
Fast Algorithms and Integral Equation Methods
CS598 APK

Andreas Kloeckner

Fall 2019



Outline
Introduction

Notes
Notes (un�lled, with empty boxes)

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going In�nite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from In�nity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs



Outline
Introduction

Notes
Notes (un�lled, with empty boxes)

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going In�nite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from In�nity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs



Outline
Introduction

Notes
Notes (un�lled, with empty boxes)

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going In�nite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from In�nity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs



What's the point of this class?

I Starting point: Large-scale scienti�c computing

I Many popular numerical algorithms: O(nα) for α > 1
(Think Matvec, Matmat, Gaussian Elimination, LU, . . . )

I Build a set of tools that lets you cheat: Keep α small
(Generally: probably not�Special purpose: possible!)

I Final goal: Extend this technology to yield PDE solvers

I But: Technology applies in many other situations
I Many-body simulation
I Stochastic Modeling
I Image Processing
I `Data Science' (e.g. Graph Problems)

I This is class is about an even mix of math and computation



Survey

I Home dept

I Degree pursued

I Longest program ever written
I in Python?

I Research area

I Interest in PDE solvers



Class web page

https://bit.ly/fastalg-f19

contains:

I Class outline

I Assignments

I Piazza

I Grading

I Video

https://bit.ly/fastalg-f19


Why study this at all?

I Finite di�erence/element methods are inherently
I ill-conditioned
I tricky to get high accuracy with

I Build up a toolset that does not have these �aws

I Plus: An interesting/di�erent analytical and computational point of
view
I If you're not going to use it to solve PDEs, it (or the ideas behind it)

will still help you gain insight.



FD/FEM: Issues

Idea of these methods:

1. Take di�erential equations

2. Discretize derivatives

3. Make linear system

4. Solve

So what's wrong with doing that?



Discretizing Derivatives: Issues?

Di�erentiation is `unbounded'.
Example:

(e iαx)′ = iαe iαx
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So a `small' function can become an arbitrarily big function. Does
that matter?

I κ(A) = ‖A‖
∥∥A−1

∥∥, and this increases ‖A‖.
I Also,

∥∥A−1
∥∥ doesn't exist for derivatives.



Discretizing Derivatives: Issues?

Result: The better we discretize (the more points we use), the worse the
condition number gets.
Demo: Conditioning of Derivative Matrices
To be fair: Multigrid works around that (by judiciously using fewer points!)
But there's another issue that's not �xable.

Inherent tradeo�: FP accuracy ↔ Truncation error
Demo: Floating point vs Finite Di�erences

Q: Are these problems real?

→ Try solving 3D Poisson with just FEM+CG.

So this class is about starting fresh with methods that (rigorously!) don't
have these �aws!



Bonus Advertising Goodie
Both multigrid and fast/IE schemes ultimately are O(N) in the number of
degrees of freedom N.

But:

IE DOFs FD/FEM DOFs

The number N is di�erent! (And it's smaller for IEs.)
(Truth in advertising: Only for homogeneous problems.)
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Matvec: A Slow Algorithm

Matrix-vector multiplication: our �rst `slow' algorithm.
O(N2) complexity.

βi =
N∑

j=1

Aijαj

Assume A dense.



Matrices and Point Interactions

Aij = G (xi , yj)

Does that actually change anything?

ψ(xi ) =
N∑

j=1

G (xi , yj)ϕ(yj)

Technically: no di�erence.
Can translate back and forth between both views.
But: Gain terminology and intuition:

I xi : �Targets�

I yi : �Sources�

I G : �Kernel�



Matrices and Point Interactions

Aij = G (xi , yj)

Graphically, too:

y1

y2

x1

x2

Each arrow corresponds to a matrix entry.



Matrices and point Interactions

ψ(xi ) =
N∑

j=1

G (xi , yj)ϕ(yj)

This feels di�erent.

It's supposed to!
G (x , y) de�ned for all x ∈ R3? Possibly! (Maybe also all y ∈ R3?)
In former case: ψ de�ned everywhere. (�Matrix in�nitely tall�)

Q: Are there enough matrices that come from globally de�ned G to make
this worth studying?



Point Interaction Matrices: Examples (I)

I (Lagrange) Interpolation: ψ(x) =
N∑

j=1

`j(x)ϕ(yj)

I (G (x , yj) = `j(x))
I Also: Interpolation Error!

I Numerical Di�erentiation: ψ(x) =
N∑

j=1

`′j(x)ϕ(yj)

I Numerical Integration: ψ(x) =
N∑

j=1

∫ x

a
`j(ξ)dξϕ(yj)

I Equivalents of the above for other bases: e.g. Fourier



Point Interaction Matrices: Examples (II)

I Potential Evaluation: Potential of an electron at the origin in
3D?

U(x) =
qel

4π
· 1

|x |

Potential of an electron at y in 3D? Uy (x) = C · 1

|x − y |
Potential of a number of electrons at a y1, . . . , yN?

U(x) =
N∑

j=1

1

|x − yj |
ϕ(yj)

You might feel like that sum wants to be an integral, to make
things `fair' between sources and targets. Hold on to that
feeling.



Point Interaction Matrices: Examples (III)

I Convolutions:

ψ(x) =
N∑

j=1

G (x − yj)ϕ(yj)

Quiz: What do these do, visually?

Notice: Potential evaluation is actually an example of
convolution.

Once again, in�nitely many sources is a possibility�just make
the sum an integral.

So yes, there are indeed lots of these things.



Integral Operators

Why did we go through the trouble of rephrasing matvecs as

ψ(xi ) =
N∑

j=1

G (xi , yj)ϕ(yj)?

I We're headed towards Integral Operators (or `Integral
Transforms') that look like this:

ψ(x) =

∫

Ω
G (x , y)ϕ(y) dy

I We'll rely on ψ being de�ned everywhere to derive some
important properties that we can't `see' if there are only �nitely
many targets.



Cheaper Matvecs

ψ(xi ) =
N∑

j=1

G (xi , yj)ϕ(yj)

So what can we do to make evaluating this cheaper?

I Idea 1: Make sure G evaluates to mostly zeros.
(i.e. make it sparse) → FEM/FD approach

How? Limit `domain of in�uence' of each source, e.g. by using
piecewise interpolation.

This is not the approach in this class though.

I Idea 2: If the matrix is very special (e.g. Toeplitz/circulant) or
a DFT matrix, O(n log n) FFTs help

I Idea 3: If the matrix has low rank



Fast Dense Matvecs

Consider
Aij = uivj ,

let u = (ui ) and v = (vj).
Can we compute Ax quickly? (for a vector x)

A = uvT , so

Ax = (uvT )x = u(vTx)

Cost: O(N).
Q: What is the row rank of A? (#of lin.indep. rows)
Q: What is the column rank of A? (#of lin.indep. columns)
Remark: Row and column rank are always equal, not just here.



Fast Dense Matvecs (II)

A = u1v
T
1 + · · ·+ uKv

T
K

Does this generalize? What is K here?

I k = rankA

I Sure does generalize. Cost: O(NK )

I What if matrix has `full' rank? Cost back to O(N2)



Low-Rank Point Interaction Matrices
Usable with low-rank complexity reduction?

ψ(xi ) =
N∑

j=1

G (xi , yj)ϕ(yj)

ψ(xi ) =
N∑

j=1

G1(xi )G2(yj)︸ ︷︷ ︸
G(xi ,yj )

ϕ(yj)

I Separation of variables

I Q: Did any of our examples look like this? Nope.
→ Check computationally.

Demo: Rank of a Potential Evaluation Matrix (Attempt 1)

I So it looks like the rank does decay, approximately

I Echelon form: good idea?



Numerical Rank

What would a numerical generalization of `rank' look like?

First, what does exact rank mean?

A = UV ,

with U ∈ Rm×k , V ∈ Rk×n.
Idea: Let's loosen that de�nition to a precision ε.
If A ∈ Rm×n:

numrank(A, ε) = min{k : ∃U ∈ Rm×k ,V ∈ Rk×n : |A− UV |2 6 ε}.

Q: That's great, but how do we �nd those matrices?



Eckart-Young-Mirsky Theorem

Theorem (Eckart-Young-Mirsky)

SVD A = UΣV T . If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i ,

then
min

rank(B)=k
|A− B|2 = |A− Ak |2 = σk+1.

Q: What's that error in the Frobenius norm?
So in principle that's good news:

I We can �nd the numerical rank.

I We can also �nd a factorization that reveals that rank (!)

Demo: Rank of a Potential Evaluation Matrix (Attempt 2)



Constructing a tool

There is still a slight downside, though.

Suppose we wanted to use this to make the matvec cheaper.

That wouldn't quite work:

We would need to build the entire matrix (O(N2)), factorize it
(O(N3)), and then apply the low-rank-approximation (O(N)).

So we would need to make the factorization cheaper as well.

Big Q: Possible?



Representation

What does all this have to do with (right-)preconditioning?

Idea behind Right Preconditioning: Instead of

Ax = b

solve
AMy = b,

then �nd x = My .
What this does is change the meaning of the degrees of freedom in
the linear system.
You could say: We change how we represent the solution.



Representation (in context)

Connection with what we've been doing:

I Assume Ax = b is a big, bad problem

I Assume we can apply M cheaply
(with the help of low-rank machinery)

I Or, even better, apply all of AM cheaply

I Assume M is tall and skinny

I Then solving AMy = b is as good as solving Ax = b, but
(ideally) lots cheaper

I These `point interaction' matrices we've been discussing are the
prototypes of such M matrices
(Go from few points to all of R3)
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Rephrasing Low-Rank Approximations

SVD answers low-rank-approximation (`LRA') question. But: too
expensive. First, rephrase the LRA problem:

Instead of the factorization form A ≈ BCT ,
we will ask for the projection form of LRA: A ≈ QQTA, i.e. A being
approximated by an orthogonal projection of its columns.
(Q has orthogonal columns, i.e. QTQ = I , and fewer than A)

Call the columns of Q the LRA basis.

If we have the projection form, can we �nd the factorization form?
Sure: Set B = Q and C = QTA.



Using LRA bases

If we have an LRA basis Q, can we compute an SVD?

1. B = QTA

2. Compute an SVD of B : B = ŪΣV T

3. Set U = QŪ

Then: A ≈ QQTA = QŪΣV T = UΣV T . Cost:

I Assume A is N × N, Q has k columns.

I Step 1: kN2

I Step 2: k2N

I Step 3: k2N

Can we hope to do better overall? (#entries?)



Finding an LRA basis
How would we �nd an LRA basis?

Goal: Find Q columns so that

|A− QQTA|2 6 ε.

Question: Do we know the number of columns k of Q ahead of time?

I Yes: `Fixed-rank approximation'

I No: `Adaptive LRA'

Idea 1: SVD → First k columns of U in A = UΣV T provide the
optimal answer.
→ You've got to be joking.
→ Give up optimality, allow `slack' in accuracy and column count.

Idea 2: Use a randomized algorithm, based on the same intuition as
the power method.



Giving up optimality

What problem should we actually solve then?

Instead of

|A− QQTA|2 = min
rank(X )6k

|A− X |2 = σk+1

with Q having k columns,

we'll only go for

|A− QQTA|2 ≈ min
rank(X )6k

|A− X |2

with Q having k + p columns.



Recap: The Power Method

How did the power method work again?

A square, eigenvalues

|λ1| > |λ2| > · · · > |λn| > 0.

with eigenvectors vi .

Goal: Find eigenvector to largest (by-magnitude) eigenvalue.
Start with random vector x: x = α1v1 + · · ·+ αnvn.
Then Ax = α1λ1v1 + · · ·+ αnλnvn.
Important observation: Matvecs with random vectors `kill' the `unim-
portant' bits of the range.



How do we construct the LRA basis?

Put randomness to work:

Design a randomized range �nder:

1. Draw an n × ` Gaussian (iid) random matrix Ω

2. Y = AΩ

3. Orthogonalize columns of Y , e.g. by QR factorization:

Y = QR

→ Q has ` orthogonal columns



Tweaking the Range Finder (I)

Can we accelerate convergence?

Possible tweak: Kill the unimportant bits of the range faster, by
inserting a few iterations of the power method into Step 2:

Y = (AAT )qAΩ.

Q: Why multiply by (AAT ) and not just A?
→Retains singular vectors!

AATA = (UΣV T )(VΣUT )(UΣV T ).

But: singular values decay much faster:

σi (AA
TA) = σi (A)3!



Tweaking the Range Finder (II)

What is one possible issue with the power method?

I Over�ow/FP problems

I Normalization, orthogonalization

I If FP is a concern, apply QR after every application of A or AT .



Even Faster Matvecs for Range Finding

Assumptions on Ω are pretty weak�can use more or less anything we want.
→ Make it so that we can apply the matvec AΩ in O(n log `) time.
How? Pick Ω as a carefully-chosen subsampling of the Fourier transform.



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Basics
Low-Rank Approximation: Error Control
Reducing Complexity

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going In�nite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from In�nity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs



Errors in Random Approximations

If we use the randomized range �nder, how close do we get to the optimal
answer?

Theorem

For an m × n matrix A, a target rank k > 2 and an oversampling
parameter p > 2 with k + p 6 min(m, n), with probability 1− 6 · p−p,

∣∣∣A− QQTA
∣∣∣2 6

(
1 + 11

√
k + p

√
min(m, n)

)
σk+1.

(given a few more very mild assumptions on p)

[Halko/Tropp/Martinsson `10, 10.3]

Message: We can probably (!) get away with oversampling parameters as
small as p = 5.



A-posteriori and Adaptivity
The result on the previous slide was a-priori. Once we're done, can we �nd
out `how well it turned out'?

Sure: Just consider the error:

A− QQTA

Realize that what this does is instead of projecting onto the columns
of Q, it projects onto their orthogonal complement:

E = (I − QQT )A

Idea: Use a randomized technique as well.

I We are interested in |E |2 = σ1(E )

I If the previous techniques work,
|Eω|2 for a randomly drawn Gaussian vector ω should give us a
pretty good idea of |E |2.



Adaptive Range Finding: Algorithm

I Compute small-ish �xed rank LRA

I Check error

I Too big? Throw in a few more vectors, repeat

Next, realize that the error estimator relies on the same thing as the
range �nder, multiplication by random vector: Not hard to modify
algorithm to make both use the same data!

Demo: Randomized SVD
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Rank-revealing/pivoted QR
Sometimes the SVD is too good (aka expensive)�we may need less
accuracy/weaker promises, for a signi�cant decrease in cost.

This is where RRQR or pivoted QR comes in.
For A ∈ Rm×n,

AΠ = QR = Q

[
R11 R12

R22

]
,

where

I R11 ∈ Rk×k ,

I |R22|2 is (hopefully) `small'.

I Q ∈ Rm×n with QTQ = I

I It is possible to skip computing the bottom half of R
(and the corresponding bits of Q)

I Π is an n × n (column) permutation matrix



Using RRQR for LRA

Given a RRQR factorization, we know

I σk+1 6 |R22|2 (i.e. it can't do better than an SVD)

I To precision |R22|2, A has at most numerical rank k .

(see e.g. Golub and Van Loan, ch. 5)

Demo: Rank-revealing QR

Stop and think:

I RRQR delivers essentially the same service as what we've been
developing: Find an orthogonal basis of the range.

I But: an O(N3) factorization.



Interpolative Decomposition (ID): De�nition

Would be helpful to know columns of A that contribute `the most' to the
rank.
(orthogonal transformation like in QR 'muddies the waters')

For a rank-k matrix A, the Interpolative Decomposition provides this:

Am×n = A(:,J)Pk×n,

where

I J is an index set of length k representing column selection,

I k columns of P contain only a single entry of 1, and

I P is well-conditioned.
In particular, the magnitude of its entries is bounded by 2.



ID: Computation

How do we construct this (from RRQR): (short/fat case)

AΠ = Q
[
R11 R12

]
Set B = QR11 = (AΠ)(:,J).

Q: What is P , in terms of the RRQR?

Next, set P =
[
Id R−111 R12

]
ΠT , then

BP = QR11

[
Id R−111 R12

]
ΠT

= Q
[
R11 R12

]
ΠT

BPΠ = Q
[
R11 R12

]

AΠ = Q
[
R11 R12

]
.



ID Q vs ID A

What does row selection mean for the LRA?

