Futhark:

Purely Functional GPU-programming with Nested Parallelism and in-place Array Updates

Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, Cosmin Oancea

Presented by: -Zaid Qureshi

Motivation

- GPUs are traditionally programmed using sequential programming languages
 - Requires expertise to exploit the parallelism provided by GPUs
- Functional programming languages provide parallelizable primitives (ie. map, reduce, scan)
 - But when compiled naively, their performance is very bad

Futhark

- Purely Functional Array programming language for GPUs
 - To ease GPU programming
- Expresses computation/parallelism using basic and streaming second-order array combinators (SOACs)
- Type system that allows expression of race-free in-place updates
- Compiler implements partial flattening to allow for more parallelism without destroying memory access patterns

Futhark Syntax

e ::= k | v(Constant/Variable) (v_1,\ldots,v_n) (Tuple) $v_1 \odot v_2$ (Apply binary operator) if v_1 then e_2 else e_3 (Array indexing) $v[v_1,\ldots,v_n]$ $v v_1 \ldots v_n$ (Function call) let $(p_1, \ldots, p_n) = e_1$ in e_2 (Let binding) v with $[v_1, \ldots, v_n] \leftarrow v$ (In-place update) loop (pv) for v < v do e(Loop) iota v ([0, ..., v - 1])replicate n v ([v, \ldots, v] of size n) **rearrange** (k) v (Rearrange dimensions) map $l v_1 \ldots v_n$ reduce $l(v_1,\ldots,v_n)v'_1\ldots v'_n$ scan $l(v_1, ..., v_n) v'_1 ... v'_n$ stream seq $l(v_1,\ldots,v_n) v'_1 \ldots v'_m$ stream seq $l v'_1 \dots v'_m$ stream red $l_1 l_2 (v_1, \ldots, v_n) v'_1 \ldots v'_m$

Basic SOACs

map
$$f [a_1, \ldots, a_n] = [f a_1, \ldots, f a_n]$$

reduce $\oplus 0_{\oplus} [a_1, \ldots, a_n] = 0_{\oplus} \oplus a_1 \oplus \ldots \oplus a_n$
scan $\oplus 0_{\oplus} [a_1, \ldots, a_n] = [a_1, \ldots, a_1 \oplus \ldots \oplus a_n]$

INPUT: nxm matrix

INPUT: nxm matrix

OUTPUT: tuple of nxm matrix, array of size n

fun main (matrix for the formula form

fun main (matrix : [n][m]f32): ([n][m]f32, [n]f32) = map (λ row f32) \rightarrow let Get sum of row f32) \rightarrow ap (λ x : f32 \rightarrow x+1.0) row let s = reduce (+) 0 row in (row',s)) matrix

fun main (matrix : [n][m]f32): ([n][m]f32, [n]f32) = map (λ row : ([m]f32, f32) \rightarrow let Return tuple of new row and sum (λ x : f32 \rightarrow x+1.0) row in (row',s)) matrix

Parallel operator sFold and Streaming Operators

sFold $(\oplus) f (v_1 \# \dots \# v_k) = (f \epsilon) \oplus (f v_1) \oplus \dots \oplus (f v_k)$

- concat ϵ - empty partition

Parallel operator sFold and Streaming Operators

stream map $f = \operatorname{sFold}(\#) f$

sFold (\oplus) $f(v_1 \# \dots \# v_k) = (f \epsilon) \oplus (f v_1) \oplus \dots \oplus (f v_k)$

- concat ϵ - empty partition

Applies *f* to each partition and then concatenates the resulting partitions

Parallel operator *sFold* and Streaming Operators

sFold (
$$\oplus$$
) $f(v_1 \# \dots \# v_k) = (f \epsilon) \oplus (f v_1) \oplus \dots \oplus (f v_k)$

= sFold (#) f

- concat ϵ - empty partition

Applies *f* to each partition and then concatenates the resulting partitions

stream_red $(\oplus) f = \operatorname{sFold} ((\oplus) * (\#)) f$

stream map f

Extends **stream_map** by allowing each chunk to produce an additional output which is reduced in parallel

Sequential Histogramming in Futhark

let counts = loop (counts = replicate k 0) for i < n do
 let cluster = membership[i]
 in counts with [cluster] ← counts[cluster] + 1</pre>

