STELLA: A Domain-specific Tool for
Structured Grid Methods in
Weather and Climate Models

Zach Weiner

CS 598 APK
October 12, 2018

The problem

* Solving PDEs on structured grids
* Atmospheric/climate science
e Computational fluid dynamics
* Material science

* Optimizing performance on a variety of
(heterogeneous) architectures requires:

* Loop tiling/blocking

* Loop fusion

 Data layout transformations
. etc.

* All dependent upon specific architecture

e Coding for high performance becomes increasingly
difficult

Atmospheric simulations

 Solving Navier-Stokes equations (fluid dynamics) on
3D curvilinear grid

* Runge-Kutta for time integration
* Finite-difference stencils for spatial derivatives

Laplacian pseudo-code

Vi =

”ZM i) + d(x — i) — 20(x)]

for k = kstart, kend
for | = jstart—1, jend+1
for | = istart—1, iend+1
lap(i,j,k) = phi(i+1,j,k) 4+ phi(i—1,j,k)
+ phi(i,j+1,k) + phi(i,j—1,k)
— 4.0xphi(i,j,k)

O Ut W N =

* Gradients of lap needed for PDE

Performance concerns

 Stencil computation is memory bound (minimal
arithmetic)

* Use data locality: process smaller subdomains which fit
into cache

* In naive implementation, intermediate/temporary
fields are stored across the entire domain

* For atmospheric simulations: many different types
of stencils, composed stencils

STELLA

* STEncil Loop LAnguage

 DSL: abstracts architecture-dependent implementation
details from the solution algorithm

* Handles stencil computation, boundary conditions, and
halo-update communication

* As a library, is specific to structured grids and
stencils/domain decomposition

« Still holds broad applicability in many sciences

e “Separation of concerns:” user defines PDEs, STELLA
deals with optimization

* Allows user code to be more concise/resemble underlying
mathematical expressions

STELLA

* Currently: portable performance between x86
multicore CPUs and NVIDIA GPUs

* CPU backend with OpenMP
* GPU backend with CUDA
e Xeon Phi backend under development(?)

e Uses standard C++ compilers

e At compile time, DSL is translated into optimized
nests of loops

* Uses C++ template metaprogramming

STELLA usage

* Stencils defined by:
* Function objects of stencil loop bodies
e “Stencil stages”

* DSL which allows multiple function objects to be
assembled into one kernel

* Language constructs:

* Parameters: values to be read/processed throughout
stencil

* Temporaries: buffers for temporary values
* Optimized layout, alignment, memory footprint
* Loops: data range, parallelization

STELLA example

e Stencil “stage” definition

template<typename Context>
struct LapStage{
static void Do(Context ctx) {
ctx[lap::Center()] = ctx[u::At(iplusl)] + ctx[u::At(iminusl)]
+ ctx[u::At(jplusl)] + ctx[u::At(jminusl)] - 4*ctx[T::Center()];
}

¥
lap(i,j,k) = phi(i+1,j,k) + phi(i—1,j,k)

+ phi(i,j+1,k) 4+ phi(i,j—1,k)
— 4.0xphi(i,j,k)

STELLA example (1/2)

1 IJKRealField dataln, dataOut;
. 2
Data flEldS, abstracted — 3 // 1) enumerate all parameters
4 enum { phi, alpha, flx, fly, lap, res };
memory layout .
6 // 2) define stencil stages
: . 7 template<typename TEnv> struct Lap { /*...x/ };
Define various stages — 8 template<typename TEnv> struct FIx { /*...x/ };
of stencil 9 template<typename TEnv> struct Fly { /*...x/ };
10 template<typename TEnv> struct Res { /x...x/ };
11
12 // 3) define and initialize a stencil object
13 Stencil stencil;
14 StencilCompiler::Build(
Associate parameter e _
16 /* some more parameters, e.g. a stencil name */,
paCkS to pIaCEhOIderS eee——) |, pack_parameters(
18 Param<res, cInOut>(dataOut),
used below 19 Param<phi, cIn)(dataln)
20).
Deﬁne tempora ry 21 define_temporaries(
. 22 StencilBuffer<lap, double, KRange<FullDomain,0,0> >(),
storage used in) StencilBuffer<flx, double, KRange<FullDomain,0,0> >(),
. . 24 StencilBuffer<fly, double, KRange<FullDomain,0,0> >()
stencil logic w8

STELLA example (2/2)

Compose stencil stages m——)

Apply stencil EEE——)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

define_loops(
define_sweep<cKlncrement>(
define_stages(

StencilStage<Lap,
IJRange<clIndented,—1,1,—1,1>,
KRange<FullDomain,0,0> >(),

StencilStage<Flx,
IJRange<clIndented,—1,0,0,0>,
KRange<FullDomain,0,0> >(),

StencilStage<Fly,
IRange<clndented,0,0,—1,0>,
KRange<FullDomain,0,0> >(),

StencilStage<Res,
IJRange<cComplete,0,0,0,0>,
KRange<FullDomain,0,0> >()