Starting point: At end of stage 1, have LRA A ≈ QQTA.
Run an ID on the rows (i.e. a transpose ID) of Q: Q ≈ PQ(J,:)

(Recall: Q is tall and skinny. Q(J,:) is a square subset.)

A ≈ PQ(J,:)Q
TA.

Now consider: A(J,:) ≈ P(J,:)︸ ︷︷ ︸
Id

Q(J,:)Q
TA

So PA(J,:) ≈ PQ(J,:)Q
TA ≈ A.

I.e. P for Q and A are essentially interchangeable!

[Martinsson, Rokhlin, Tygert `06]



ID: Remarks

Slight tradeo� here: what?

Accuracy (two ≈ on previous slide) vs. expense

How would we use the ID in the context of the range �nder?

I Can simply use ID on the sample matrix Y

I Because of (essentially) the same argument, P made from Y
should transfer to A.

Demo: Interpolative Decomposition



What does the ID buy us?
Name a property that the ID has over other factorizations.

It preserves (a subset of) matrix entries exactly.
Copmosition with other transforms without (expensive!) matmats.

All our randomized tools have two stages:

1. Find ONB of approximate range
2. Do actual work only on approximate range

Complexity?

First step of this: C = QTA → O(N2k).
For now, both stages are O(N2k).

What is the impact of the ID?

I We avoid the need to form/work with C = QTA.

I Row subset A(J,:) assumes role of QTA



Leveraging the ID for SVD (I)

Build a low-rank SVD with row extraction.

1. Obtain the row subset J and upsampler P
N×k

.

(via Q or directly from Y )

2. Compute row QR of remaining rows:

(A(J,:))T

N×k
= Q̄

N×k
R̄

k×k

3. Upsample the row coe�cients R̄T :

Z
N×k

= P
N×k

R̄T

k×k

4. SVD the result:
Z = UΣṼ T



Leveraging the ID for SVD (II)

In what way does this give us an SVD of A?

U
N×k

Σ
k×k

(
Q̄

N×k
Ṽ
k×k

)T

= UΣṼ T Q̄T

= ZQ̄T

= PR̄T Q̄T

= PA(J,:)

≈ A.



Leveraging the ID for SVD (III)

Q: Why did we need to do the row QR?

Because otherwise we wouldn't have gotten a `real' SVD:

A(J,:) = UΣV T

PA(J,:) = PU︸︷︷︸
orth?

ΣV T

→ So `hide' P in matrix being SVD'd�but: can't do full reconstruc-
tion. Use (small)R in QR as a proxy!

Cost: Finally O(Nk2)!

Putting all this together in one code: → HW exercise :)



Where are we now?

I We have observed that we can make matvecs faster if the matrix has
low-ish numerical rank

I In particular, it seems as though if a matrix has low rank, there is no
end to the shenanigans we can play.

I We have observed that some matrices we are interested in (in some
cases) have low numerical rank (cf. the point potential example)

I We have developed a toolset that lets us obtain LRAs and do useful
work (using SVD as a proxy for �useful work�) in O(N · Kα) time
(assuming availability of a cheap matvec).

Next stop: Get some insight into why these matrices have low rank in the
�rst place, to perhaps help improve our machinery even further.
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Punchline

What do (numerical) rank and smoothness have to do with each other?

If the result of a (continuous) operation is smooth, its result can be
represented with a short expansion in a function basis.
Types of basis:

I Polynomials (orthogonal, or monomials if you must),

I Sines/Cosines,

I Eigenfunctions of Sturm-Liouville operators, . . .

I It mostly doesn't matter.

Even shorter punchline?

Smooth functions are boring. (But useful!)



Smoothing Operators
If the operations you are considering are smoothing, you can expect to get
a lot of mileage out of low-rank machinery.

What types of operations are smoothing?

I Derivatives: nope. Make a function `rougher'.
(Consider the idea of a function `having n derivatives' as a
measure of how smooth it is, i.e. the Cn function spaces.)

I Integrals: yep.

This provides a good computational justi�cation to try and use inte-
gral operators as a tool to construct numerical methods.

Now: Consider some examples of smoothness, with justi�cation.

How do we judge smoothness?

Decay of Taylor remainders.



Recap: Multivariate Taylor

1D Taylor: f (c + h) ≈
k∑

p=0

f (p)(c)

p!
hp

Notational tool: Multi-Index in n dimensions

p = (p1, p2, . . . , pn), (all > 0)

|p| = p1 + · · ·+ pn,

p! = p1! · · · · · pn!,

xp = xp11 · · · · · xpnn

Dpf =
∂|p|f

∂xp11 · · · · · ∂x
pn
n
.

With that: For f scalar, f (c + h) ≈
∑

|p|6k

Dpf (c)

p!
hp



Taylor and Error (I)

How can we estimate the error in a Taylor expansion?

Back to 1D: (nD is analogous)

∣∣∣∣∣∣
f (c + h)−

k∑

p=0

f (p)(c)

p!
hp

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

p=k+1

f (p)(c)

p!
hp

∣∣∣∣∣∣
,

assuming that the function is identical to its in�nite Taylor expansion.



Taylor and Error (II)

Now suppose that we had an estimate that

∣∣∣∣∣
f (p)(c)

p!
hp

∣∣∣∣∣ 6 αp.

∣∣∣∣∣∣

∞∑

p=k+1

f (p)(c)

p!
hp

∣∣∣∣∣∣

6
∞∑

p=k+1

∣∣∣∣∣
f (p)(c)

p!
hp

∣∣∣∣∣

6
∞∑

p=k+1

αp =
1

1− α · α
k+1

If α < 1, then this gives a viable bound.

I Slightly di�erent technique from 'textbook' calculus technique.

I 'Textbook' like mean value theorem: not what we'll use.



Connect Taylor and Low Rank
Can Taylor help us establish low rank of an interaction?

c

h

Taylor makes a statement about evaluating a function in a vicinity:

f (x) = f (c + h) =
∑

|p|6k

Dpf (c)

p!
hp

=
∑

|p|6k

(coeffp)G (x, p)

So if we can Taylor expand with a small remainder and a short ex-
pansion, then low rank!



Taylor on Potentials (I)

Compute a Taylor expansion of a 2D Laplace point potential.

ψ(x) =
n∑

i=1

G (x , yj)ϕ(yj)

=
n∑

i=1

log (‖x − y‖2)ϕ(yj)

Since this is a superposition anyway: Just consider a single source.

ψ(x) = log (‖x − y‖2)

Pick an expansion center c. WLOG, c = 0. ψ(h) ≈
∑

|p|6k

Dpψ(0)

p!
hp



Taylor on Potentials (Ia)

Why is it interesting to consider Taylor expansions of Laplace point
potentials?

I Fairly non-smooth (singular)
I What works for them will also work for smoother functions

I Important application in its own right
I N-body simulation
I Integral equation solvers



Taylor on Potentials (II)

Maxima 5.42.1 http://maxima.sourceforge.net

(%i1) phi0: log(sqrt(y1**2 + y2**2));

2 2

log(y2 + y1 )

(%o1) --------------

2

(%i2) diff(phi0, y1);

y1

(%o2) ---------

2 2

y2 + y1

(%i3) diff(phi0, y1, 5);

3 5

120 y1 480 y1 384 y1

(%o3) ------------ - ------------ + ------------

2 2 3 2 2 4 2 2 5

(y2 + y1 ) (y2 + y1 ) (y2 + y1 )

(%i4)



Taylor on Potentials (III)

Which of these is the most dangerous (largest) term?
→ Hard to say. They all contain the same number of powers of
components of y.

What's a bound on it? Let R =
√
y21 + y22 .

∣∣∣∣
5040y1

(y22 + y21 )4

∣∣∣∣ 6 C
∣∣∣ y1
R8

∣∣∣ 6 C
1

R7
.

`Generalize' this bound:

|Dpψ| 6 Cp

{
log(R) |p| = 0

R−|p| |p| > 0
.

Appears true at least from the few p we tried. (Actually is true.)
Cp is a `generic constant'�its value could change from one time it's written
to the next.



Taylor on Potentials (IV)

What does this mean for the convergence of the Taylor series as a whole?

→ Need to estimate each term. Recall that h is the vector from c to
the target (aka point where we evaluate) x. (Assume |p| > 0 to keep
it simple.)

∣∣∣∣
Dpψ(0)

p!
hp
∣∣∣∣
2

6 Cp|Dpψ(0)hp|2 6 Cp

( |h|
R

)p

.

c = 0

y
j

x
i

=h
i

R

r



Taylor on Potentials (V)

Lesson: As long as
maxi |xi − c|2
minj |yj − c|2

=
r

R
< 1,

the Taylor series converges.



Taylor on Potentials (VI)

A few remarks:

I We have just invented one speci�c example of what we will call a local
expansion (of a potential ψ).

I The abstract idea of a local expansion is that:
I it converges on the interior of a ball as long as the closest source is

outside that ball,
I The error in approximating the potential by a truncated (at order k)

local expansion is

Cp

( r

R

)k+1

=

(
dist(c, furthest target)

dist(c, closest source)

)k+1



Local expansions as a Computational Tool

Low rank makes evaluating interactions cheap(er). Do local expansions
help with that goal?

c = 0

y
j

x
i

=h
i

R

r

No, not really. In a roughly uniform target distribution with O(N)
targets, we need O(N) local expansion → nothing saved really.
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Taylor on Potentials, Again
Stare at that Taylor formula again.

ψ(x− y) ≈
∑

|p|6k

Dp
xψ(x− y)|x=c

p!︸ ︷︷ ︸
depends on src/ctr

(x− c)p︸ ︷︷ ︸
dep. on ctr/tgt

Recall: x: targets, y: sources.
At least formally, nothing goes wrong if I swap the roles of x and y

in the Taylor expansion:

ψ(x− y) ≈
∑

|p|6k

Dp
yψ(x− y)|y=c

p!︸ ︷︷ ︸
depends on ctr/tgt

(y − c)p︸ ︷︷ ︸
dep. on src/ctr

.

In comparison to the local expansion above, we will call this (and
other expansions like it) a multipole expansion.



Multipole Expansions (I)

At �rst sight, it doesn't look like much happened, but
mathematically/geometrically, this is a very di�erent animal.
First Q: When does this expansion converge?

The analysis is the same as earlier:

(∗) =

∣∣∣∣
Dp

yψ(x− y)|y=c

p!
(y − c)p

∣∣∣∣ 6 Cp
‖y − c‖p2
‖x− c‖p2

= Cp

(‖y − c‖2
‖x− c‖2

)p

(just with the roles of x and y reversed). If we admit multiple
sources/targets, we get

(∗) 6 Cp

(
maxj ‖yi − c‖2
mini ‖xi − c‖2

)p

.



Multipole Expansions (II)
The abstract idea of a multipole expansion is that:
I it converges on the exterior of a ball as long as the furthest source is

closer to the center than the closest target,
I The error in approximating the potential by a truncated (at order k)

local expansion is
(
dist(c, furthest source)

dist(c, closest target)

)k+1

.

The multipole expansion converges everywhere outside the circle!
(Possibly: slowly, if the targets are too close�but it does!)



Multipole Expansions (III)

If our particle distribution is like in the �gure, then a multipole expansion is
a computationally useful thing. If we set

I S = #sources,

I T = #targets,

I K = #terms in expansion,

then the cost without the expansion is O(ST ), whereas the cost with the
expansion is O(SK + KT ).
If K � S ,T , then that's going from O(N2) to O(N).

The rank (#terms) of the multipole expansion is the same as above for the
local expansion.

Demo: Multipole/local expansions
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Taylor on Potentials: Low Rank?

Connect this to the numerical rank observations:

We have just shown that point→point potential interactions have low
numerical rank!

Speci�cally, to precision Cp

( r

R

)k+1
the interaction from sources to

targets has a numerical rank of at most (#terms in Taylor series) aka

(k + 1)(k + 2)

2
= O(k2)

in 2D, and
(k + 1)(k + 2)(k + 3)

2 · 3 = O(k3)

in 3D.



On Rank Estimates
So how many terms do we need for a given precision ε?

ε ≈
(
dist(c, furthest target)

dist(c, closest source)

)k+1

= ρk+1

Want to relate this to K (#terms = rank). Take (2D) K ≈ k2, i.e.

k ≈
√
K , so ε ≈ ρ

√
K+1 or

log ε ≈
(√

K + 1
)

log ρ

√
K + 1 ≈ log ε

log ρ

K ≈
(

log ε

log ρ
− 1

)2

.

Demo: Checking rank estimates



Estimated vs Actual Rank

Our rank estimate was o� by a power of log ε. What gives?

Possible reasons:

I Maybe by some happy accident some of the Taylor coe�cients
are zero? → No, doesn't look like it.

I The Taylor basis uses O(log(ε)2) terms.
I That's just an existence proof of an expansion with that error.
I Maybe a better basis exists?



Taylor and PDEs

Look at ∂2xG and ∂2yG in the multipole demo again. Notice anything?

How does that relate to ∆G = 0?

I ∂xG = −∂2yG means that we can reduce from O(p2) to O(p)
actually distinct terms → problem solved: same value of
expansion (i.e. same accuracy), many fewer terms

I Alternatively: be clever



Being Clever about Expansions

How could one be clever about expansions? (i.e. give examples)

I Realize that in 2D, harmonic functions (∆u = 0) map
one-to-one to complex-analytic ones.
Then, use complex-valued Taylor, reduces number of terms
from O(p2) to O(p)

I Use DLMF:
Example: Helmholtz kernel (∆ + κ2)u = 0
Fundamental solutions:
I Bessel functions J`(κr)
I Hankel functions of the �rst kind H

(1)
` (κr)

I 3D: Spherical harmonics, . . .



Expansions for Helmholtz
How do expansions for other PDEs arise?

I Transform Helmholtz PDE to polar coordinates

I Obtain the Bessel ODE (in r)

I Solve resulting 1D BVP (in r)

DLMF 10.23.6 shows `Graf's addition theorem':

H
(1)
0 (κ ‖x − y‖2) =

∞∑

`=−∞
H

(1)
` (κ ‖y − c‖2) e i`θ

′

︸ ︷︷ ︸
singular

J` (κ ‖x − c‖2) e−i`θ︸ ︷︷ ︸
nonsingular

where θ = ∠(x − c) and θ′ = ∠(x ′ − c).

Can apply same family of tricks as with Taylor to derive multipole/local
expansions.
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Making Multipole/Local Expansions using Linear Algebra
Actual expansions cheaper than LA approaches. Can this be �xed?

Compare costs for this situation:

I S sources

I T targets

I Actual interaction rank: K � min(S ,T ).

Cost for expansions:

I Compute expansion coe�cients: O(KS)

I Evaluate expansion coe�cients: O(KT )

Overall: O(k(S + T )): Cheap!

Cost for linear algebra:

I Build matrix: O(ST )

I . . .

Oops. Can't be competitive, can it?



The Proxy Trick

Idea: Skeletonization using Proxies
Demo: Skeletonization using Proxies

Q: What error do we expect from the proxy-based multipole/local
`expansions'?

I Function expansions give an indication of what is doable at a
certain rank

I SVD-based linear algebra should match or beat that

I Proxy-based linear algebra. . . may or may not?

Investigation of this: → HW



Why Does the Proxy Trick Work?
In particular, how general is this? Does this work for any kernel?

No. There are two (kernel-speci�c) miracles here:

I We can represent the far �eld of many sources in terms of the
far �eld of a few�and that apparently regardless of what the
targets are.
(`plausible', rigorously due to Green's formula → later)

I We only get a surface of sources because `surface data' is
enough to reconstruct volume data.
This works because an (interior or exterior) Laplace potential is
fully determined by its values on a boundary. (This is a fact
that we will prove later, but if you believe that Laplace
boundary value problems are solvable, you already believe it.)

Remark: In both cases, it's the PDE that provides the cost reduction
from O(kd) (`volume') to O(kd−1) (`surface')!



Where are we now? (I)

Summarize what we know about interaction ranks.

I We know that far interactions with a smooth kernel have low rank.
(Because: short Taylor expansion su�ces)

I If
ψ(x) =

∑

j

G (x, yj)ϕ(yj)

satis�es a PDE (e.g. Laplace), i.e. if G (x, yj) satis�es a PDE, then
that low rank is even lower.

I Can construct interior (`local') and exterior (`multipole') expansions
(using Taylor or other tools).