Parallel Histogramming in Futhark

Efficient Parallel Histogramming in Futhark

Efficient Parallel Histogramming in Futhark

In-Place Updates and Uniqueness Types

fun modify (n: int) (a: *[n]int) (i: int) (x: [n]int): $*[n]int = a with [i] \leftarrow (a[i] + x[i])$

- In purely functional languages array updates require copying array and updating copy (to avoid side effects)
- If it is known that the original array won't be used after the update, the update can occur in place

In-Place Updates and Uniqueness Types

fun modify (n: int) (a: *[n]int) (i: int) (x: [n]int): $*[n]int = a with [i] \leftarrow (a[i] + x[i])$

- Futhark has *uniqueness types* that allow programmer to specify function arguments that won't be referenced by the caller after the function call
 - The callee gains ownership of that argument
- An array is consumed when it is source of in-place update or when it is passed as a unique parameter.
- After the consumption point, the array or its aliases may not be used.
 - Type system checks this via aliasing rules

Aliasing Rules

- Alias sets for values produced by SOACs are empty (new copies)
- Scalar read from an array does not alias its origin array (alias set not modified)
- Array slicing aliases origin array
- Function application:
 - If the result being returned is unique the alias set is empty
 - Otherwise the result aliases all non-unique parameters
- Other rules can be found in Figure 5 of the paper

In-Place Update Checking

- Each expression *e* has a observed set of variables (*O*) and a consumed set of variables (*C*)
 - the pair <*C*,*O*> forms the occurrence trace for *e*
- Inference rules used to check uniqueness and parameter consumption (Figure 6)

Sequence JudgementIf-then-else u $\langle \mathcal{C}_1, \mathcal{O}_1 \rangle \gg \langle \mathcal{C}_2, \mathcal{O}_2 \rangle : \langle \mathcal{C}_3, \mathcal{O}_3 \rangle$ $v_1 \models \langle \mathcal{C}_1, \mathcal{O}_1 \rangle$ Inference Rule $\langle \mathcal{O}_2 \cup \mathcal{C}_2 \rangle \cap \mathcal{C}_1 = \emptyset$ $\langle \mathcal{C}_1, \mathcal{O}_1 \rangle$ $\langle \mathcal{C}_1, \mathcal{O}_1 \rangle \gg \langle \mathcal{C}_2, \mathcal{O}_2 \rangle : \langle \mathcal{C}_1 \cup \mathcal{C}_2, \mathcal{O}_1 \cup \mathcal{O}_2 \rangle$ (OCCURENCE-SEQ) $v_1 \models \langle \mathcal{C}_1, \mathcal{O}_1 \rangle$ $v_1 \models \langle \mathcal{C}_1, \mathcal{O}_1 \rangle$ $\langle \mathcal{C}_1, \mathcal{O}_1 \rangle$ $\langle \mathcal{C}_1, \mathcal{O}_1 \rangle$

If-then-else uniqueness inference rule

$$\begin{array}{c|c} v_1 \ arpropto \langle \mathcal{C}_1, \mathcal{O}_1 \rangle & e_2 \ arpropto \langle \mathcal{C}_2, \mathcal{O}_2 \rangle & e_3 \ arpropto \langle \mathcal{C}_3, \mathcal{O}_3 \rangle \\ & \langle \mathcal{C}_1, \mathcal{O}_1 \rangle \gg \langle \mathcal{C}_2, \mathcal{O}_2 \rangle : \langle \mathcal{C}_2', \mathcal{O}_2' \rangle \\ & \langle \mathcal{C}_1, \mathcal{O}_1 \rangle \gg \langle \mathcal{C}_3, \mathcal{O}_3 \rangle : \langle \mathcal{C}_3', \mathcal{O}_3' \rangle \\ \hline \\ \hline \mathbf{if} \ v_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 \ arpropto \langle \mathcal{C}_2' \cup \mathcal{C}_3', \mathcal{O}_2' \cup \mathcal{O}_3' \rangle \end{array}$$
 (SAFE-IF)

In-Place Update Checking (Example)

let $bs = map \ (\lambda(a) \rightarrow a \text{ with } [0] \leftarrow 2)$ as let d = iota m

This program passes as the function of the map consumes its parameter as

let cs = map ($\lambda(i) \rightarrow d$ with [i] $\leftarrow 2$) (iota n)