)
)
)
)

// 4) execute the stencil instance
stencil.Apply();

Other functionality

» Software-managed caches

e Two types: caching of neighbors in 2D parallel plane and
caching of levels of the third dimension

e Can, e.g., buffer temporary values in GPU shared
memory

* Boundary conditions: specify boundary handling
* Halo updating

 Domain splitting: distinguish domains with different
geometries (cartesian vs. curvilinear)

Implementation

 Compile-time code generation with C++ template
meta-programming via Boost MPL library
e DSL translated into sequence of template instantiations
* Avoids runtime code generation overhead
* No auto-tuning

* During compilation: assemble loop logic, instantiate
stencil stages, define needed data structures

e At execution: initialize stencil object

* Apply method: thin wrapper around generated
loop code

Parallelization

» Coarse-grained blocking with fine-grained threads
* Makes use of data locality

* Overlapped tiling: (redundant) halo elements are
computed when needed so blocks are independent

* Blocks updated in parallel via vector instructions or
hardware threads

Backend-dependent decisions

* Array layout

CPU GPU
Programming model OpenMP CUDA
Storage order (by stride) | j >t >k | k> 75 > 1

/

(auto) vectorization over k

/

memory access coalescing

Backend-dependent decisions

e Loop fusion: compute in two stages (with full temporary
array), or nest both stages in one loop?

Architecture | Computation | Communication
E5-2670 (ms) 27.77 21.98
K20X (ms) 9.61 13.38

nested j

<

two stages /

U
CO—
//f V\2 U
é | +)
\ ¢ 7//'////

T T~y T72

Kernel fusion

* Reduce off-chip memory traffic by caching reused data

e Cache intermediate results in shared memory (on GPUs),
synchronize block, and compute final result

* Shared memory too small to cache between kernels; CPU L1
cache is large enough

e “Kernel & loop fusion” = all stencil stages in single loop

Architecture

No fusion

Kernel fusion

Kernel &
loop fusion

Fourth-order smoothing filter

E5-2670 (ms) | 8.658

4.396

K20X (ms)

1.527

2.0

1.338

What does the user choose?

* Kernel and loop fusion

* Caching?

* “Given this annotation, STELLA’s GPU backend is able to
automatically buffer the lap value in shared memory.”

define_sweep<cKlncrement>(
define_caches(lJCache<lap, KRange<FullDomain,0,0> >()),
define_stages(/* ... x/)

)
* Whether to parallelize third dimension

Timing results

Code & architecture | Runtime | Speedup
Fortran (E5-2670) 71.4 s REF
STELLA (E5-2670) 40.7 s 1.8x
STELLA (K20X) 12.3 s 5.8x

Time [s]

Weak and strong scaling

—_
o

N w
AP
S

L

I 1T L1117 1 | IR A P
f11| =—tp— STELLA (E5-2670)
" | == STELLA (K20X)
=& Fortran (E5-2670)
NG R : 512x512
M OTTNG ING o7 T T 256x256

a0 T DT

10£ lllll !..».I‘<l..l.!.l.l llllllll LN R D I I IlI[IIIl_

—_
Qo

10

ot e O USTEL | A (E5-2670)|

o I : ——d— STELLA (K20X)

——&— Fortran (E5-2670)

128x128

0) Dol . - - = 54x64

L1111l 10 | | |||I||| 1 I I
1 2 3 0 1 2

10 10 10 10 10 10 10 10

Nodes # Nodes

.................................

| llIIIIII | IIIIIIII 1 1

Future directions

* Improved syntax
e Parallelization in third dimension

* Different geometries

* Performance-model based tuning framework to
automate loop/kernel fusion choices

Related work

e Other stencil DSLs all rely on custom
compilation/translation toolchains (at the time)

* Emphasize value of being able to fall back on host language
(C++) for non-STELLA kernels

 Patus: stencil kernel generator for CPU and GPU,
emphasizes autotuning

« ATMOL: also abstracts solvers
* |CON: mainly abstracts storage order
* Halide (image processing): 2D only

* Pochoi: c++, custom compilation optional, general
dimension

Conclusions

 Generates CPU and GPU code

e Abstracted for arbitrary stencil (for a domain which has
implements many stencils)

* Aren’t specific enough about tests to be sure, but GPU
kernels take O(ms) for 25672*60 gridpoints—are they
saturating bandwidth?

* GPU only ~3.2x faster than CPU (despite >5x bandwidth)

* User must decide whether to use kernel/loop fusion,
structure and parallelization of “sweeps”

* Kernel fusion could apply across stencil and integration
routines

. Regdability: stencil definitions are worse than normal C
code