I Can lower the number of terms using the PDE.

I Can construct LinAlg-workalikes for interior (`local') and exterior
(`multipole') expansions.

I Can make those cheap using proxy points.



Where are we now? (II)

So we can compute interactions where sources are distant from targets (i.e.
where the interaction is low rank) quite quickly.
Problem: In general, that's not the situation that we're in.

But: Most of the targets are far away from most of the sources.
(⇔ Only a few sources are close to a chosen `close-knit' group of targets.)
So maybe we can do business yet�we just need to split out the near
interactions to get a hold of the far ones (which (a) constitute the bulk of
the work and (b) can be made cheap as we saw.)
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Preliminaries: Convolution

(f ∗ g)(x) =

∫

R
f (ξ)g(x − ξ)dξ.

I Convolution with shifted δ is the same as shifting the function;

[f ∗ (ξ 7→ δ(ξ − a))](x) = f (x − a)

I Convolution is linear (in both arguments) and commutative.



Preliminaries: Fourier Transform

F(f )(ω) =

∫

R
f (x)e−2πiωxdx

I Convolution turns into multiplication: F{f ∗ g} = F f · Fg ,
I A single δ turns into: F{δ(x − a)}(ω) = e−iaω

I And a �train� of δs turns into:

F
{∑

`∈Z
δ(x − `)

}
(ω) =

∑

k∈Z
δ(ω − 2πk).

What is F{f (x − a)}?

F{x 7→ f (x − a)} = F{f }F{δ(x − a)} = F{f }e−iaω

See e.g. [Décoret `04].

http://maverick.inria.fr/~Xavier.Decoret/resources/maths/impulsion-train.pdf


Simple and Periodic: Ewald Summation
Want to evaluate potential from an in�nite periodic grid of sources:

ψ(x) =
∑

m∈Zd

Nsrc∑

j=1

G (x, yj + m)ϕ(yj)

`Potential' ψ is periodic as well (→ just need values in one unit cell).

Clear: Expressible as a convolution.



Lattice Sums: Convergence

Q: When does this have a right to converge?

I G = O(1) throghout obviously won't work
→ there must be some sort of fall-o�

I G = O
(
‖x‖−p2

)
. Now think in spherical shells:

ψ(0) =
∞∑

i=0

∑

cells@`2 dist [i , i + 1) to 0

O(id−1)︸ ︷︷ ︸
surface of shell∼# cells

O(i−p)

where d is space dimension. Have:

d − 1− p < −1 ⇔ p > d .

(because
∑

1/n is divergent)



Ewald Summation: Dealing with Smoothness

ψ(x) =
∑

i∈Zd

Nsrc∑

j=1

G (x, yj + i)ϕ(yj)

Clear: a discrete convolution. Would like to make use of the fact that the
Fourier transform turns convolutions into products. How?

I G is nonsmooth, it will have a Fourier transform with a long
tail, hard to compute.

I Idea: separate near (singular) and far part in such a way that
far kernel is smooth enough for Fourier, and near is close
enough to allow for direct summation.



Ewald Summation: Screens

Split G into two parts with a screen σ that `bleeps out' the singularity:

G (x) = σ(x)G (x) + (1− σ(x))G (x).

How does that help? Consider G = 1/r4.

G (x) = σ(x)
1

‖x‖42︸ ︷︷ ︸
GLR

+ (1− σ(x))
1

‖x‖42︸ ︷︷ ︸
GSR

Then, suppose

I σ is smooth

I σ(x) = O
(
‖x‖42

)

I 1− σ has bounded support (i.e. σ(x) = 1 if ‖x‖2 > R for some
R)



Ewald Summation: Field Splitting

We can split the computation (from the perspective of a unit cell target)
as follows:

GSR GLR

Close source A: singular B : smooth
sum directly (few) use Fourier (∗)

Far source 0 C : smooth
use Fourier (∗)

(where `close' means `s → t distance < R ' and `far' the opposite)



Ewald Summation: Summation (1D for simplicity)
Interesting bit: How to sum GLR.

F{ψ} − F{ψSR} = F{ψLR}

= F{GLR}F



x 7→

∑

m∈Z

Nsrc∑

j=1

δ(x − yj −m)





= F{GLR}




Nsrc∑

j=1

e−iyjω · F
{
x 7→

∑

m∈Z
δ(x −m)

}


= F{GLR}




Nsrc∑

j=1

e−iyjω ·
(
ω 7→

∑

n∈Z
δ(ω − 2πn)

)


Now, since GLR is smooth, F{GLR}(ω) should fall o� quickly as |ω|
increases. → Well-approximated with �nitely many terms of the sum
over m. (Again: Smooth function leads to low rank!)



Ewald Summation: Remarks

In practice: Fourier transforms carried out discretely, using FFT.

I Additional error contributions from interpolation
(small if screen smooth enough to be well-sampled by mesh)

I O(N logN) cost (from FFT)

I Need to choose evaluation grid (`mesh')

I Resulting method called Particle-Mesh-Ewald (`PME')
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Barnes-Hut: Putting Multipole Expansions to WorkSingle-level Barnes-Hut

We seek to evaluate all pairwise interactions between N particles in a box;
for now, assume that the particle locations {xi}Ni=1 are fairly evenly distributed.

We cast the problem as a matrix-vector multiplication u = Aq, where the N × N matrix A
has entries

A(i, j) = log
(
xi − xj

)
.

(Figure credit: G. Martinsson)



Barnes-Hut: The Task At Hand

Want: All-pairs interaction.
Caution:

I In these (stolen) �gures: targets sources

I Here: targets and sources

Speci�cally, want
u = Aq

where
Aij = log(xi − xj).

Idea: We have all this multipole technology, but no way to use it:
No targets are cleanly separated from other sources.

Lesson from PME: If you can't compute the entire interaction, com-
pute parts of it. To help do so, put down a grid.



Barnes-Hut: Putting Multipole Expansions to Work

Single-level Barnes-Hut

Place a square grid of boxes on top of the computational box.

Assume each box holds about m particles (so there are about N/m boxes).

Given a tolerance ε, pick P so that, roughly, (
√
2/3)P < ε (... details left out ... ).

For each box, compute its outgoing expansion.

(Figure credit: G. Martinsson)



Barnes-Hut: Putting Multipole Expansions to Work

Single-level Barnes-Hut

How do you evaluate the potentials at the blue locations?(Figure credit: G. Martinsson)



Barnes-Hut: Box Targets

For sake of discussion, choose one `box' as targets.
Q: For which boxes can we then use multipole expansions?

A: Depends on the wanted accuracy (via the expansion order)!



Barnes-Hut: Putting Multipole Expansions to Work

Single-level Barnes-Hut

How do you evaluate the potentials at the blue locations?

Directly evaluate interactions with the particles close by.

For all long-distance interactions, use the out-going expansion!

(Figure credit: G. Martinsson)



Barnes-Hut: Accuracy

With this computational outline, what's the accuracy?

ε ∼
(
d (box ctr, furthest src)

d (box ctr, closest tgt)

)k+1

=

(
box `radius' ·

√
2

box `radius' · 3

)k+1

=

(√
2

3

)k+1

Observation: Dependent on space dimension!

Q: Does this get better or worse as dimension increases?



Barnes-Hut (Single-Level): Computational Cost

What's the cost of this algorithm?

Let:

I N be #particles

I K be #terms in expansion

I m be #particles/box.

What How often Cost Total

Compute mpoles N/m boxes Km KN
Evaluate mpoles N tgts · N/m src boxes K N2K/m
9 close boxes 9·(N/m boxes) m2 Nm

I Assume m ∼
√
N or N ∼ m2.

Q: Where does this assumption come from?



Barnes-Hut Single Level Cost: Observations

Forget K (small, constant). Only mpole eval matters:

cost ∼ N2

m
∼ N1.5.

Observations: There are very many (very) far box-box interactions.
Idea: Summarize further → bigger boxes → `larger' multipoles rep-
resenting more sources.

Idea: To facilitate this `clumping', don't use a grid of boxes, instead
make a tree.



Box Splitting

To get the asymptotic cost down further, we need a hierarchy of boxes (or a “tree of
boxes”) on the computational domain:

Level 0

1

Level 1

2

3

4

5

Level 2

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Level 3

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

For each box in the tree, compute its outgoing expansion.
(Figure credit: G. Martinsson)



Level Count

How many levels?

Options:

I Keep re�ning until the number of sources in each leaf box is
below a certain given constant

I Obvious tweak: Only do that for boxes that actually have too
many sources (→ adaptive tree, vs. the above non-adaptive
strategy.
Downside of adaptive tree: More bookkeeping



Box Sizes

How do you find the potential at the locations marked in blue?(Figure credit: G. Martinsson)

Want to evaluate all the source interactions with the targets in the box.

Q: What would be good sizes for source boxes? What's the requirement?



Multipole Sources

Tessellate the remainder of the domain using as large boxes as you can, with the
constraint that the target box has to be well-separated from every box that is used.

(Figure credit: G. Martinsson)

Data from which of these boxes could we bring in using multipole
expansions? Does that depend on the type of expansion? (Taylor/special
function vs skeletons)



Barnes-Hut: Box Properties

Then replace the original sources in each well-separated box by the corresponding
multipole expansion.
The work required to evaluate one potential is now O(logN).

(Figure credit: G. Martinsson)

What properties do these boxes have?
Simple observation: The further, the bigger.



Barnes-Hut: Box Properties

More complete: We can put a uniform bound on the error in the
(function) expansion at the target:

rs : Source box `radius` (center to vertical/horizontal edge)
R : source center → target center distance
rt : Target box `radius` (center to vertical/horizontal edge)

(
d (src ctr, furthest src)

d (src ctr, closest tgt)

)k+1

=

(
rs
√
2

R − rt

)k+1



Barnes-Hut: Well-separated-ness
Which boxes in the tree should be allowed to contribute via multipole?

rs rtR

Convergent i� rs
√
2 < R − rt . (∗)

Convergent if (picture) R > 3 ·max(rt , rs) (∗∗)
because (∗)⇔

(
rt +
√
2rs
)
< R.

We'll make a new word for that: A pair of boxes satisfying the con-
dition (∗∗) is called well-separated. Observations:

I This is just one choice. (the one we'll use anyway)

I One can play games here, based on a target accuracy.
→ Multipole Acceptance Criterion (`MAC')



Barnes-Hut: Revised Cost Estimate

Which of these boxes are well-separated from one another?

Then replace the original sources in each well-separated box by the corresponding
multipole expansion.
The work required to evaluate one potential is now O(logN).

(Figure credit: G. Martinsson)

What is the cost of evaluating the target potentials, assuming that we
know the multipole expansions already?



Barnes-Hut: Revised Cost Estimate

I L be the number of levels

I N be #particles

I K be #terms in expansion

I m be #particles/box. Assume bounded (say, m 6 100)

I Then L ∼ log(N)

What do we need to do?

I 9 boxes of direct evaluation (self and touching neighbors)
→ O(m) = O(1)

I L levels of multipoles, each of which contains:
I 6 27 source boxes (!) (in 2D)

→ O(LK ) = O(logN)

There are O(N) target boxes (because m is �xed), so we do the above
O(N) times → O(N logN) total work to evaluate.



Barnes-Hut: Next Revised Cost EstimateReducing the cost of computing all out-going expansions from O(N logN) to O(N):

For every leaf box τ , we directly compute the outgoing expansion from the source vector

q̂τ = Cτ q(Jτ ).

(Just as before.)

(Figure credit: G. Martinsson)

Summarize the algorithm (so far) and the associated cost.



Barnes-Hut: Next Revised Cost Estimate

Summarize the algorithm (so far) and the associated cost.

How often Cost Total cost

Compute mpoles N srcs LK KN logN
Evaluate mpoles N tgts · 27L src boxes K NK logN
9 close boxes 9·(N/m boxes) m2 N/m

So even with the forming of the multipoles, the overall algorithm is

O(N logN).

Also, if we wanted to get the whole thing down to O(N), we would
need to speed up both computing and evaluating the multipoles.
Let's start with the former.



Barnes-Hut: Putting Multipole Expansions to Work
Reducing the cost of computing all out-going expansions from O(N logN) to O(N):

Now consider a box Ωτ made up of four leaves: Ωτ = Ωσ1 ∪ Ωσ2 ∪ Ωσ3 ∪ Ωσ4
We seek an outgoing expansion that is valid outside the dotted magenta line.
In this region, the outgoing expansions of the children {σ1, σ2, σ3, σ4} are valid.
“Move” these expansions via a so called outgoing-from-outgoing translation operator:

q̂τ =
4∑

j=1
T(ofo)
τ,σj q̂σj .

(Figure credit: G. Martinsson)

How could this process be sped up?



Barnes-Hut: Clumps of Boxes?

Observation: The amount of work does not really decrease as we go up the
tree: Fewer boxes, but more particles in each of them.
But we already compute multipoles to summarize lower-level boxes. . .



Barnes-Hut: Putting Multipole Expansions to WorkReducing the cost of computing all out-going expansions from O(N logN) to O(N):

Now consider a box Ωτ made up of four leaves: Ωτ = Ωσ1 ∪ Ωσ2 ∪ Ωσ3 ∪ Ωσ4
We seek an outgoing expansion that is valid outside the dotted magenta line.
In this region, the outgoing expansions of the children {σ1, σ2, σ3, σ4} are valid.
“Move” these expansions via a so called outgoing-from-outgoing translation operator:

q̂τ =
4∑

j=1
T(ofo)
τ,σj q̂σj .

(Figure credit: G. Martinsson)

To get a new `big' multipole from a `small' multipole, we need a new
mathematical tool.



Barnes-Hut: Translations

Nominally, all the tool needs to accomplish is to

I take in a multipole expansion at one center

I and `translate it' so that it now serves as an expansion about a
di�erent center.

The transformation that accomplishes this is called a translation op-
erator, and this particular one is called multipole-to-multipole trans-
lation.

Questions:

I How do you do it?

I Where is the resulting expansion valid?

→ HW



Cost of Multi-Level Barnes-Hut

Just the new construction phase:

Level What Cost How Many

L (lowest, leaves) src → mpoles mK (N/m)
L− 1 mpole → mpole K 2 (N/m)/4
L− 2 mpole → mpole K 2 (N/m)/16

...

Altogether: O(KN) + O(K 2N) ∼ O(N)

What Total Cost

Compute mpoles KN + K 2N
Evaluate mpoles NK logN
9 close boxes NK/m

Altogether: Still O(N logN), but the �rst stage is now O(N).



Cost of Multi-Level Barnes-Hut: Observations

Observation: Multipole evaluation remains as the single most costly bit of
this algorithm. Fix?

Idea: Exploit the tree structure also in performing this step.
If `upward' translation of multipoles helped earlier, maybe `downward'
translation of local expansions can help now.
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Using Multipole-to-Local
Computing the incoming expansions for all boxes in O(N) operations

We seek to construct the incoming expansion for box τ (marked in green).
We use the outgoing expansions for all well-separated boxes:

ûτ =
∑

σ∈L(int)
τ

T(ifo)
τ,σ q̂σ

where Tτ,σ is the incoming-from-outgoing translation operator, and L(int)
τ is the

interaction list of box τ .

(Figure credit: G. Martinsson)

Come up with an algorithm that computes the interaction in the �gure.



Using Multipole-to-Local

Come up with an algorithm that computes the interaction in the �gure.

1. Form multipoles

2. Translate multipole to local

3. Evaluate local

But:

I Box has children. What about them?

I And there are a number of closer sources that we've neglected.

Let's consider the situation from the next level down.



Using Multipole-to-Local: Next Level
Computing the incoming expansions for all boxes in O(N) operations

We seek to construct the incoming expansion for box τ (marked in green):

Transfer the incoming expansion from the parent box, ν, and then add all contributions
from boxes in the interaction list:

ûτ = T(ifi)
τ,ν ûν +

∑

σ∈L(int)
τ

T(ifo)
τ,σ q̂σ.

(Figure credit: G. Martinsson)

Assuming we retain information from the previous level, how can we obtain
a valid local expansion on the target box?



Using Multipole-to-Local: Next Level

Assuming we retain information from the previous level, how can we obtain
a valid local expansion on the target box?

1. Obtain contribution from well-separated boxes on previous level
by local→local translation.

2. Obtain contribution from well-separated boxes on this level by
multipole→local translation. For our target box b, call this list
of boxes the interaction list Ib.