This program doesn't pass as it implies d, bound outside the function of the map, is consumed for every iteration of the map

Streaming SOAC Fusion

stream

$$\begin{array}{l} \operatorname{let} \left(\overline{r_{1}}, \overline{r_{2}}, \overline{x}, \overline{y}, \overline{z}\right) = \operatorname{stream_red} \\ \left(\lambda(\overline{c_{1}}, \overline{d_{1}}, \overline{c_{2}}, \overline{d_{2}}\right) \rightarrow \\ \left(\overline{c_{1}} \oplus \overline{c_{2}}, \overline{d_{1}} \odot \overline{d_{2}}\right)) \\ \Longrightarrow \\ (\lambda(\overline{e_{1}}, \overline{e_{2}}, \overline{a_{c}}, \overline{b_{c}}) \rightarrow \\ \operatorname{let} \left(\overline{r_{1}}, \overline{x_{c}}, \overline{y_{c}}\right) = \operatorname{f} \overline{e_{1}} \overline{a_{c}} \\ \operatorname{let} \left(\overline{r_{2}}, \overline{z_{c}}\right) = \operatorname{g} \overline{e_{2}} \overline{x_{c}} \overline{b_{c}} \\ \overline{c_{2}}\right) \overline{x} \overline{b} \qquad \operatorname{in} \left(\overline{r_{1}}, \overline{r_{2}}, \overline{x_{c}}, \overline{y_{c}}, \overline{z_{c}}\right)) \\ \left(\overline{e_{1}}, \overline{e_{2}}\right) \overline{a} \overline{b} \end{array}$$

$$\begin{split} \overline{y}) &= & (\lambda(\overline{a_1}, \overline{a_2}, \overline{b_c}, \overline{d_c}) \rightarrow \\ seq f(\overline{e_1}) \overline{b} \implies & let(\overline{r_1}, \overline{x_c}, \overline{y_c}) = f \overline{a_1} \overline{b_c} \\ = & let(\overline{r_2}, \overline{z_c}) = g \overline{a_2} \overline{x_c} \overline{d_c} \\ seq g(\overline{e_2}) \overline{x} \overline{d} & (\overline{r_1}, \overline{r_2}, \overline{x_c}, \overline{y_c}, \overline{z_c})) \\ (\overline{e_1}, \overline{e_2}) \overline{b} \overline{d} \end{split}$$

Streaming SOAC Fusion Example

fun main(n: **int**): (**int**,**int**) = fun main(n: int): int = stream red (+) (λ (e1: int) (iss: [m]int): int \rightarrow let Y = stream map (λ (iss: [m]int): [m]int \rightarrow let $a = f^{ind}$ (iss[0]) let $a = f^{ind}(iss[0])$ let t = map (g a) iss let t = map (g a) iss let $y = scan \odot 0 t$ let $y = scan(\odot) 0 t$ in y) let b = reduce (+) e1 y(iota n) in b) let b = reduce (+) 0 Y(0) (**iota** n) in b

(a) Program before fusion.

(b) Program after fusion at outer level.

Moderate Flattening

- Flattening algorithm based on map-loop interchange and map distribution
- Attempt to exploit some top-level parallelism
 - Not seeking parallelism inside branches
 - Terminating map distribution when it would introduce irregular arrays

map $f \circ map g \Rightarrow map (f \circ g)$

Moderate Flattening

- Flattening algorithm based on map-loop interchange and map distribution
- Attempt to exploit partial top-level parallelism
 - Not seeking parallelism inside branches
 - Terminating map distribution when it would introduce irregular arrays

```
map f \circ map g \Rightarrow map (f \circ g)
let bss: [m][m]i32 =
map (\(ps: [m]i32) (ps: [m]i32))
-> \qquad loop (ws=ps) for i < n do \\map (\w -> w * 2) ws) \\pss
let bss: [m][m]i32 = \\loop (wss=pss) for i < n do \\map (\w -> w * 2) ws) \\wss
```

Locality of Reference Optimizations

- Naive translation of Flattened and Fused code can lead to bad memory access patterns
- Futhark compiler can optimize memory access patterns by transforming data

Transpose:

