
Futhark:
Purely Functional GPU-programming
with Nested Parallelism and in-place

Array Updates
Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, Cosmin Oancea

Presented by:
-Zaid Qureshi

https://pldi17.sigplan.org/profile/troelshenriksen
https://pldi17.sigplan.org/profile/nielsgwserup
https://pldi17.sigplan.org/profile/martinelsman
https://pldi17.sigplan.org/profile/fritzhenglein
https://pldi17.sigplan.org/profile/cosminoancea

Motivation
● GPUs are traditionally programmed using sequential programming languages

○ Requires expertise to exploit the parallelism provided by GPUs

● Functional programming languages provide parallelizable primitives (ie. map,
reduce, scan)

○ But when compiled naively, their performance is very bad

2

Futhark
● Purely Functional Array programming language for GPUs

○ To ease GPU programming

● Expresses computation/parallelism using basic and streaming second-order
array combinators (SOACs)

● Type system that allows expression of race-free in-place updates
● Compiler implements partial flattening to allow for more parallelism without

destroying memory access patterns

3

Futhark Syntax

4

Basic SOACs

5

Example Futhark Code

6

Example Futhark Code
INPUT: nxm matrix

7

Example Futhark Code
INPUT: nxm matrix OUTPUT: tuple of

nxm matrix, array of size n

8

Example Futhark Code

Map over the rows
of the matrix

9

Example Futhark Code

Generate new row

10

Example Futhark Code

Get sum of row

11

Example Futhark Code

Return tuple of
new row and sum

12

Example Futhark Code

13

Parallel operator sFold and Streaming Operators

- concat
𝝐 - empty partition

14

Parallel operator sFold and Streaming Operators

Applies f to each partition and then concatenates the
resulting partitions

- concat
𝝐 - empty partition

15

Parallel operator sFold and Streaming Operators

Extends stream_map by allowing each chunk to produce
an additional output which is reduced in parallel

Applies f to each partition and then concatenates the
resulting partitions

- concat
𝝐 - empty partition

16

Sequential Histogramming in Futhark

17

Parallel Histogramming in Futhark

18

Efficient Parallel Histogramming in Futhark

19

Efficient Parallel Histogramming in Futhark

20

In-Place Updates and Uniqueness Types

● In purely functional languages array updates require copying array and
updating copy (to avoid side effects)

● If it is known that the original array won’t be used after the update, the update
can occur in place

21

In-Place Updates and Uniqueness Types

● Futhark has uniqueness types that allow programmer to specify function
arguments that won’t be referenced by the caller after the function call

○ The callee gains ownership of that argument

● An array is consumed when it is source of in-place update or when it is
passed as a unique parameter.

● After the consumption point, the array or its aliases may not be used.
○ Type system checks this via aliasing rules

22

Aliasing Rules
● Alias sets for values produced by SOACs are empty (new copies)
● Scalar read from an array does not alias its origin array (alias set not

modified)
● Array slicing aliases origin array
● Function application:

○ If the result being returned is unique the alias set is empty
○ Otherwise the result aliases all non-unique parameters

● Other rules can be found in Figure 5 of the paper

23

In-Place Update Checking
● Each expression e has a observed set of variables (O) and a consumed set of

variables (C)
○ the pair <C,O> forms the occurrence trace for e

● Inference rules used to check uniqueness and parameter consumption
(Figure 6)

Sequence Judgement

Inference Rule

If-then-else uniqueness inference rule

24

In-Place Update Checking (Example)

This program passes as the function of the map
consumes its parameter as

This program doesn’t pass as it implies d,
bound outside the function of the map, is
consumed for every iteration of the map

25

Streaming SOAC Fusion

26

Streaming SOAC Fusion Example

27

Moderate Flattening
● Flattening algorithm based on map-loop interchange and map distribution
● Attempt to exploit some top-level parallelism

○ Not seeking parallelism inside branches
○ Terminating map distribution when it would introduce irregular arrays

map f ◦ map g ⇒ map (f ◦ g)

28

Moderate Flattening
● Flattening algorithm based on map-loop interchange and map distribution
● Attempt to exploit partial top-level parallelism

○ Not seeking parallelism inside branches
○ Terminating map distribution when it would introduce irregular arrays

map f ◦ map g ⇒ map (f ◦ g)
let bss: [m][m]i32 =
 map (\(ps: [m]i32) (ps: [m]i32)
->
 loop (ws=ps) for i < n do
 map (\w -> w * 2) ws)
 pss

let bss: [m][m]i32 =
 loop (wss=pss) for i < n do
 map (\ws ->
 map (\w -> w * 2) ws)
 wss

29

Locality of Reference Optimizations
● Naive translation of Flattened and Fused code can lead to bad memory

access patterns
● Futhark compiler can optimize memory access patterns by transforming data

Transpose:

Tiling:

30

Evaluation Methodology
● Tested with 2 GPUs

○ Nvidia GX 780
○ AMD W8100

● Generated OpenCL code
is run on both GPUs

● Baseline
implementations taken
from benchmark suites

Rodinia

FinPar

Parboil

Accelerate

31

Results

32

Results

33

Results

Futhark performs better than other functional programming
environments for GPU due to higher level optimizations 34

Results

Rodinia doesn’t implement all optimizations: sequential reductions
(Backprop, NN), not parallelizing computation of new cluster centers
(k-means), not coalescing all accesses (Myocyte) 35

Results

For OptionPricing, Futhark sequentializes excessive parallelism.

36

Results

Furthark gets around 70-80% of the performance of hand-tuned code.

37

Impact of Optimizations
● SOAC Fusion

○ K-means (x1.42), LavaMD (x4.55), Myocyte (x1.66), SRAD (x1.21), Crystal (x10.1),
LocVolCalid (x9.4)

○ Without fusion OptionPricing, N-body, and MRI-Q have too high memory requirements

● In-place Updates
○ K-means (x8.3), LocVolCalib (x1.7)
○ OptionPricing can’t even be implemented without in-place updates

● Coalescing
○ K-means (x9.26), Myocyte (x4.2), OptionPricing (x8.79), LocVolCalib (x8.4)

● Tiling
○ LavaMD (x1.35), MRI-Q (x1.33), N-body (x2.29)

38

Conclusion
Pros:

● Futhark code is independent of the underlying hardware
● Futhark’s type system allows expression of race-free in-place updates
● Optimizations done by compiler using higher level functions/reasoning
● Compiler implements partial flattening to allow for more parallelism without destroying memory

access patterns
● Compiler can aggressively fuse and decompose code to best use available parallelism

Cons:

● Requires rewrite of applications
● Although it does optimizations like flattening and fusion, Futhark’s compiler can’t optimize all the

time
○ Ie. it can’t convert inefficient histogramming to the efficient one
○ Still leaves a huge design space for the programmer to explore to write good performant code

39

Thank you!

40

Other slides

41

Futhark Syntax

42

Results

43

Basic SOACs

Can be implemented with Parallel Operator fold

44

45

Futhark Compiler Architecture

46