3. Keep recursing until only touching boxes remain, compute
interaction from those directly.



De�ne `Interaction List'

For a box b, the interaction list Ib consists of all boxes b′ so that

I b and b′ are on the same level,

I b and b′ are well-separated, and

I the parents of b and b′ touch.



The Fast Multipole Method (`FMM')

Upward pass

1. Build tree

2. Compute interaction lists

3. Compute lowest-level multipoles
from sources

4. Loop over levels ` = L− 1, . . . , 2:

4.1 Compute multipoles at level `
by mp→ mp

Downward pass

1. Loop over levels ` = 2, 3, . . . , L− 1:

1.1 Loop over boxes b on level ` :

1.1.1 Add contrib from Ib to
local expansion by
mp→ loc

1.1.2 Add contrib from parent to
local exp by loc→ loc

2. Evaluate local expansion and direct
contrib from 9 neighbors.

Overall algorithm: Now O(N) complexity.

Note: L levels, numbered 0, . . . , L− 1. Loop indices above inclusive.



What about adaptivity?

Figure credit: Carrier et al. (`88)



What about adaptivity?676 J. CARRIER, L. GREENGARD, AND V. ROKHLIN

FG. 5. Box (b) and the associated Lists 1-5.

b will denote the p-term local expansion about the center of box b of the field
created by all particles located outside T(Ub)LJ T(Wb). b(r) is the result of the
evaluation of the expansion b at a particle r in T(b).

Ib will denote the local expansion about the center of b of the field due to all
particles in T(Vb).

Ab will denote the local expansion about the center of b representing the field
due to all charges located in T(Xb).

ab(r) will denote the field at r T(b) due to all particles in T(Ub).
fib(r) will denote the field at r T(b) due to all particles in T(Wb).

3.3. Informal description of the algorithm. The algorithm can be viewed as a
recursive process of subdividing the computational cell into increasingly finer meshes
(see Figs. 2-3). For a fixed box b at level l, the computational cell is partitioned into
five subsets, Ub, Vb, Wb, Xb, and Yb, and the following procedure is applied to the
sets of particles T(Ub), T(Vb), T(Wb), T(Xb), and T(Yb).

(1) For each childless box b we combine the particles in T(b) by means of
Theorem 2.1 to form a multipole expansion b. For each parent box B we use Lemma
2.2 to merge the multipole expansions of its children bl, b2, b3, b4 into the expansion

(2) The interactions between particles in T(b) and T(Ub) are computed directly.
For each particle r T(b), the result of these calculations is ab(r).

(3) We use Lemma 2.3 to convert the multipole expansion of each box in Vb into
a local expansion about the center of b, and add the resulting expansions to obtain Fb.

(4) For every particle r in b, we compute the field b(r) due to all particles in
T(Wb) by evaluating the p-term multipole expansions w of each box w in Wb at r,
and adding them up.

(5) We convert the field of each particle in T(Xb) into a local expansion about
the center of box b (see Remark 2.1), and add up the resulting expansions to obtain

(6) We shift the center of the local expansion Fn of b’s parent B to the centers
of b and the other children of B by means of Lemma 2.4. We add the local expansion
obtained to Fb.

(7) For each box b, we evaluate the sum of the local expansions Fb and Ab at
every particle r in b and add the result to Otb(r and fib(r) obtaining the field at r.
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Adaptivity: what changes?

I Boxes interacting with a target box b can be at many levels

I Both higher and lower



FMM: List of Interaction Lists

Make a list of cases:

1. Near/touching neighbor: direct

2. Well-separated, same level: mp→ loc

3. Well-separated, lower level: mp→ tgt

4. Not well-separated, higher level: src→ loc

5. Well-separated, higher level: nothing to do

In the FMM literature, the resulting interaction lists are `insightfully'
often called `List 1', `List 2', . . . (with the case numbers above).
Alternatively: `List U', `List V', . . .
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What about solving?

Likely computational goal: Solve a linear system Ax = b. How do our
methods help with that?

I Barnes-Hut/FMM/Ewald provide a matvec.
If iterative solvers (e.g. GMRES) work (i.e. converge quickly),
we're done here.

I If not, how would we construct the equivalent of a direct solver
(e.g. LU)?



A Matrix View of Low-Rank Interaction

Only parts of the matrix are low-rank! What does this look like from a
matrix perspective?

where shaded blocks have low rank.
Remarks about this matrix form:

I This structure is obviously dependent on ordering.
Realize that �nding tree boxes constitutes an ordering.



(Recursive) Coordinate Bisection (RCB)

Left Right

Then, assuming the right ordering, the matrix captures the following
interactions: [

Left→ Left Right→ Left
Left→ Right Right→ Right

]

The o�-diagonal blocks have low-ish rank.



Block-separable matrices

A =




D1 A12 A13 A14

A21 D2 A23 A24

A31 A32 D3 A34

A41 A42 A43 D4




where Aij has low rank: How to capture rank structure?

Recall column ID:
Aij ≈ (Aij)(:,J)Πcol

Recall row ID:
Aij ≈ Prow(Aij)(I ,:)

Both together:
Aij ≈ Prow (Aij)(I ,J)︸ ︷︷ ︸

Ãij

Πcol.



Proxy Recap

Saw: If A comes from a kernel for which Green's formula holds, then the
same skeleton will work for all of space, for a given set of sources/targets.
What would the resulting matrix look like?



Rank and Proxies

Unlike FMMs, partitions here do not include �bu�er� zones of near
elements. What are the consequences?

I IDs will be built using proxies

I If near-neighbor particles inside the proxy circle, simply include
them as 'additional proxies' to enlarge the space enough to get
accuracy for those interactions

I Will have higher rank as a result

I It's possible to use bu�ering in the sovler, but the math gets
more involved



Block-Separable Matrices

A block-separable matrix looks like this:

A =




D1 P1Ã12Π2 P1Ã13Π3 P1Ã14Π4

P2Ã21Π1 D2 P2Ã23Π3 P2Ã24Π4

P3Ã31Π1 P3Ã32Π2 D3 P3Ã34Π4

P4Ã41Π1 P4Ã42Π2 P4Ã43Π3 D4




Here:

I Ãij smaller than Aij

I Di has full rank (not necessarily diagonal)

I Pi shared for entire row

I Πi shared for entire column

Q: Why is it called that?



Block-Separable Matrix: Questions

Q: Why is it called that?

The word separable arises because what low-rank representations do is
(e�ectively) apply `separation of variables', i.e. u(x , y) = v(x)w(y),
just in the row/column indices.

Q: How expensive is a matvec?

A matvec with a block-separable matrix costs O(N3/2) like the single-
level Barnes-Hut scheme.

Q: How about a solve?

→ To do a solve, we need some more technology.



BSS Solve (I)
Use the following notation:

B =




0 P1Ã12 P1Ã13 P1Ã14

P2Ã21 0 P2Ã23 P2Ã24

P3Ã31 P3Ã32 0 P3Ã34

P4Ã41 P4Ã42 P4Ã43 0




and

D =




D1

D2

D3

D4


 , Π =




Π1

Π2

Π3

Π4


 .

Then A = D + BΠ and
[
D B
−Π Id

] [
x

x̃

]
=

[
b

0

]

is equivalent to Ax = b.



BSS Solve (II)

Q: What are the matrix sizes? The vector lengths of x and ~x?

(Π : small× large)

Now work towards doing just a `coarse' solve on ~x, using, e�ectively, the \
Schur complement. Multiply �rst row by ΠD−1, add to second:

[
ΠD−1D ΠD−1B
−Π Id

] [
x

x̃

]
=

[
ΠD−1b

0

]

[
ΠD−1D ΠD−1B

0 Id +ΠD−1B

] [
x

x̃

]
=

[
0

ΠD−1b

]



BSS Solve (III)

Focus in on the second row:

(Id +ΠD−1B)x̃ = ΠD−1b

Every non-zero entry in ΠD−1B looks like

ΠiD
−1
i Pi Ãij .

De�ne a diagonal entry:

Ãii = (ΠiD
−1
i Pi )

−1

The nomenclature makes (some) sense, because Ãii is a `downsam-
pled' version of Di (with two inverses thrown in for good measure).



BSS Solve (IV)

Next, left-multiply (Id +ΠD−1B) by diag(Ãii ):




Ã11

Ã22

Ã33

Ã44


 (Id +ΠD−1B) =




Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã33

Ã41 Ã42 Ã43 Ã44




︸ ︷︷ ︸
Ã

.

Summary: Need to solve

Ã~x = (ΠiD
−1
i Pi )

−1ΠD−1b.



BSS Solve: Summary

What have we achieved?

I Instead of solving a linear system of size

(NL0 boxes ·m)× (NL0 boxes ·m)

we solve a linear system of size

(NL0 boxes · K )× (NL0 boxes · K ),

which is cheaper by a factor of (K/m)3.

I We are now only solving on the skeletons.

A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster

(Figure credit: G.
Martinsson)



Hierarchically Block-Separable
To get to O(N), realize we can recursively
I group skeletons
I eliminate more variables.

Where does this process start?

Start from the `most re�ned' level:

Coarser level skeletons · Finest skeletons



Hierarchically Block-Separable
In order to get O(N) complexity, could we apply this procedure recursively?

A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster

(Figure credit: G. Martinsson)



Hierarchically Block-Separable

I Using this hierarchical grouping gives us
Hierarchically Block-Separable (HBS) matrices.

I If you have heard the word H-matrix and H2-matrix, the ideas are
very similar. Di�erences:
I H-family matrices don't typically use the ID

(instead often use Adaptive Cross Approximation or ACA)
I H2 does target clustering (like FMM), H does not (like Barnes-Hut)



Telescoping Factorization

Formally, one can view this as a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3).

Expressed pictorially, the factorization takes the form
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The inverse of A then takes the form

A−1 = E(3)(E(2)(E(1) D̂(0)
(F(1))∗ + D̂(1))

(F(2))∗ + D̂(2))
(V(3))∗ + D̂(3)

.

All matrices are block diagonal except D̂(0), which is small.

(Figure credit: G. Martinsson)

I The most decrease in `volume' happens in the o�-diagonal part of the
matrix. → Rightfully so!

I All matrices are block-diagonal, except for the highest-level
matrix�but that is small!
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Recap: Fast Fourier Transform

The Discrete Fourier Transform (DFT) is given by:

Xk =
N−1∑

n=0

xne
− 2πi

N
nk (k = 0, . . . ,N − 1)

The foundation of the Fast Fourier Transform (FFT) is the factorization:

Xk =

N/2−1∑

m=0

x2me
− 2πi

N/2
mk

︸ ︷︷ ︸
DFT of even−indexed part of xn

+e−
2πi
N

k

N/2−1∑

m=0

x2m+1e
− 2πi

N/2
mk

︸ ︷︷ ︸
DFT of odd−indexed part of xn

.



FFT: Data Flow

Perhaps a little bit like a butter�y?



Fourier Transforms: A Di�erent View

Claim:
The [numerical] rank of the normalized Fourier transform with ker-
nel e iγxt is bounded by a constant times γ, at any �xed precision
ε.

(i.e. rank is bounded by the area of the rectangle swept out by x and t)
[O'Neil et al. `10]

Demo: Butter�y Factorization (Part I)

https://doi.org/10.1016/j.acha.2009.08.005


Recompression: Making use of Area-Bounded Rank

How do rectangular submatrices get expressed so as to reveal their
constant rank?

r r

→ →

=

=



Observations

Demo: Butter�y Factorization (Part II)
For which types of matrices is the Butter�y factorization guaranteed
accurate?

All of them.

For which types of n × n matrices does the butter�y lead to a reduction in
cost?

�Matrices for which p×q subblocks have rank proportional to pq/n.�
[O'Neil et al. `10]

Explore the limit cases of the characterization.

Reducing p to 1 leads to a rank of one, which doesn't make sense.
Instead, the claim needs to be viewed as n→∞.

https://doi.org/10.1016/j.acha.2009.08.005


Observations: Cost

What is the cost (in the reduced-cost case) of the matvec?

I Level 0: P0,k have size r × n/2L

I Level `: P`,i ,j have size r × 2r

I Postprocess: BL,j have size n/(2L)× r

Comments?

In the typical case, even Level 0 will not be so oversampled that the
cost of applying is substantially less than O(n2).
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PDEs: Simple Ones First, More Complicated Ones Later

Laplace Helmholtz

4u = 0 4u + k2u = 0

I Steady-state ∂tu = 0 of wave
propagation, heat conduction

I Electric potential u for applied
voltage

I Minimal surfaces/�soap �lms�

I ∇u as velocity of incompressible
�ow

I Assume time-harmonic behavior
ũ = e±iωtu(x) in time-domain
wave equation:

∂2t ũ = 4ũ

I Sign in ũ determines direction of
wave: Incoming/outgoing if
free-space problem

I Applications: Propagation of
sound, electromagnetic waves



Fundamental Solutions
Laplace Helmholtz

−4u = δ 4u + k2u = δ

Monopole

Dipole

Quadrupole
aka. Free space Green's Functions
How do you assign a precise meaning to the statement with the δ-function?

Multiply by a test function, integrate by parts.



Green's Functions

Why care about Green's functions?

If you know them, they make solving the PDE simple:

4G = δ ⇒ 4(G ∗ f ) = (f ∗ δ) = f ,

i.e. G ∗ f is the solution to free-space Poisson 4u = f .

What is a non-free-space Green's function? I.e. one for a speci�c domain?

One that satis�es ∆G = δ and a boundary condition.



Green's Functions (II)

Why not just use domain Green's functions?

We don't know them! (for general domains)

What if we don't know a Green's function for our PDE. . . at all?

Use a known one that works for the highest-order derivative parts of
the PDE.



Fundamental Solutions

Laplace Helmholtz

G (x) =

{
1
−2π log |x | 2D
1
4π

1
|x | 3D

G (x) =

{
i
4H

1
0 (k |x |) 2D

1
4π

e ik|x|

|x | 3D

Monopole

∂

∂x
G (x)

∂

∂x
G (x)

Dipole



Layer Potentials (I)

(Skσ)(x) :=

∫

Γ
Gk(x − y)σ(y)dsy

(S ′kσ)(x) := n · ∇xPV

∫

Γ
Gk(x − y)σ(y)dsy

(Dkσ)(x) := PV

∫

Γ
n · ∇yGk(x − y)σ(y)dsy

(D ′kσ)(x) := n · ∇x f .p.

∫

Γ
n · ∇yGk(x − y)σ(y)dsy

I Gk is the Helmholtz kernel (k = 0 → Laplace)

I Operators�map function σ on Γ to. . .
I . . . function on Rn

I . . . function on Γ (in particular)



Layer Potentials (II)

I Alternate (�standard�) nomenclature:

Ours Theirs

S V
D K
S ′ K ′

D ′ T

I S ′′ (and higher) analogously

I Called layer potentials:
I S is called the single-layer potential
I D is called the double-layer potential

I (Show pictures using pytential/examples/layerpot.py, observe
continuity properties.)



How does this actually solve a PDE?
Solve a (interior Laplace Dirichlet) BVP, ∂Ω = Γ

4u = 0 in Ω, u|Γ = f |Γ.
1. Pick representation:

u(x) := (Sσ)(x)

2. Take (interior) limit onto Γ:

u|Γ = Sσ

3. Enforce BC:
u|Γ = f

4. Solve resulting linear system:

Sσ = f

(quickly�using the methods we've developed: It is precisely of the
form that suits our fast algorithms!)

5. Obtain PDE solution in Ω by evaluating representation



IE BVP Solve: Observations (I)

Observations:

I One can choose representations relatively freely. Only constraints:
I Can I get to the solution with this representation?

I.e. is the solution I'm looking for represented?
I Is the resulting integral equation solvable?

Q: How would we know?



IE BVP Solve: Observations (II)

I Some representations lead to better integral equations than others.
The one above is actually terrible (both theoretically and practically).
Fix above: Use u(x) = Dσ(x) instead of u(x) = Sσ(x).
Q: How do you tell a good representation from a bad one?

I Need to actually evaluate Sσ(x) or Dσ(x). . .
Q: How?

→ Need some theory
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Norms

De�nition

(Norm) A norm ‖ · ‖ maps an element of a vector space into [0,∞). It
satis�es:

I ‖x‖ = 0⇔ x = 0

I ‖λx‖ = |λ|‖x‖
I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

Can create norm from inner product: ‖x‖ =
√
〈x , x〉



Function Spaces

Name some function spaces with their norms.