 $\begin{array}{c} \text{map} \ (\lambda x s \rightarrow \text{reduce} \ (+) \ 0 \ x s) \ x s s. \end{array} \end{array} \begin{array}{c} \text{let} \ x s s' = a s_column_major \ x s s \\ \text{in map} \ (\lambda x s \rightarrow \text{reduce} \ (+) \ 0 \ x s) \ x s s' \end{array}$

Tiling:

Evaluation Methodology

- Tested with 2 GPUs
 - Nvidia GX 780
 - AMD W8100
- Generated OpenCL code is run on both GPUs
- Baseline implementations taken from benchmark suites

Benchmark Dataset Input layer size equal to 2^{20} Backprop CFD fycorr.domn.193K HotSpot 1024×1024 ; 360 iterations K-means kdd cup Rodinia LavaMD boxes1d=10Myocyte workload=65536, xmax=3 NN Default Rodinia dataset duplicated 20 times Array of size 10^5 Pathfinder 502×458 ; 100 iterations SRAD LocVolCalib large dataset FinPar **OptionPricing** large dataset Parboil MRI-Q large dataset Size 2000, degree 50 Crystal 3000×3000 ; 20 iterations Fluid Accelerate Mandelbrot 4000×4000 ; 255 limit $N = 10^{5}$ N-body

 Table 2: Benchmark dataset configurations.

NVIDIA GTX780		AMD W8100	
Ref.	Futhark	Ref.	Futhark
46.9	20.7	41.5	12.9
1878.2	2235.9	3610.0	4177.5
35.9	45.3	260.4	72.6
1597.7	572.2	1216.1	1534.9
5.1	6.7	9.0	7.1
2733.6	555.4		2979.8
178.9	11.0	193.2	37.6
18.4	7.4	18.2	6.5
19.9	16.1	195.1	34.8
1211.1	1293.2	3117.0	5015.8
136.0	106.8	429.5	360.8
20.2	15.5	17.9	14.3
41.0	8.4		8.4
268.7	100.4		221.8
30.8	8.1		14.8
613.2	89.5		269.8
	NVIDIA Ref. 46.9 1878.2 35.9 1597.7 5.1 2733.6 178.9 18.4 19.9 1211.1 136.0 20.2 41.0 268.7 30.8 613.2	NVIDIA GTX780Ref.Futhark46.920.71878.22235.935.945.31597.7572.25.16.72733.6555.4178.911.018.47.419.916.11211.11293.2136.0106.820.215.541.08.4268.7100.430.88.1613.289.5	NVIDIA GTX780AMDRef.FutharkRef. 46.9 20.7 41.5 1878.2 2235.9 3610.0 35.9 45.3 260.4 1597.7 572.2 1216.1 5.1 6.7 9.0 2733.6 555.4 178.9 11.0 193.2 18.4 7.4 18.2 19.9 16.1 195.1 1211.1 1293.2 3117.0 136.0 106.8 429.5 20.2 15.5 17.9 41.0 8.4 268.7 100.4 30.8 8.1 613.2 89.5

Table 1: Average benchmark runtimes in milliseconds.

Figure 13: Relative speedup compared to reference implementations (some bars are truncated for space reasons).

Futhark performs better than other functional programming environments for GPU due to higher level optimizations

Rodinia doesn't implement all optimizations: sequential reductions (Backprop, NN), not parallelizing computation of new cluster centers (k-means), not coalescing all accesses (Myocyte) ³⁵

Figure 13: Relative speedup compared to reference implementations (some bars are truncated for space reasons).

For OptionPricing, Futhark sequentializes excessive parallelism.

Furthark gets around 70-80% of the performance of hand-tuned code.

Impact of Optimizations

- SOAC Fusion
 - K-means (x1.42), LavaMD (x4.55), Myocyte (x1.66), SRAD (x1.21), Crystal (x10.1), LocVolCalid (x9.4)
 - Without fusion OptionPricing, N-body, and MRI-Q have too high memory requirements
- In-place Updates
 - K-means (x8.3), LocVolCalib (x1.7)
 - OptionPricing can't even be implemented without in-place updates
- Coalescing
 - K-means (x9.26), Myocyte (x4.2), OptionPricing (x8.79), LocVolCalib (x8.4)
- Tiling
 - LavaMD (x1.35), MRI-Q (x1.33), N-body (x2.29)

Conclusion

Pros:

- Futhark code is independent of the underlying hardware
- Futhark's type system allows expression of race-free in-place updates
- Optimizations done by compiler using higher level functions/reasoning
- Compiler implements partial flattening to allow for more parallelism without destroying memory access patterns
- Compiler can aggressively fuse and decompose code to best use available parallelism

Cons:

- Requires rewrite of applications
- Although it does optimizations like flattening and fusion, Futhark's compiler can't optimize all the time
 - Ie. it can't convert inefficient histogramming to the efficient one
 - Still leaves a huge design space for the programmer to explore to write good performant code

Thank you!

