
STELLA: A Domain-specific Tool for 
Structured Grid Methods in 
Weather and Climate Models

Zach Weiner

CS 598 APK

October 12, 2018



The problem

• Solving PDEs on structured grids
• Atmospheric/climate science
• Computational fluid dynamics
• Material science

• Optimizing performance on a variety of 
(heterogeneous) architectures requires:
• Loop tiling/blocking
• Loop fusion
• Data layout transformations
• etc.

• All dependent upon specific architecture
• Coding for high performance becomes increasingly 

difficult



Atmospheric simulations

• Solving Navier-Stokes equations (fluid dynamics) on 
3D curvilinear grid

• Runge-Kutta for time integration

• Finite-difference stencils for spatial derivatives



Laplacian pseudo-code

• Gradients of lap needed for PDE



Performance concerns

• Stencil computation is memory bound (minimal 
arithmetic)
• Use data locality: process smaller subdomains which fit 

into cache

• In naïve implementation, intermediate/temporary 
fields are stored across the entire domain

• For atmospheric simulations: many different types 
of stencils, composed stencils



STELLA

• STEncil Loop LAnguage
• DSL: abstracts architecture-dependent implementation 

details from the solution algorithm
• Handles stencil computation, boundary conditions, and 

halo-update communication
• As a library, is specific to structured grids and 

stencils/domain decomposition
• Still holds broad applicability in many sciences

• “Separation of concerns:” user defines PDEs, STELLA 
deals with optimization
• Allows user code to be more concise/resemble underlying 

mathematical expressions



STELLA

• Currently: portable performance between x86 
multicore CPUs and NVIDIA GPUs
• CPU backend with OpenMP

• GPU backend with CUDA

• Xeon Phi backend under development(?)

• Uses standard C++ compilers

• At compile time, DSL is translated into optimized 
nests of loops
• Uses C++ template metaprogramming



STELLA usage

• Stencils defined by:
• Function objects of stencil loop bodies

• “Stencil stages”

• DSL which allows multiple function objects to be 
assembled into one kernel

• Language constructs:
• Parameters: values to be read/processed throughout 

stencil

• Temporaries: buffers for temporary values
• Optimized layout, alignment, memory footprint

• Loops: data range, parallelization



STELLA example

• Stencil “stage” definition



STELLA example (1/2)

Data fields, abstracted 
memory layout

Associate parameter 
packs to placeholders 
used below

Define temporary 
storage used in 
stencil logic

Define various stages 
of stencil



STELLA example (2/2)

Compose stencil stages

Apply stencil



Other functionality

• Software-managed caches
• Two types: caching of neighbors in 2D parallel plane and 

caching of levels of the third dimension

• Can, e.g., buffer temporary values in GPU shared 
memory

• Boundary conditions: specify boundary handling

• Halo updating

• Domain splitting: distinguish domains with different 
geometries (cartesian vs. curvilinear)



Implementation

• Compile-time code generation with C++ template 
meta-programming via Boost MPL library
• DSL translated into sequence of template instantiations

• Avoids runtime code generation overhead

• No auto-tuning

• During compilation: assemble loop logic, instantiate 
stencil stages, define needed data structures

• At execution: initialize stencil object

• Apply method: thin wrapper around generated 
loop code



Parallelization

• Coarse-grained blocking with fine-grained threads
• Makes use of data locality

• Overlapped tiling: (redundant) halo elements are 
computed when needed so blocks are independent

• Blocks updated in parallel via vector instructions or 
hardware threads



Backend-dependent decisions

• Array layout

(auto) vectorization over k memory access coalescing



Backend-dependent decisions

• Loop fusion: compute in two stages (with full temporary 
array), or nest both stages in one loop?

nested two stages



Kernel fusion

• Reduce off-chip memory traffic by caching reused data
• Cache intermediate results in shared memory (on GPUs), 

synchronize block, and compute final result

• Shared memory too small to cache between kernels; CPU L1 
cache is large enough

• “Kernel & loop fusion” = all stencil stages in single loop



What does the user choose?

• Kernel and loop fusion

• Caching?
• “Given this annotation, STELLA’s GPU backend is able to 

automatically buffer the lap value in shared memory.”

• Whether to parallelize third dimension



Timing results



Weak and strong scaling



Future directions

• Improved syntax

• Parallelization in third dimension

• Different geometries

• Performance-model based tuning framework to 
automate loop/kernel fusion choices



Related work

• Other stencil DSLs all rely on custom 
compilation/translation toolchains (at the time)
• Emphasize value of being able to fall back on host language 

(C++) for non-STELLA kernels

• Patus: stencil kernel generator for CPU and GPU, 
emphasizes autotuning

• ATMOL: also abstracts solvers

• ICON: mainly abstracts storage order

• Halide (image processing): 2D only

• Pochoi: c++, custom compilation optional, general 
dimension



Conclusions

• Generates CPU and GPU code

• Abstracted for arbitrary stencil (for a domain which has 
implements many stencils)

• Aren’t specific enough about tests to be sure, but GPU 
kernels take O(ms) for 256^2*60 gridpoints—are they 
saturating bandwidth?
• GPU only ~3.2x faster than CPU (despite >5x bandwidth)

• User must decide whether to use kernel/loop fusion, 
structure and parallelization of “sweeps”

• Kernel fusion could apply across stencil and integration 
routines

• Readability: stencil definitions are worse than normal C 
code