C (Ω) f continuous, ‖f ‖∞ := supx∈Ω |f (x)|
C k(Ω) f k-times continuously di�erentiable

C 0,α(Ω) ‖f ‖α := ‖f ‖∞ + supx 6=y
|f (x)−f (y)|
|x−y |α (α ∈ (0, 1))

CL(Ω) |f (x)− (y)| ≤ L‖x − y‖
Lp(Ω) ‖f ‖p := p

√∫
D |f (x)|pdx <∞

L2 special because?



Convergence

Name some ways in which a sequence can `converge'.

De�nition (Convergent sequence)

xn → x :⇔ ‖xn − x‖ → 0 �convergence in norm�

De�nition (Cauchy sequence)

For all ε > 0 there exists an n for which ‖xν − xµ‖ ≤ ε for µ, ν ≥ n

(Convergence without known limit!)

De�nition (Complete/�Banach� space)

Cauchy ⇒ Convergent

Q: Counterexample?



Operators
X ,Y : Banach spaces, A : X → Y linear operator

De�nition (Operator norm)

‖A‖ := sup{‖Ax‖ : x ∈ X , ‖x‖ = 1}

Theorem

‖A‖ bounded ⇔ A continuous

Other facts?

I The set of bounded linear operators is itself a Banach space:
L(X ,Y )

I ‖Ax‖ ≤ ‖A‖‖x‖
I ‖BA‖ ≤ ‖B‖‖A‖

I What does `linear' mean here?
I Is there a notion of `continuous at x ' for linear operators?



Operators: Examples

Which of these is bounded as an operator on functions on the real line?

I Multiplication by a scalar

I �Left shift�

I Fourier transform

I Di�erentiation

I Integration

I Integral operators

Need to know spaces (norms really) to answer that!



Integral Equations: Zoology

Volterra Fredholm∫ x
a k(x , y)f (y)dy = g(x)

∫
G k(x , y)f (y)dy = g(x)

First kind Second Kind∫
G k(x , y)f (y)dy = g(x) f (x) +

∫
G k(x , y)f (y)dy = g(x)

Questions:

I First row: First or second kind?

I Second row: Volterra or Fredholm?

I Matrix (i.e. �nite-dimensional) analogs?

I What can happen in 2D/3D?

I Factor allowable in front of the identity?

I Why even talk about `second-kind operators'?
I Throw a +δ(x − y) into the kernel, back to looking like �rst kind. So?
I Is the identity in (I + K ) crucial?



Connections to Complex Variables

Complex analysis is full of integral operators:

I Cauchy's integral formula:

f (a) =
1

2πi

∮

γ

1

z − a
f (z) dz

I Cauchy's di�erentiation formula:

f (n)(a) =
n!

2πi

∮

γ

1

(z − a)n+1
f (z) dz



Integral Operators: Boundedness (=Continuity)

Theorem (Continuous kernel ⇒ bounded)

G ⊂ Rn closed, bounded (�compact�), K ∈ C (G 2). Let

(Aφ)(x) :=

∫

G
K (x , y)φ(y)dy .

Then

‖A‖∞ = max
x∈G

∫

G
|K (x , y)|dy .

Show `6'.



Solving Integral Equations

Given

(Aφ)(x) :=

∫

G
K (x , y)ϕ(y)dy ,

are we allowed to ask for a solution of

(Id +A)ϕ = g?

Will see three attempts to answer that, in roughly historical order:

I Neumann

I Riesz

I Fredholm



Attempt 1: The Neumann series

Want to solve
ϕ− Aϕ = (I − A)ϕ = g .

Formally:
ϕ = (I − A)−1g .

What does that remind you of?

∞∑

k=0

αk =
1

1− α

Only works if |α| < 1!



Attempt 1: The Neumann series (II)

Theorem

A : X → X Banach, ‖A‖ < 1 (I − A)−1 =
∞∑

k=0

Ak with

‖(I − A)−1‖ ≤ 1/(1− ‖A‖).

I How does this rely on completeness/Banach-ness?
I There's an iterative procedure hidden in this.

(Called Picard Iteration. Cf: Picard-Lindelöf theorem.)
Hint: How would you compute

∑
k A

k f ?

Q: Why does this fall short?

I ‖A‖ 6 1 is way to restrictive a condition.

I → We'll need better technology.

I Biggest Q: If Cauchy sequences are too weak a tool to deliver a
limit, where else are we going to get one?
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Compact Sets

De�nition (Precompact/Relatively compact)

M ⊆ X precompact:⇔ all sequences (xk) ⊂ M contain a subsequence
converging in X

De�nition (Compact/`Sequentially complete')

M ⊆ X compact:⇔ all sequences (xk) ⊂ M contain a subsequence
converging in M

I Precompact ⇒ bounded

I Precompact ⇔ bounded (�nite dim. only!)



Compact Sets (II)

Counterexample to `precompact ⇔ bounded'? (∞ dim)

Looking for a bounded set where not every sequence contains a con-
vergent subsequence. → Make use of the fact that there are in�nitely
many `directions' (dimensions).

Precompactness `replaces' boundedness in ∞ dim (because bound-
edness is `not strong enough')



Compact Operators

X ,Y : Banach spaces

De�nition (Compact operator)

T : X → Y is compact :⇔ T (bounded set) is precompact.

Theorem

I T ,S compact ⇒ αT + βS compact

I One of T ,S compact ⇒ S ◦ T compact

I Tn all compact, Tn → T in operator norm ⇒ T compact

Questions:

I Let dimT (X ) <∞. Is T compact?

I Is the identity operator compact?



Intuition about Compact Operators

I Compact operator: As �nite-dimensional as you're going to get in
in�nite dimensions.

I Not clear yet�but they are moral (∞-dim) equivalent of a matrix
having low numerical rank.

I Are compact operators continuous (=bounded)?

I What do they do to high-frequency data?

I What do they do to low-frequency data?



Arzelà-Ascoli
Let G ⊂ Rn be compact.

Theorem (Arzelà-Ascoli)

U ⊂ C (G ) is precompact i� it is bounded and equicontinuous.

Equicontinuous means

For all x , y ∈ G
for all ε > 0 there exists a δ > 0 such that for all f ∈ U
if |x − y | < δ, then |f (x)− f (y)| < ε.

Continuous means:

For all x , y ∈ G
for all ε > 0 there exists a δ > 0 such that
if |x − y | < δ, then |f (x)− f (y)| < ε.



Arzelà-Ascoli: Proof Sketch

I Pick a dense seuqence in G

I Use a diagonal argument to �nd pointwise convergent
subsequence

I Use equicontinuity to show uniform convergence



Arzelà-Ascoli (II)

Intuition?

Equicontinuity prevents the functions from `running away'.

�Uniformly continuous�?

One δ works for all x .

When does uniform continuity happen?

Continuous on a closed and bounded (`compact') set.

(Note: Kress LIE 2nd ed. de�nes `uniform equicontinuity' in one go.)
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Integral Operators are Compact

Theorem (Continuous kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.20])

G ⊂ Rm compact, K ∈ C (G 2). Then

(Aφ)(x) :=

∫

G
K (x , y)φ(y)dy .

is compact on C (G ).

Use A-A. (a statement about compact sets) What is there to show?
Pick U ⊂ C (G ). A(U) bounded?

Yes, because the operator is bounded.

A(U) equicontinuous?

Yes: K uniformly continuous on G × G because G × G compact.



Weakly singular
G ⊂ Rn compact

De�nition (Weakly singular kernel)

I K de�ned, continuous everywhere except at x = y

I There exist C > 0, α ∈ (0, n] such that

|K (x , y)| ≤ C |x − y |α−n (x 6= y)

Theorem (Weakly singular kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.22])

K weakly singular. Then

(Aφ)(x) :=

∫

G
K (x , y)φ(y)dy .

is compact on C (G ), where cl(G ◦) = G .



Weakly singular: Proof Outline

Outline the proof of `Weakly singular kernel ⇒ compact'.

I ∫
|x − y |α−n ≤ ωn

∫ d

0
ρα−nρn−1dρ = dα/αωn

I Show boundedness/existence as improper integral.
(polar coordinates)

I Bleep out the singularity with a C 0 PoU that shrinks with n: An

I Each An compact by previous thm.

I Shrink singularity with n. An converge uniformly (because of
weak singularity).

I A is limit of compact operators.



Weakly singular (on surfaces)

Ω ⊂ Rn bounded, open, ∂Ω is C 1 (what does that mean?)

De�nition (Weakly singular kernel (on a surface))

I K de�ned, continuous everywhere except at x = y

I There exist C > 0, α ∈ (0, n − 1] such that

|K (x , y)| ≤ C |x − y |α−n+1 (x , y ∈ ∂Ω, x 6= y)

Theorem (Weakly singular kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.23])

K weakly singular on ∂Ω. Then (Aφ)(x) :=

∫

∂Ω
K (x , y)φ(y)dy is compact

on C (∂Ω).

Q: Has this estimate gotten worse or better?
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Riesz Theory (I)

Still trying to solve

Lφ := (I − A)φ = φ− Aφ = f

with A compact.

Theorem (First Riesz Theorem [Kress, Thm. 3.1])

N(L) is �nite-dimensional.

Questions:

I What is N(L) again?

I Why is this good news?



Riesz First Theorem: Proof Outline

Show it.

Good news because each dimension in N(L) is an obstacle to invert-
ibility. Now we know that there's only `�nitely many obstacles'.
Proof:

I N(L) closed. (Why?)

I Lφ = 0 means what for A?

I When is the identity compact again?



Riesz Theory (II)

Theorem (Riesz theory [Kress, Thm. 3.4])

A compact. Then:

I (I − A) injective ⇔ (I − A) surjective
I It's either bijective or neither s nor i.

I If (I − A) is bijective, (I − A)−1 is bounded.

Rephrase for solvability:

Sol. (I − A)ϕ = 0 unique (ϕ = 0) ⇒ (I − A)ϕ = f unique sol.
A real existence result!

Key shortcoming?

Gives out completely if there happens to be a nullspace.



Riesz Theory: Boundedness Proof Outline

Assuming (I − A) is bijective, show that (I − A)−1 is bounded.

I Assume L−1 unbounded, so there exists a sequence (fn) with
‖fn‖ = 1 and

∥∥L−1fn
∥∥ ≥ n.

I De�ne gn = fn/
∥∥L−1fn

∥∥→ 1 and φn = L−1fn/
∥∥L−1fn

∥∥
I φn − Aφn = gn
I Pick a convergent subsequence out of (Aφn), let Aφn → φ

I Aφ = φ, so φ ∈ N(L).



Hilbert spaces
Hilbert space: Banach space with a norm coming from an inner product:

(αx + βy , z) =?

(x , αy + βz) =?

(x , x)?

(y , x) =?

Is C 0(G ) a Hilbert space?

No, no inner product generates ‖·‖∞.

Name a Hilbert space of functions.

L2(Ω) with

(f , g) =

∫

Ω
f · g .



Continuous and Square-Integrable

Can we carry over C 0(G ) boundedness/compactness results to L2(G )?

X , Y normed spaces with a scalar product so that |(φ, ψ)| ≤ ‖φ‖ ‖ψ‖ for
φ, ψ ∈ X .

Theorem (Lax dual system [Kress LIE 3rd ed. Thm. 4.13])

Let U ⊆ X be a subspace and let A : X → Y and B : Y → X be bounded
linear operators with

Aφ, ψ) = (φ,Bψ) (φ ∈ U, ψ ∈ Y ).

Then A : U → Y is bounded with respect to ‖·‖s induced by the scalar
product and ‖A‖2s ≤ ‖A‖ ‖B‖.

Based on this, it is also possible to carry over compactness results.



Adjoint Operators

De�nition (Adjoint oeprator)

A∗ called adjoint to A if

(Ax , y) = (x ,A∗y)

for all x , y .

Facts:

I A∗ unique

I A∗ exists

I A∗ linear

I A bounded ⇒ A∗ bounded

I A compact ⇒ A∗ compact



Adjoint Operator: Observations?
What is the adjoint operator in �nite dimensions? (in matrix
representation)

The transpose.

What do you expect to happen with integral operators?

Sources and targets swap roles.

Adjoint of the single-layer?

Itself. (`self-adjoint')

Adjoint of the double-layer?

S ′



Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE 2nd ed. Thm. 4.14])

A : X → X compact. Then either:

I I − A and I − A∗ are bijective
or:

I dimN(I − A) = dimN(I − A∗)

I (I − A)(X ) = N(I − A∗)⊥

I (I − A∗)(X ) = N(I − A)⊥

Seen these statements before?

Fundamental thm of linear algebra → next slide



Fundamental Theorem of Linear Algebra

A(ℝn)

N(AT)N(A)

AT(ℝm)

0 0
A A 

A 

A T

T

n − r m − r

dim r dim r

A T

A 

ℝmℝn



Fredholm Alternative in IE terms
Translate to language of integral equation solvability:

I Either ϕ(x)−
∫
K (x , y)ϕ(y) = 0 and

ψ(x)−
∫
K (y , x)ψ(y) = 0 have only the trivial solution and

their inhom counterparts are uniquely solvable,

I or the homogeneous and inhomogeneous int.eqs. have the
same �nite number of lin.indep. solutions. In particular, the
inhom equations

ϕ(x)−
∫

K (x , y)ϕ(y) = f (x)

ψ(x)−
∫

K (y , x)ψ(y) = g(x)

are solvable i�
I f ⊥ ψ for all solutions ψ of (I − A∗)ψ = 0,
I or g ⊥ ϕ for all solutions ϕ of (I − A)ϕ = 0.



Fredholm Alternative: Further Thoughts

What about symmetric kernels (K (x , y) = K (y , x))?

A = A∗.

Where to get uniqueness?

Will work on that.
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Spectral Theory: Terminology
A : X → X bounded, λ is a . . . value:

De�nition (Eigenvalue)

There exists an element φ ∈ X , φ 6= 0 with Aφ = λφ.

De�nition (Regular value)

The �resolvent� (λI − A)−1 exists and is bounded.

Can a value be regular and �eigen� at the same time?

No: eigen means that (λI − A) has a nullspace, so there isn't an
inverse.

What's special about ∞-dim here?

Not all non-regular values are eigen.



Resolvent Set and Spectrum

De�nition (Resolvent set)

ρ(A) := {λ is regular}

De�nition (Spectrum)

σ(A) := C \ ρ(A)



Spectral Theory of Compact Operators

Theorem

A : X → X compact linear operator, X ∞-dim.
Then:

I 0 ∈ σ(A) (show! )

I σ(A) \ {0} consists only of eigenvalues

I σ(A) \ {0} is at most countable

I σ(A) has no accumulation point except for 0



Spectral Theory of Compact Operators: Proofs

Show the �rst part.

If 0 6∈ σ(A), then, A−1 exists and is bounded. Then I = AA−1 is
compact.

Show second part.

By Riesz, nullspaces and non-invertibility (of λI − A) coincide.



Spectral Theory of Compact Operators: Implications

Rephrase last two: how many eigenvalues with | · | ≥ R?

Finitely many

Recap: What do compact operators do to high-frequency data?

Dampen it.

Don't confuse I − A with A itself!

For example: dimN(A) vs dimN(I − A)
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Recap: Layer potentials

(Sσ)(x) :=

∫

Γ
G (x − y)σ(y)dsy

(S ′σ)(x) := PV n̂ · ∇x

∫

Γ
G (x − y)σ(y)dsy

(Dσ)(x) := PV

∫

Γ
n̂ · ∇yG (x − y)σ(y)dsy

(D ′σ)(x) := f .p. n̂ · ∇x

∫

Γ
n̂ · ∇yG (x − y)σ(y)dsy

De�nition (Harmonic function)

4u = 0

Where are layer potentials harmonic?

Away from the boundary.



On the double layer again

Is the double layer actually weakly singular? Recap:

De�nition (Weakly singular kernel)

I K de�ned, continuous everywhere except at x = y

I There exist C > 0, α ∈ (0, n − 1] such that

|K (x , y)| ≤ C |x − y |α−n+1 (x , y ∈ ∂Ω, x 6= y)



Actual Singularity in the Double Layer

∂

∂x
log(|0− x |) =

x

x2 + y2

I Singularity with approach on y = 0?
I Singularity with approach on x = 0?