Other slides

Futhark Syntax

e ::= k | v(Constant/Variable) (v_1,\ldots,v_n) (Tuple) $v_1 \odot v_2$ (Apply binary operator) if v_1 then e_2 else e_3 $v[v_1, \ldots, v_n]$ (Array indexing) $v v_1 \ldots v_n$ (Function call) let $(p_1, \ldots, p_n) = e_1$ in e_2 (Let binding) v with $[v_1, \ldots, v_n] \leftarrow v$ (In-place update) loop (pv) for v < v do e(Loop) iota v $([0, \ldots, v-1])$ replicate n v ([v, \ldots, v] of size n) **rearrange** (k) v (Rearrange dimensions) map $l v_1 \ldots v_n$ reduce $l(v_1,\ldots,v_n)v'_1\ldots v'_n$ scan $l(v_1, ..., v_n) v'_1 ... v'_n$ stream seq $l(v_1, \ldots, v_n) v'_1 \ldots v'_m$ stream seq $l v'_1 \dots v'_m$ stream red $l_1 l_2 (v_1, \ldots, v_n) v'_1 \ldots v'_m$

NVIDIA GTX780		AMD W8100	
Ref.	Futhark	Ref.	Futhark
46.9	20.7	41.5	12.9
1878.2	2235.9	3610.0	4177.5
35.9	45.3	260.4	72.6
1597.7	572.2	1216.1	1534.9
5.1	6.7	9.0	7.1
2733.6	555.4		2979.8
178.9	11.0	193.2	37.6
18.4	7.4	18.2	6.5
19.9	16.1	195.1	34.8
1211.1	1293.2	3117.0	5015.8
136.0	106.8	429.5	360.8
20.2	15.5	17.9	14.3
41.0	8.4		8.4
268.7	100.4		221.8
30.8	8.1		14.8
613.2	89.5		269.8
	NVIDIA Ref. 46.9 1878.2 35.9 1597.7 5.1 2733.6 178.9 18.4 19.9 1211.1 136.0 20.2 41.0 268.7 30.8 613.2	NVIDIA GTX780Ref.Futhark46.920.71878.22235.935.945.31597.7572.25.16.72733.6555.4178.911.018.47.419.916.11211.11293.2136.0106.820.215.541.08.4268.7100.430.88.1613.289.5	NVIDIA GTX780AMDRef.FutharkRef. 46.9 20.7 41.5 1878.2 2235.9 3610.0 35.9 45.3 260.4 1597.7 572.2 1216.1 5.1 6.7 9.0 2733.6 555.4 178.9 11.0 193.2 18.4 7.4 18.2 19.9 16.1 195.1 1211.1 1293.2 3117.0 136.0 106.8 429.5 20.2 15.5 17.9 41.0 8.4 268.7 100.4 30.8 8.1 613.2 89.5

Table 1: Average benchmark runtimes in milliseconds.

Basic SOACs

map
$$f [a_1, \ldots, a_n] = [f a_1, \ldots, f a_n]$$

reduce $\oplus 0_{\oplus} [a_1, \ldots, a_n] = 0_{\oplus} \oplus a_1 \oplus \ldots \oplus a_n$
scan $\oplus 0_{\oplus} [a_1, \ldots, a_n] = [a_1, \ldots, a_1 \oplus \ldots \oplus a_n]$

Can be implemented with Parallel Operator fold fold $(\oplus, 0_{\oplus}) g [b_1, \dots, b_n] = 0_{\oplus} \oplus (g \ b_1) \oplus \dots \oplus (g \ b_n)$

 $(\overline{e_1}, \overline{e_2}) \overline{b} \overline{d}$

Futhark Compiler Architecture

Figure 3: Compiler architecture.