & &

I Locale (x 28 cores)

LCALS

STREAM
Triad [Sx

HPCC RA

PRK
Stencil

HPCC RA: Chapel 1.17 vs. Reference

RA Performance (GUPS)

GUPS

64 28

Locales (x 36 cores / locale)

STREAM Triad: Chapel 1.17 vs. Reference

STREAM Performance (GBIs)
30000

Reerence —4—
117 o

25000

20000

Locales (x 36 cores / locale)

ISx: Chapel Now vs. Reference

I5x Time (seconds)

Time (sec)

PR 1 I

16 32 64 128

Locales (x 36 cores / locale)

PRK Stencil: Chapel Now vs. Reference

PRK Stencil Performance (Gflopls)

Gflopls

1 L

64 28

Locales (x 36 cores / locale)

29

LULESH in Chapel SO

This is the only representation-dependent code.
It specifies:
« data structure choices:
» structured vs. unstructured mesh

* local vs. distributed data
* sparse vs. dense materials arrays

 a few supporting iterators
Domain maps insulate the rest of the application
(“the science”) from these choices

C ®

30

Conclusions

e Chapelis proposed as a new productive parallel
programming language
o This book chapter focuses on its abstractions
o See Chapel publications page for ongoing work on
performance optimization:
m https://chapel-lang.org/papers.html

31

Questions?

References

e Paper:
o https://chapel-lang.org/publications/PMfPC-Chapel.pdf

e Figures:
o https://chapel-lang.org/presentations/ChapelForATPE
SC2016-presented.pdf
o https://chapel-lang.org/publications/ChapelForCUG201

8.pdf

33

https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/presentations/ChapelForATPESC2016-presented.pdf
https://chapel-lang.org/presentations/ChapelForATPESC2016-presented.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