So life is simultaneously worse and better than discussed.
How about 3D? (−x/|x |3)
Would like an analytical tool that requires `less' fanciness.



Cauchy Principal Value

But I don't want to integrate across a singularity! → punch it out.

Problem: Make sure that what's left over is well-de�ned

∫ 1

−1

1

x
dx?

Not de�ned really.

PV

∫ 1

−1

1

x
dx := lim

ε→0+

(∫ −ε

−1

1

x
+

∫ 1

ε

1

x

)

Q: Slight wrinkle�Symmetry matters!

NOPE :

∫ −2ε

−1

1

x
+

∫ 1

ε

1

x



Principal Value in n dimensions

y

x

Γ

n
x0

Integration Contour ε

Again: Symmetry matters!

Not an ellipse, not a potato, a circle. Sphere in 3D.

What about even worse singularities?

�Hadamard �nite part�

I HFP integrals: hypersingular

I CPV integrals: singular



Recap: Layer potentials

(Sσ)(x) :=

∫

Γ
G (x − y)σ(y)dsy

(S ′σ)(x) := PV n̂ · ∇x

∫

Γ
G (x − y)σ(y)dsy

(Dσ)(x) := PV

∫

Γ
n̂ · ∇yG (x − y)σ(y)dsy

(D ′σ)(x) := f .p. n̂ · ∇x

∫

Γ
n̂ · ∇yG (x − y)σ(y)dsy

Important for us: Recover `average' of interior and exterior limit without
having to refer to o�-surface values.
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Green's Theorem
Ω bounded

Theorem (Green's Theorem [Kress LIE 2nd ed. Thm 6.3])

∫

Ω
u4v +∇u · ∇v =

∫

∂Ω
u(n̂ · ∇v)ds

∫

Ω
u4v − v4u =

∫

∂Ω
u(n̂ · ∇v)− v(n̂ · ∇u)ds

If 4v = 0 and u = 1, then ∫

∂Ω
n̂ · ∇v =?

∫

Ω
1 4v︸︷︷︸

0

−v 41︸︷︷︸
0

=

∫

∂Ω
1(n̂ · ∇v)− v(n̂ · ∇1︸ ︷︷ ︸

0

)ds



Green's Formula

What if 4v = 0 and u = G (|y − x |) in Green's second identity?

∫

Ω
u4v − v4u =

∫

∂Ω
u(n̂ · ∇v)− v(n̂ · ∇u)ds

Can you write that more brie�y?

(S(n̂ · ∇u)− Du)(x) = u(x)



Green's Formula (Full Version)

Ω bounded

Theorem (Green's Formula [Kress LIE 2nd ed. Thm 6.5])

If 4u = 0, then

(S(n̂ · ∇u)− Du)(x) =





u(x) x ∈ Ω,
u(x)
2 x ∈ ∂Ω,

0 x 6∈ Ω.



Green's Formula and Cauchy Data

Suppose I know `Cauchy data' (u|∂Ω, n̂ · ∇u|∂Ω) of u. What can I do?

Compute u anywhere.

What if Ω is an exterior domain?

No longer holds

What if u = 1? Do you see any practical uses of this?

S term disappears, −D1 is an indicator function for the domain D.
Indicator functions can be useful, for example to set representations
to zero where they're invalid.



Mean Value Theorem

Theorem (Mean Value Theorem [Kress LIE 2nd ed. Thm 6.7])

If ∆u = 0, u(x) =

∫

B(x ,r)
u(y)dy =

∫

∂B(x ,r)
u(y)dy

De�ne
∫
?

|Ω| :=

∫

Ω
1dx ,

∫

Ω
f (x)dx =

1

|Ω|

∫

Ω
f (x)dx .

Trace back to Green's Formula (say, in 2D):

u(x) = (S(n̂ · ∇u)− Du)(x) =
1

2π
log(r)

∫

∂B
n̂ · ∇u

︸ ︷︷ ︸
0

− 1

2πr

∫

∂B
u.



Maximum Principle

Theorem (Maximum Principle [Kress LIE 2nd ed. 6.9])

If 4u = 0 on compact set Ω̄:
u attains its maximum on the boundary.

Suppose it were to attain its maximum somewhere inside an open set. . .

Then we'd be able to get the value there by averaging over a neigh-
borhood. → some points there have to be as high or higher.
So boundaries are special.

What do our constructed harmonic functions (layer potentials) do there?

Good question → next slide.



Green's Formula at In�nity: Statement

Ω ⊆ Rn bounded, C 1, connected boundary, 4u = 0 in Rn \ Ω, u bounded

Theorem (Green's Formula in the exterior [Kress LIE 3rd ed. Thm 6.11])

(S∂Ω(n̂ · ∇u)− D∂Ωu)(x) + PVu∞ = u(x)

for some constant u∞. Only for n = 2,

u∞ =
1

2πr

∫

|y |=r
u(y)dsy .

Realize the power of this statement:

Every bounded harmonic function is representable as. . .



Green's Formula at In�nity: Proof (1/4)
We will focus on R3. WLOG assume 0 ∈ Ω. Let M = ‖u‖L∞(Rn\Ω̄).
First, show ‖∇u‖ ≤ 6M/ ‖x‖ for x ≥ R0.

Choose R0 so that B(0,R0/2)c ∩ Ω = ∅ and assume ‖x‖ ≥ R0.
Since ∂iu is also harmonic, we may apply the mean value theorem
and Gauss's theorem:

∇u(x) =
1

(4/3)πr3

∫

B(x ,r)
∇u(y)dy = − 3

4πr3

∫

∂B(x ,r)
n̂(y)u(y)dy ,

where n̂(y) is the unit normal to ∂B(x , r) towards the interior of the
ball (hence the sign �ip). The second equality follows from Gauss's
theorem by applying it to ~v := ~eiu, where ~ei is the ith unit vector.
Choosing r = ‖x‖ /2 yields that

‖∇u(x)‖ ≤ 3M

r
=

6M

‖x‖ .



Green's Formula at In�nity: Proof (2/4)
Let x ∈ R3 \ Ω̄. Let r be such that Ω̄ ⊂ B(x , r). Apply Green's formula on
bounded domains to B(x , r) \ Ω̄:

(S∂Ω(∂nu)− D∂Ωu)(x) + (S∂B(x ,r)(∂nu)− D∂B(x ,r)u)(x) = u(x).

Show S∂B(x ,r)(∂nu)→ 0 as r →∞:

Consider

0 =

∫

∂(B(x ,r)∩Ω̄c )
(∂nu)(y) =

∫

∂B(x ,r)
(∂nu)(y)−

∫

∂Ω
(∂nu)(y).

(The minus sign in the last term comes from the sign �ip in the
normal.) So

S∂B(x ,r)(∂nu) =
1

4πr

∫

∂B(x ,r)
(∂nu)(y) =

1

4πr

∫

∂Ω
(∂nu)(y)→ 0.



Green's Formula at In�nity: Proof (3/4)
It remains to bound the term

D∂B(x ,r)u)(x) =
4π

r2

∫

∂B(x ,r)
u(y)dSy .

Can we transplant that ball to the origin in some sense?

u(x + y)− u(y) = ∇u((1− θ)y + θx) · x
for some θ ∈ [0, 1], so that if y is su�ciently large,

|u(x + y)− u(y)| ≤ 6M ‖x‖
‖y‖ − ‖x‖ .

So ∣∣∣∣∣
4π

r2

∫

∂B(x ,r)
u(y)dSy −

4π

r2

∫

∂B(0,r)
u(y)dSy

∣∣∣∣∣ ≤
C

r
.



Green's Formula at In�nity: Proof (4/4)

Observe ∣∣∣∣∣
4π

r2

∫

∂B(0,r)
u(y)dSy

∣∣∣∣∣ ≤ 4πM.

Consider the sequence

µn :=
4π

r2n

∫

∂B(0,rn)
u(y)dSy .

Because of its boundedness and sequential compactness of the bounding
interval, out of a sequence of radii rn, we can pick a subsequence so that
(µn(k)) converges. Call the limit u∞.



Green's Formula at In�nity: Impact

Can we use this to bound u as x →∞?
Consider the behavior of the kernel as r →∞. Focus on 3D for simplicity.
(But 2D holds also.)

u(x) = u∞ + O

(
1

|x |

)

(2D uses mean-0 property of ∂nu.)

How about u's derivatives?

∇u(x) = O

(
1

|x |n−1
)
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Jump relations:

r

r
Sµ

µ

Γ

S ′µ



Jump Relations: Mathematical Statement

Let [X ] = X+ − X−. (Normal points towards �+�=�exterior�.)

Theorem (Jump Relations [Kress LIE 2nd ed. Thm. 6.14, 6.17,6.18])

[Sσ] = 0

lim
x→x0±

(S ′σ) =

(
S ′ ∓ 1

2
I

)
(σ)(x0) ⇒ [S ′σ] = −σ

lim
x→x0±

(Dσ) =

(
D ± 1

2
I

)
(σ)(x0) ⇒ [Dσ] = σ

[D ′σ] = 0

Truth in advertising: Assumptions on Γ?

Needs to be C 2, i.e. twice continuously di�erentiable.



Jump Relations: Proof Sketch for SLP

Sketch the proof for the single layer.

I Use same cut-o� function approach as in proof for weakly
singular ⇒ compact

I Single layer potential is uniform limit of continuous functions.



Jump Relations: Proof Sketch for DLP

Sketch proof for the double layer.

I Represent tgt point x near boundary as

x = z + hn̂(z)

where z ∈ Γ.

I DLP becomes

Dσ(x) = σ(z)D1(x) + D[σ − σ(z)].

I Argument of D[σ − σ(z)] disappears as h→ 0; exists as
improper integral. Remains to mop up limit behavior.
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Boundary Value Problems: Overview

Dirichlet Neumann

Int. limx→∂Ω− u(x) = g
+ unique

limx→∂Ω− n̂ · ∇u(x) = g
o may di�er by constant

Ext. limx→∂Ω+ u(x) = g

u(x) =

{
O(1) 2D

o(1) 3D
as |x | → ∞

+ unique

limx→∂Ω+ n̂ · ∇u(x) = g
u(x) = o(1) as |x | → ∞
+ unique

with g ∈ C (∂Ω).
What does f (x) = O(1) mean? (and f (x) = o(1)?)

f (x) = O(g(x))⇔ f (x)

g(x)
6 C , f (x) = o(g(x))⇔ f (x)

g(x)
→ 0.



Uniqueness Proofs

Dirichlet uniqueness: why?

(Hint: Maximum principle)

Neumann uniqueness: why?

Suppose two solutions exist and di�erence ũ = u1−u2 is not constant.
Then ∇ũ 6= 0 somewhere. Then:

∫

Ω
u4u +∇u · ∇v =

∫

∂Ω
u(n̂ · ∇v)ds

gives:

0 <

∫

Ω
|∇ũ|2 =

∫

∂Ω
ũ(n̂ · ∇ũ︸ ︷︷ ︸

0

)ds = 0.



Uniqueness: Remaining Points

Truth in advertising: Missing assumptions on Ω?

Above works cleanly if boundary is C 2, i.e. twice continuously di�er-
entiable.

What's a DtN map?

Given Dirichlet data, �nd Neumann data. Possible!

Next mission: Find IE representations for each.



Uniqueness of Integral Equation Solutions

Theorem (Nullspaces [Kress LIE 2nd ed. Thm 6.20])

I N(I/2− D) = N(I/2− S ′) = {0}
I N(I/2 + D) = span{1}, N(I/2 + S ′) = span{ψ},

where
∫
ψ 6= 0.



IE Uniqueness: Proofs (1/3)

Show N(I/2− D) = {0}.

I Suppose ϕ/2− Dϕ = 0. To show: ϕ = 0.

I u(x) := Dϕ(x) is harmonic o� ∂Ω, u− = Dϕ− ϕ/2 = 0.

I Because of interior Dirichlet uniqueness, u|Ω = 0.

I (∂nu)+ = 0 by the jump relations.

I u has the right decay at ∞, so solves ext. Neumann problem
(unique)

I u = 0 everywhere.

I ϕ = u+ − u− = 0.



IE Uniqueness: Proofs (2/3)

Show N(I/2− S ′) = {0}.

I/2− S ′ = I/2− D∗, Fredholm alternative.



IE Uniqueness: Proofs (3/3)
Show N(I/2 + D) = span{1}.

I Suppose ϕ/2 + Dϕ = 0. To show: ϕ constant

I u(x) := Dϕ(x) is harmonic o� ∂Ω, u+ = Dϕ+ ϕ/2 = 0.

I Has right decay, so exterior Dirichlet uniqueness says u|Ω̄c = 0.

I Jump relations for ∂nu yield (∂nu)− = 0.

I Interior Neumann `uniqueness' says u = const in Ω.

I Jump relations say ϕ = const on ∂Ω.

I �⊇�: Can use Green's thm to show that D1+1/2=0.

What conditions on the RHS do we get for int. Neumann and
ext. Dirichlet?

(I − A)(X ) = N(I − A∗)⊥

→ �Clean� Existence for 3 out of 4.



Patching up Exterior Dirichlet

Problem: N(I/2 + S ′) = {ψ}. . . do not know ψ. Use di�erent kernel:

n̂ · ∇yG (x , y) → n̂ · ∇yG (x , y) +
1

|x |n−2

Note: Singularity only at origin! (assumed ∈ Ω)

I 2D behavior? 3D behavior?

I Still a solution of the PDE? Compact?

I Jump condition? Exterior limit? Deduce u = 0 on exterior.
I Consider ∂nG = O(1/rn−1).

I |x |n−2u(x) =? as |x | → ∞?

I Thus
∫
φ = 0. Contribution of the second term?

I φ/2 + Dφ = 0, i.e. φ ∈ N(I/2 + D) =?

I Existence/uniqueness?

→ Existence for 4 out of 4.



Domains with Corners

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

What's the problem? (Hint: Jump condition for constant density)



Domains with Corners (II)

At corner x0: (2D)

lim
x→x0±

=

∫

∂Ω
n̂ · ∇yG (x , y)φ(y)dsy ±

1

2

〈opening angle on ± side〉
π

φ

→ non-continuous behavior of potential on Γ at x0
What space have we been living in? How do we �x this mess?

I Continuous functions

I I + Bounded (Neumann) + Compact (Fredholm)

I Use L2 theory
(point behavior �invisible�)

Numerically: Needs consideration, can drive up cost through re�nement.
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Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation ∂2t U = c24U,. Q:
What is c?

(c : Sound speed) Ansatz: U(x , t) = u(x)e−iωt . Plug in:

u(x)∂2t [e−iωt ] = c2e−iωt4u(x)

u(x)(−iω)2e−iωt = c2e−iωt4u(x)

−u(x)ω2 = c24u(x)

0 = c24u(x) + ω2u(x)

= 4u(x) +
(ω
c

)2
u(x)

0 = 4u(x) + k2u(x)

where k = ω/c is called the wave number.



Helmholtz vs. Yukawa

Helmholtz Equation

I 4u + k2u(x) = 0

I Inde�nite operator

I Oscillatory solution

I Di�cult to solve, especially for
large k

Yukawa Equation

I −4u + k2u(x) = 0

I Positive de�nite operator

I Smooth solutions

I `Screened Coulomb' interaction

I Generally quite simple to solve



The prototypical Helmholtz BVP: A Scattering Problem

Ω

Rn \ Ω
Γ

uinc

u

Ansatz:
utot = u + uinc

Solve for scattered �eld u.



Helmholtz: Some Physics

Physical quantities:

I Velocity potential: U(x , t) = u(x)e−iωt

(�x phase by e.g. taking real part)

I Velocity: v = (1/ρ0)∇U
I Pressure: p = −∂tU = iωue−iωt

I Equation of state: p = f (ρ)

What's ρ0?

The wave equation is a linearization of (nonlinear) Euler, and ρ0 is
the `equilibrium' density about which we've linearized.

What happens to a pressure BC as ω → 0?

It disappears!



Helmholtz: Boundary Conditions
Interfaces between media: What's continuous?

Normal velocity, pressure.

