
Chapel
Sam White

CS 598-APK
10-12-18

Overview
● Chapter written by Bradford Chamberlain

○ Excerpted from “Programming Models for Parallel
Computation”, edited by Pavan Balaji

●

● Background and motivation
● Chapel language features
● Performance
● Conclusions

2

Background
● DARPA HPCS Program (2002 - 2012)

○ HPCS = High Productivity Computing Systems
○ 3 vendors funded to develop new languages for high

productivity parallel programming
■ IBM: X10
■ Sun/Oracle: Fortress
■ Cray: Chapel

3

Motivation
● Goals of the language:

○ General Parallelism: nested data and task parallelism
○ Multithreaded execution: users write tasks, not

processes
○ Global-view programming: global data structures, with

ability to escape them
○ Multiresolution design: allow high and low level control

4

Motivation
● Goals of the language:

○ Control over locality: PGAS memory model
○ Data-centric synchronization
○ Clearly define the roles of the user vs the compiler
○ Make HPC easier to adopt
○ Start from scratch

5

Chapel Language
● Sequential/Base language features:

○ Type inference
○ Generic programming
○ Object-oriented programming
○ Variables can be compile-time (param) or run-time

(const) constants
○ Variables can be set at command-line (config)

6

Chapel: Fibonacci

7

Chapel Language
● Rich support for arrays, domains, tuples, and iterators:

○ Arrays can be multidimensional with user-defined
memory layouts
■ domain: an index set, can be dense, sparse,

associative, or unstructured
○ Supports promotion of scalar expressions to whole

array operations

8

Arrays & Domains

9

Chapel Language
● Unstructured task parallelism:

○ begin { … }: defines an anonymous task
○ sync { … }: waits on completion of all tasks in scope
○ sync variables for finer-grain (full/empty bit)

synchronization
■ Can be optimized for single-assignment

○ atomic variables for lock-free programming

10

Chapel Language
● Structured task parallelism:

○ cobegin { … }: creates tasks for each statement
■ Implicit synchronization (join) between original task

and its children
○ coforall i in 1..n do: for-loop with each iteration a

separate task, with implicit join at end

11

Unstructured Task Parallelism

12

Structured Task Parallelism

13

Chapel Language
● Data parallelism:

○ forall i in 1..n do: a for-loop with an arbitrary number
of tasks
■ Mapping of iterations to tasks can be dynamic or

user-defined via domains
○ reduce and scan primitives, can be user-defined

14

Data Parallelism

15

Chapel Language
● PGAS provides global namespace, but difference in local

vs remote memory access is critical to performance
●

● locales
○ A type used for reasoning about locality and affinity

■ Can be a node, socket, core, PU, etc.
○ Number of locales specified on command line
○ on clause maps a task to a specific locale

■ Can be combined with begin, coforall, etc.
16

Chapel Language
● Locality control cont’d

○ dmapped: domain maps allow mapping data
structures across locales
■ Global-view, distributed data structures
■ Enables easily porting applications from shared to

distributed memory systems
■ Block, Cylic, BlockCyclic, and user-defined types

17

Distributed Data Parallelism

18

Chapel Language
Local parallel:

Distributed serial:

Distributed parallel:

19

Chapel Language
● Comparison to other parallel programming models:

○ Language rather than library
○ Global-view of data
○ Communication is implicit, but can be reasoned about
○ Parallelism and locality are orthogonal
○ How does performance compare?

20

Chapel Performance
● Not much detail on compiler and runtime optimizations in

this overview chapter
○ Chapel’s abstractions enable various optimizations

■ Limited aliasing: forall or array programming
-> vectorization

■ Prefetching of remote data
■ Aggregation of small messages

○ But can require runtime bounds checking for locality
21

Chapel Performance
● Chapel compilation

○ Default compiler generates C code, then passed to a
native compiler
■ Generates aligned memory allocations
■ Uses restrict and alignment hints
■ Pragmas for vectorization

○ Development of an LLVM Chapel backend underway

22

Chapel Performance
● No performance results here, but provided elsewhere in

various papers and presentations
○ HPC benchmarks: CLBG, HPCC, Intel PRK, and

various DOE mini-apps
○ Performance optimization is work in progress, with

most progress in the past ~5 years

23

Chapel Performance
● Cross-Language Benchmark Games (10/2017)

24

Chapel Performance
● Chapel v1.7 (2013) vs v1.17 (2018)

25

Chapel Performance

26

Chapel Performance

27

Chapel Performance

28

29

Chapel Performance

30

Conclusions
● Chapel is proposed as a new productive parallel

programming language
○ This book chapter focuses on its abstractions
○ See Chapel publications page for ongoing work on

performance optimization:
■ https://chapel-lang.org/papers.html

31

Questions?

32

References
● Paper:

○ https://chapel-lang.org/publications/PMfPC-Chapel.pdf
●

● Figures:
○ https://chapel-lang.org/presentations/ChapelForATPE

SC2016-presented.pdf
○ https://chapel-lang.org/publications/ChapelForCUG201

8.pdf

33

https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/presentations/ChapelForATPESC2016-presented.pdf
https://chapel-lang.org/presentations/ChapelForATPESC2016-presented.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