I Sound-soft: Scatterer �gives�
I Pressure remains constant in time
I u = f → Dirichlet

I Sound-hard: Scatterer �does not give�
I Pressure varies, same on both sides of interface
I n̂ · ∇u = 0 → Neumann

I Impedance: Some pressure translates into motion
I Scatterer �resists�
I n̂ · ∇u + ikλu = 0 → Robin (λ > 0)

I Sommerfeld radiation condition: allow only outgoing waves (n-dim)

r
n−1
2

(
∂

∂r
− ik

)
u(x)→ 0 (r →∞)

Many interesting BCs → many IEs! :)



Unchanged from Laplace

Theorem (Green's Formula [Colton/Kress IAEST Thm 2.1])

If 4u + k2u = 0, then

(S(n̂ · ∇u)− Du)(x) =





u(x) x ∈ D
u(x)
2 x ∈ ∂D

0 x 6∈ D

[Su] = 0

lim
x→x0±

(S ′u) =

(
S ′ ∓ 1

2
I

)
(u)(x0) ⇒ [S ′u] = −u

lim
x→x0±

(Du) =

(
D ± 1

2
I

)
(u)(x0) ⇒ [Du] = u

[D ′u] = 0



Unchanged from Laplace

Why is singular behavior (esp. jump conditions) unchanged?

e ikr = 1 + O(r) as r → 0

Why does Green's formula survive?

Remember Green's theorem:
∫

Ω
u4v − v4u =

∫

∂Ω
u(n̂ · ∇v)− v(n̂ · ∇u)ds



Resonances

−4 on a bounded (interior) domain with homogeneous Dirichlet/Neumann
BCs has countably many real, positive eigenvalues.
What does that have to with Helmholtz?

−4u = λu

4u + k2u = 0

Why could it cause grief?

Non-uniqueness/nullspaces.



Helmholtz: Boundary Value Problems

Find u ∈ C (D̄) with 4u + k2 = 0 such that
Dirichlet Neumann

Int. limx→∂D− u(x) = g
o unique (−resonances)

limx→∂D− n̂ · ∇u(x) = g
o unique (−resonances)

Ext. limx→∂D+ u(x) = g
Sommerfeld
+ unique

limx→∂D+ n̂ · ∇u(x) = g
Sommerfeld
+ unique

with g ∈ C (∂D).

Find layer potential representations for each.

First idea: Same as Dirichlet. But: (see next slide).



Patching up resonances

Issue: Ext. IE inherits non-uniqueness from `adjoint' int. BVP

Fix: Tweak representation [Brakhage/Werner `65, . . . ]
(also called the CFIE or combined �eld integral equation)

u = Dφ− iαSφ

(α: tuning knob → 1 is �ne, ∼ k better for large k)



Patching up resonances: CFIE (1/3)

For simplicity, we'll choose the the scaling parameter α = 1, so that

u = Dϕ+ iSϕ.

The exterior Dirichlet BC yields the integral equation (by way of the
jump relations for S and D):

ϕ

2
+ Dϕ− iSϕ = g .

Suppose ϕ/2 + Dϕ− iSϕ = 0. We want to show ϕ = 0.



Patching up resonances: CFIE (2/3)

From the IE, we conclude that lim+ u = 0. Using exterior uniqueness,
we conclude that u = 0 in the entire exterior, thus lim+ n̂ · ∇u = 0
also. The jump relations for the double and single layer then give us

0− (n̂ · ∇u)− = [n̂ · ∇u] = [n̂ · ∇(Dϕ− iSϕ)] = −[iS ′ϕ] = iϕ

0− u− = u+ − u− = [u] = [Dϕ− iSϕ] = [Dϕ] = ϕ



Patching up resonances: CFIE (3/3)

Equating right the right hand sides, we get

−i(n̂ · ∇u)− = u−.

Green's �rst theorem
∫
u4v +∇u · ∇v =

∫
∂ u∂nv yields

∫

Ω
−k2|u|2 + |∇u|2

︸ ︷︷ ︸
∈R

=

∫

Ω
u4ū + |∇u|2 =

∫

∂Ω
u−(n̂ · ∇u)−ds

= −i
∫

∂Ω
|u−|2ds.

Taking the imaginary part yields

∫

∂Ω
|u−|2ds = 0.

Using u+ = u− = 0 and the jump relation for the double layer, we
obtain ϕ = 0 as desired.



Helmholtz Uniqueness

Uniqueness for remaining IEs similar:

I Set RHS of IE to 0.

I Use uniqueness to get zero limit on one side.

I Use jump condition to get zero limit on other side.

I Go to �other� jump condition to get zero limit on other side.

I Use jump condition to show density = 0.

⇒ Existence for all four BVPs.
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A word about D ′

Show that D ′ is self-adjoint. [Kress LIE 3rd ed. Sec 7.6]

I To show: (D ′ϕ,ψ) = (ϕ,D ′ψ)

I Introduce: u = Dϕ, v = Dψ

I Green's second thm (here, in part thanks to Sommerfeld):

∫

∂Ω
(n̂ · ∇u)v =

∫

∂Ω
u(n̂ · ∇v)

I Then:

(D ′ϕ,ψ) = (n̂ · ∇u, [v ])

= (u+, n̂ · ∇v+)− (u−, n̂ · ∇v−) (split jump)

= (u+ − u−, n̂ · ∇v)

= (ϕ,D ′ψ)



Towards Calderón

Show that (Sϕ,D ′ψ) = ((S ′ + I/2)ϕ, (D − I/2)ψ).

Let w := Sφ and v = Dψ.

(Sφ,D ′ψ) = (w , ∂nv) = (∂nw , v) = ((S ′ + I/2)ϕ, (D − I/2)ψ).

(ϕ,SD ′ψ)?

(ϕ,SD ′ψ)

= (Sϕ,D ′ψ)

= ((S ′ + I/2)ϕ, (D − I/2)ψ)

= (ϕ, (D + I/2)(D − I/2)ψ)

= (ϕ, (D + I/2)(D − I/2)ψ)

= (ϕ, (D2 − I/4)ψ)



Calderón Identities: Summary

I SD ′ = D2 − I/4

I D ′S = S ′2 − I/4

Also valid for Laplace (jump relation same after all!)

Why do we care?

→ Exterior Neumann IE has D ′. But: Hypersingular is yucky.
Right-precondition with a single layer.
→ Calderón preconditioning
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Numerics: What do we need?

I Discretize curves and surfaces
I Interpolation
I Grid management
I Adaptivity

I Discretize densities

I Discretize integral equations
I Nyström, Collocation, Galerkin

I Compute integrals on them
I �Smooth� quadrature
I Singular quadrature

I Solve linear systems



Constructing Discrete Function Spaces

Floating point numbers (Degrees of Freedom or DoFs) ↔ Functions

Discretization relies on three things:

I Base/reference domain

I Basis of functions

I Meaning of DoFs

Related �nite element concept: Ciarlet triple

Discretization options for a curve?

I Equispaced

I Fourier modes (actually di�erent from equispaced?)

I Piecewise polynomials



What do the DoFs mean?

Common DoF choices:

I Point values of function

I Point values of (directional?) derivatives

I Basis coe�cients

I Moments

Often: useful to have both �modes�, �nodes�, jump back and forth



Why high order?
Order p: Error bounded as |uh − u| ≤ Chp

Thought experiment:

First order Fifth order

1,000 DoFs ≈ 1,000 triangles 1,000 DoFs ≈ 66 triangles
Error: 0.1 Error: 0.1
Error: 0.01 → ? Error: 0.01 → ?

Complete the table.

First Fifth

100,000 DoFs ≈ 100,000 triangles 1,800 DoFs≈ 120 triangles

Remarks:

I Want p ≥ 3 available.

I Assumption: Solution su�ciently smooth

I Ideally: p chosen by user



What is an Unstructured Mesh?

Why have an unstructured mesh?

I Adaptable to many
engineering problems

I Deal with topology

I Deal with solution
non-smoothness

I Adaptivity in space

I Adaptivity in time

What is the trade-o� in going
unstructured?

I Complexity: Data
structures, algorithms,
generation

I Where do meshes come
from?

I What is a `reference
element'?

Demo: CAD software



Fixed-order vs Spectral

Fixed-order Spectral

Number of DoFs n
∼
Number of `elements'

Error ∼ 1

np

Examples?

I Piecewise Polynomials

Number of DoFs n
∼
Number of modes resolved

Error ∼ 1

Cn

Examples?

I Global Fourier

I Global Orth. Polynomials

What assumptions are buried in each of these?

Smoothness: Piecewise vs. Global



Fixed-order vs Spectral

What should the DoFs be?

Natural DoF match:

I Fixed-order: point values

I Spectral: modal coe�cients

What's the di�culty with purely modal discretizations?

Nonlinearities are hard to express.
→ Use point values to compute those. (Pseudospectral methods)



Vandermonde Matrices




x00 x10 · · · xn0
x01 x11 · · · xn1
...

...
. . .

...
x0n x1n · · · xnn







a0
a1
...
an


 = ?



Generalized Vandermonde Matrices




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
...

. . .
...

φ0(xn) φ1(xn) · · · φn(xn)







a0
a1
...
an


 = ?



Generalized Vandermonde Matrices




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
...

. . .
...

φ0(xn) φ1(xn) · · · φn(xn)


MODAL COEFFS = NODAL COEFFS

I Node placement? Demo: Interpolation node placement

I Vandermonde conditioning? Demo: Vandermonde conditioning

I What about multiple dimensions?
I Demo: Visualizing the 2D PKDO Basis
I Demo: 2D Interpolation Nodes



Common Operations

(Generalized) Vandermonde matrices simplify common operations:

I Modal ↔ Nodal (�Global interpolation�)
I Filtering
I Up-/Oversampling

I Point interpolation (Hint: solve using V T )

I Di�erentiation

I Inde�nite Integration

I Inner product

I De�nite integration



Unstructured Mesh

I Design a data structure to represent this

I Compute normal vectors

I Compute area

I Compute integral of a function

I How is the function represented?

Demo: Working with Unstructured Meshes



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going In�nite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from In�nity: Discretization
Fundamentals: Meshes, Functions, and Approximation
Integral Equation Discretizations
Integral Equation Discretizations: Nyström
Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs



Integral Equation Discretizations: Overview

φ(x)−
∫

Γ
K (x , y)φ(y)dy = f (y)

Nyström Projection

I Approximate integral by
quadrature:∫

Γ f (y)dy →∑n
k=1 ωk f (yk)

I Evaluate quadrature'd IE at
quadrature nodes, solve

I Consider residual:
R := φ− Aφ− f

I Pick projection Pn onto
�nite-dimensional subspace
Pnφ :=

∑n
k=1〈φ, vk〉wk →

DOFs 〈φ, vk〉
I Solve PnR = 0



Projection/Galerkin
I Equivalent to projection: Test IE with test functions
I Important in projection methods: sub-space (e.g. of C (Γ))

Name some generic discrete projection bases.

I Galerkin: vk = wk (Commonly: polynomials)

I Collocation:
vk = δ(xk), wk(xj) = δjk

I Petrov-Galerkin: vk 6= wk (Commonly: polynomials)

Collocation and Nyström: the same?

No�collocation demands that the integrals be computed exactly.

Are projection methods implementable?

No, not usually�the integrals need to be computed exactly.
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Nyström Discretizations (1/4)
Nyström consists of two distinct steps:

1. Approximate integral by quadrature:

ϕn(x)−
n∑

k=1

ωkK (x , yk)ϕn(yk) = f (x) (1)

2. Evaluate quadrature'd IE at quadrature nodes, solve discrete system

ϕ
(n)
j −

n∑

k=1

ωkK (xj , yk)ϕ
(n)
k = f (xj) (2)

with xj = yj and ϕ
(n)
j = ϕn(xj) = ϕn(yj)

Is version (1) solvable?

No�still deals with functions in x . In�nitely many `rows', but only n
`columns'.



Nyström Discretizations (2/4)
What's special about (2)?

Density only known at point values
No continuous density

Solution density also only known at point values. But: can get
approximate continuous density. How?

ϕ̃(x) = f (x)−
n∑

k=1

ωkK (x , yk)ϕ
(n)
k .

Assuming the IE comes from a BVP. Do we also only get the BVP solution
at discrete points?

No: Using the (now discrete) representation, we can still evaluate the
BVP solution anywhere.



Nyström Discretizations (3/4)

Does (1) ⇒ (2) hold?

Sure�if it's true for a function ϕ, it should be true for point values of
that function.

Does (2) ⇒ (1) hold?

Actually�it must! ϕ
(n)
k are point values of the density (since we sat-

is�ed (2)!), and so the `approximate' ϕ̃ was not so approximate after
all�it must be the function that solves (1).



Nyström Discretizations (4/4)

What good does that do us?

Goal: say something about error. I.e.: does the method work at all?
Point: much easier to examine error between (1) and the IE (than
(2) and the IE)
Can stay in function space, no need to mess with varying dimension-
ality.

Does Nyström work for �rst-kind IEs?

No. Speci�cally because backing out the density relies on second-
kind.



Convergence for Nyström (1/2)

Increase number of quadrature points n:
Get sequence (An)
Want An → A in some sense
What senses of convergence are there for sequences of functions fn?

I pointwise

I uniform (`in the ‖·‖∞ norm')

I (and a few more)

What senses of convergence are there for sequences of operators An?

I functionwise (the analog to `pointwise')

I uniform (in the operator norm)



Convergence for Nyström (2/2)

Will we get norm convergence ‖An − A‖∞ → 0 for Nyström? {[Kress LIE 2nd
ed. Thm. 12.8]}]

No: Pick ψε = 1 everywhere except in ε-nbh of quad nodes, 0 there.
Show:

I ‖Aφψε − Aφ‖∞ → 0 (ε→ 0)

I ‖A− An‖∞ ≥ ‖A‖∞

Is functionwise convergence good enough?

No, not at all. When we're solving Aϕ = b, we want all possible densities to be roughly
`equally far along' in convergence.
So neither notion of convergence really `works' for Nyström.
→ Compactness to the rescue.



Compactness-Based Convergence

X Banach space (think: of functions)

Theorem (Not-quite-norm convergence [Kress LIE 2nd ed. Cor 10.4])

An : X → X bounded linear operators,
functionwise convergent to A : X → X
Then convergence is uniform on compact subsets U ⊂ X , i.e.

sup
φ∈U
‖Anφ− Aφ‖ → 0 (n→∞)

How is this di�erent from norm convergence?

Only on compact subsets of X !



Collective Compactness

Set A of operators A : X → X

De�nition (Collectively compact)

A is called collectively compact if and only if
for U ⊂ X bounded, A(U) is relatively compact.

What was relative compactness (=precompactness)?

Has a convergent subsequence.
(that doesn't necessarily converge in the set.)



Collective Compactness: Questions (1/2)

Is each operator in the set A compact?

Yes.

Is collective compactness the same as �every operator in A is compact�?

No.



Collective Compactness: Questions (2/2)

When is a sequence collectively compact?

The de�nition applies to sequences-viewed-as-sets as is.

Is the limit operator of such a sequence compact?

Yes.

How can we use the two together?

I We'll have a sequence of operators An that's collectively
compact.

I Then we get norm convergence on the range of the operators
A.



Making use of Collective Compactness

X Banach space, An : X → X , (An) collectively compact, An → A
functionwise.

Corollary (Post-compact convergence [Kress LIE 2nd ed. Cor 10.8])

I ‖(An − A)A‖ → 0

I ‖(An − A)An‖ → 0
(n→∞)



Anselone's Theorem

(I − A)−1 exists, with A : X → X compact, (An) : X → X collectively
compact and An → A functionwise.

Theorem (Nyström error estimate [Kress LIE 3nd ed. Thm 10.12])

For su�ciently large n, (I − An) is invertible and

‖φn − φ‖ ≤ C (‖(An − A)φ‖+ ‖fn − f ‖)

C =
1 + ‖(I − A)−1An‖

1− ‖(I − A)−1(An − A)An‖
I + (I − A)−1A =?

(I − A)−1. (Idea: What would happen for fractions?)



Anselone's Theorem: Proof (I)

De�ne approximate inverse Bn = I + (I − A)−1An.

How good of an inverse is it?

Id ≈? Bn(I − An)

= (I + (I − A)−1An)(I − An)

= [I + (I − A)−1An]− [An + (I − A)−1AnAn]

= [I + (I − A)−1An]− [(I − A)−1(I − A)An + (I − A)−1AnAn]

= [I + (I − A)−1An]− [(I − A)−1IAn − (I − A)−1AAn + (I − A)−1AnAn]

= I + (I − A)−1 AAn−(I − A)−1AnAn

= I + (I − A)−1(A− An)An︸ ︷︷ ︸
−Sn

= I − Sn



Anselone's Theorem: Proof (II)

Want Sn → 0 somehow. Prior result gives us ‖(A− An)An‖ → 0.

So ‖Sn‖ → 0.
Using Neumann series:

∥∥(I − Sn)−1
∥∥ 6

1

1− ‖Sn‖

if ‖Sn‖ < 1. In particular: The inverse exists!
Long story short from earlier:

Bn(I − An) = I − Sn,

So I − An must also be invertible. Rearrange:

(I − An)−1 = (I − Sn)−1Bn,



Anselone's Theorem: Proof (III)

Let ϕ be the exact density that solves (I − A)ϕ = f and ϕn the
approximate density that solves (I − An)ϕn = fn. Then consider

(I − An)(ϕn − ϕ) = fn − (I − An)ϕ

= fn − (I − A)ϕ+ (A− An)ϕ

= fn − f + (A− An)ϕ

Combining all this knowledge as

‖ϕn − ϕ‖ 6 ‖(I − An)−1‖(‖fn − f ‖+ ‖(An − A)ϕ‖)

6
‖Bn‖

1− ‖Sn‖
(‖fn − f ‖+ ‖(An − A)ϕ‖)

gives the desired estimate.



Anselone: A Question

Nyström: speci�c to I + compact. Why?

Used identity to �sh out density more than once.



Nyström: Collective Compactness
We assumed collective compactness. Do we have that? Assume

∑
|quad. weights for n points| ≤ C (independent of n) (3)

To use Arzelà-Ascoli, we'll need to show uniform boundedness (easy!)
and equicontinuity of the sequence (Anϕ) for a given density ϕ. To
show the latter, consider

|(Anϕ)(x1)− (Anϕ)(x2)|

=

∣∣∣∣∣
n∑

i=1

ωi (K (x1, yi )ϕ(yi )− K (x2, yi )ϕ(yi ))|

6
n∑

i=1

|ωi | (K (x1, yi )− K (x2, yi ))︸ ︷︷ ︸
(∗)

‖ϕ‖∞ .

(∗) bounded because K lives on a compact domain.



Nyström: Collective Compactness

And
n∑

i=1

|ωi |,

is bounded because we assumed it is. Since the constant doesn't
depend on n: Collectively compact.

Also assumed functionwise uniform convergence, i.e. ‖Anφ− Aφ‖ → 0 for
each φ.

Follows from equicontinuity of (Anφ).
Assumption (3) is important to make all this work!
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Projection Method

X Banach space, U ⊂ X nontrivial subspace, A : X → Y injective,
Xn ⊂ X , Yn ⊂ Y , dimXn = n, dimYn = n, Pn :?→?

I P is a projection ⇔ P|U = Id ⇔ P2 = P

I ‖P‖ ≥ 1

I Orthogonal projectors: ‖P‖ = 1

I Interpolators (�collocation projection�): Also projections

I Projection method: PnAφn = Pnf (#)

De�ne convergence:

Convergent if there exists n0 ∈ N0 so that for n ≥ n0
I for each f ∈ A(X ) (#) has a unique solution φn

I φn → φ, where Aφ = f .

I.e. functionwise convergence.



Assumptions on the Approximation Spaces

What's needed of Xn so that it can even approximate the solution?

Denseness

inf
ψ∈Xn

‖ψ − φ‖ → 0 (n→∞)



Norm Convergence of Inverses

X , Y Banach spaces, A : X → Y bounded, A−1 bounded

Theorem (Norm Convergence of Inverses [Kress LIE 3rd ed. Thm. 10.1])

If ‖An − A‖ → 0 as n→∞. Then for su�ciently large n, A−1n exists and
is bounded by

∥∥A−1n

∥∥ 6

∥∥A−1
∥∥

1− ‖A−1(An − A)‖ .

For Aϕ = f and Anϕn = fn, we have the estimate

‖ϕn − ϕ‖ 6
∥∥A−1

∥∥
1− ‖A−1(An − A)‖ [‖(An − A)ϕ‖+ ‖fn − f ‖] .



Norm Convergence of Inverses: Proof

Prove the result:

Note: I − A−1(An − A) = A−1An.

Neumann series: If
∥∥A−1(An − A)

∥∥ < 1, then [I − A−1(An − A)]−1

exists and

∥∥[I − A−1(An − A)]−1
∥∥ 6

1

1− ‖A−1(An − A)‖ .

But [I − A−1(An − A)]−1A−1 = An, hence the bound.

For the error estimate, consider An(ϕn − ϕ) = fn − f + (A− An)ϕ.



Projection Methods for Second Kind

Write out the projected version of the second-kind equation ϕ− Aϕ = f :

Pnϕn − PnAϕn = Pnf

Valid, but necessarily non-unique. Better (but distinct!):

ϕn − PnAϕn = Pnf .

Each solution ϕn ∈ X of this equation is automatically in Xn

→ better chance of uniqueness.

(Error estimate connecting the two below!)



Error Estimate for Second Kind Projection

X Banach, A : X → X compact, I − A injective

Theorem (Second Kind Projection Estimate [Kress LIE 3rd ed. Thm. 13.10])

Assume ‖PnA− A‖ → 0 (n→∞). Then for su�ciently large n,

ϕn − PnAϕn = Pnf

is uniquely solvable for all f ∈ X , and we have ‖ϕn − ϕ‖ 6 M ‖Pnϕ− ϕ‖
for M a constant depending on A.



Error Estimate for Second Kind Projection: Proof

Prove the result:

Riesz' theorem: (I − A) invertible.

Norm convergence of inverses: (I − PnA)−1 exists and uniformly
bounded (if n large enough).

Consider Pn applied to the continuous IE:

Pn(ϕ− Aϕ) = Pnf

⇔ ϕ− PnAϕ = Pnf + ϕ− Pnϕ

Subtract the latter from the projection method:

(I − PnA)(ϕn − ϕ) = Pnϕ− ϕ.

That and the uniform boundedness gives the error estimate.



Perturbations of Projection Methods for Second Kind

In actual numerical use, we're not solving

ϕn − PnAϕn = Pnf

but
ϕ̃n − PnAnϕ̃n = Pnfn,

where

I An approximates A,

I fn approximates f .



Perturbations of Projection Methods for Second Kind: Estimate
X Banach, A : X → X compact, I − A injective

Theorem (SK Projection Perturbation [Kress LIE 3rd ed. Cor. 13.11])

Assume that functionwise PnAn − PnA→ 0 and ‖PnAn − PnA‖ → 0
(n→∞). Then for su�ciently large n ϕ̃n − PnAnϕ̃n = Pnfn is uniquely
solvable and for some positive constant M,

‖ϕ̃n − ϕ‖ 6 M (‖Pnϕ− ϕ‖+ ‖(PnAn − PnA)ϕn‖+ ‖Pn(fn − f )‖) .

Norm convergence of inverses: Existence and uniform boundedness
of (I − PnAn)−1 (from (I − PnA)−1).
Error estimate from there:

‖ϕ̃n − ϕn‖ 6 C (‖(PnAn − PnA)ϕn‖+ ‖Pn(fn − f )‖) .

Use earlier estimate and uniform boundedness principle.



Iterative Methods and Corners [Bremer et al. `11]

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

Problem: Singular behavior at corner points. Density may blow up.
Can the density be convergent in the ‖ · ‖∞ sense?
Conditioning of the discrete system?
GMRES will �ail and break, because it sees `2 ∼ l∞ ∼ L∞ convergence.
Make GMRES `see' L2 convergence by rede�ning density DOFs:

σh :=




√
ω1σ(x1)

...√
ωnσ(xn)


 =
√
ωσh

So σh · σh =?
Also �xes system conditioning! Why?
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`O�-the-shelf' ways to compute integrals

How do I compute an integral of a nasty singular kernel?
Symbolic integration

Good when it works.

Why not Gaussian?

Error estimate:
∣∣∣∣
∫

f −
∑

f (xi )ωi

∣∣∣∣ 6 C
∥∥∥f (p)

∥∥∥ hp

∥∥f (p)
∥∥ blows up!



Singular and Near-Singular Quadrature

Numerically distinct scenarios:

I Near-Singular quadrature
I Integrand nonsingular
I But may locally require lots of
I Adaptive quadrature works, but. . .

I Singular quadrature
I Integrand singular
I Conventional quadrature fails



Kussmaul-Martensen quadrature

Theorem (A special integral [Kress LIE Lemma 8.21])

1

2π

∫ 2π

0
log
(
4 sin2

t

2

)
e imtdt =

{
0 m = 0,

− 1
|m| m = ±1,±2 . . . .

Why is that exciting?
Demo: Kussmaul-Martensen quadrature



Singularity Subtraction

∫
〈Thing X you would like to integrate〉

=

∫
〈Thing Y you can integrate〉

+

∫
〈Di�erence X − Y which is easy to integrate (numerically)〉

Give a typical application.

Helmholtz: H
(1)
0 (x) = log(x) + smooth

Drawbacks?

Two integrals to compute.



High-Order Corrected Trapezoidal Quadrature
I Conditions for new nodes, weights

(→ linear algebraic system, dep. on n)
to integrate

〈smooth〉 · 〈singular〉+ 〈smooth〉
I Allowed singularities: |x |λ (for |λ| < 1 ), log |x |
I Generic nodes and weights for log singularity
I Nodes and weights copy-and-pasteable from paper

[Kapur, Rokhlin `97]

Alpert `99 conceptually similar:

I Hybrid Gauss-Trapezoidal

I Positive weights

I Somewhat more accurate (empirically) than K-R

I Similar allowed singularities (λ > −1)
I Copy-paste weights



Generalized Gaussian

I �Gaussian�:
I Integrates 2n functions exactly with n nodes
I Positive weights

I Clarify assumptions on system of functions (�Chebyshev system�) for
which Gaussian quadratures exist

I When do (left/right) singular vectors of integral operators give rise to
Chebyshev systems?
I In many practical cases!

I Find nodes/weights by Newton's method
I With special starting point

I Very accurate

I Nodes and weights for download

[Yarvin/Rokhlin `98]



Singularity cancellation: Polar coordinate transform

∫ ∫

∂Ω
K (x, y)φ(y)dsy

=
∫ R

0

∫

x+r∈∂Ω∩∂B(x,r)
K (x, x + r)φ(x + r)d〈angles〉 r dr

=
∫ R

0

∫

x+r∈∂Ω∩∂B(x,r)

Kless singular(x, x + r)

r
φ(x + r)d〈angles〉 r dr

where Kless singular = K · r .



Quadrature on Triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target)



Quadrature on Triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target)



Kernel regularization
Singularity makes integration troublesome: Get rid of it!

· · ·√
(x − y)2

→ · · ·√
(x − y)2 + ε2

Use Richardson extrapolation to recover limit as ε→ 0.
(May also use geometric motivation: limit along line towards singular
point.)
Primary drawbacks:

I Low-order accurate

I Need to make ε smaller (i.e. kernel more singular) to get better
accuracy

Can take many forms�for example:

I Convolve integrand to smooth it
(→ remove/weaken singularity)

I Extrapolate towards no smoothing

Related: [Beale/Lai `01]



Acceleration and Quadature

How can singular quadrature and FMM acceleration be made compatible?

I FMM is a point-to-point algorithm: requires point
discretization
I Kussmaul-Martensen and FMM?

I If singular quadrature applies to all targets:
I Simply feed σ(xj) · wj to FMM as `charges'

I If singular quadrature applies only near singularity:
I Exclude 'near sources' from FMM processing for each target
I Inconvenient when 'near sources' have no relationship to FMM
I Desperate: Carry out full FMM, subtract 'near source'

contributions



FMMs and other Layer Potentials

How does an FMM evaluate a double layer?

Expand double layer kernel into `regular' expansions.

How does an FMM evaluate S ′?

Take derivatives ∂x and ∂y of the local expansion at the end.

What e�ect does this have on accuracy?

Loses an FMM order.



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going In�nite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from In�nity: Discretization

Computing Integrals: Approaches to Quadrature
A Bag of Quadrature Tricks
Quadrature by expansion (`QBX')
QBX Acceleration
Reducing Complexity through better Expansions
Results: Layer Potentials
Results: Poisson

Going General: More PDEs



Layer Potential Evaluation: Some Intuition
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QBX: Idea
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QBX: An Experiment
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QBX: Notation, Basics

Graf's addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑

l=−∞
H

(1)
l (k |x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (�local expansion�)
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QBX: Formulation, Discretization

Compute layer potential on the disk as

Skσ(x) =
∞∑

l=−∞
αlJl(kρ)e−ilθ

with

αl =
i

4

∫

Γ
H

(1)
l (k|x ′ − c |)e ilθ′σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.



QBX: Formulation, Discretization

Compute layer potential on the disk as

Skσ(x) =

p∑

l=−p
αlJl(kρ)e−ilθ

with

αl =
i

4
TN

(∫

Γ
H

(1)
l (k |x ′ − c |)e ilθ′σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.



Quadrature by Expansion (QBX)
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Error ≤
(
C rp+1

︸︷︷︸
Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
‖σ‖

[K, Barnett, Greengard, O'Neil JCP `13]



Achieving high order

Error ≤
(
C rp+1

︸︷︷︸
Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
‖σ‖

Two approaches:

I Asymptotically convergent: r =
√
h

I + Error → 0 as h→ 0
I - Low order: h(p+1)/2

I Convergent with controlled precision: r = 5h
I - Error 6→ 0 as h→ 0
I + High order: hp+1 to controlled precision ε := (1/5)q



Other layer potentials

Can't just do single-layer potentials:

αD
l =

i

4

∫

Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ′µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.): Take derivative of local
expansion.
Analysis says: Will lose an order.
Slight issue: QBX computes one-sided limits.
Fortunately: Jump relations are known�e.g.

(PV )D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1

2
µ(x).

Alternative: Two-sided average → Preferred because of conditioning



Understanding Truncation Behavior
Let Γ = ∂Ω− be piecewise C 2 with no inward facing cusps. Let Ψ be the
exterior Riemann map that maps the exterior Ω+ onto the exterior of the
unit disk.

Theorem (A basis of QBX-exact densities)

A function on the interior f : Ω− → R is a harmonic polynomial of degree
n if and only if f has the representation f = Dϕ and the associated
double-layer density function ϕ takes the form

ϕ(z) =
n∑

k=0

λk cos(kθ(z) + µk), z ∈ Γ

for some set of real coe�cients λk , µk , where θ(w) = arg Ψ(w) is the
boundary correspondence.

[Wala, K `18]



QBX and Conformal Mapping
Require: A smooth Jordan boundary Γ, with 0 in the interior.
Require: A boundary sign s: +1 for exterior, −1 for interior.
Ensure: Computes the boundary correspondence θ.
Stage 1
Solve the following integral equation for the density σ, for all ζ ∈ Γ:





ζ =

(
D − 1

2

)
σ(ζ) if s = +1

ζ−1 =

(
D +

∫
+
1

2

)
σ(ζ) if s = −1.

Stage 2

Let σ̃(ζ) = σ(ζ) +
s

2πi

∫

Γ

σ(y)

y
dy (ζ ∈ Γ).

Stage 3

Let θ(ζ) = arg

(
−s σ̃(ζ)

|σ̃(ζ)|

)
(ζ ∈ Γ).
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Local QBX: Viewing QBX as a Local Correction

What happens if one attempts to use QBX quadrature as a 'local
correction'?



QBX + FMM : A straightforward coupling

Box local ex-
pansion

QBX center

QBX expan-
sion

Γ



Accuracy vs FMM/QBX orders: Straightforward (2D)

(1/2)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

0 (direct) 4.35e=6 6.21e=7 1.05e=7 5.71e=8
6e=2 3 2.55e=2 2.96e=2 4.07e=2 5.77e=2
2e=2 5 6.94e=3 1.61e=2 2.29e=2 3.10e=2
5e=4 10 4.95e=4 1.75e=3 5.80e=3 9.48e=3
2e=5 15 1.58e=5 1.85e=4 6.40e=4 3.17e=3
5e=7 20 4.35e=6 1.31e=5 8.99e=5 5.01e=4

`∞ error in Green's formula S(∂nu)−D(u) = u/2, scaled by 1/‖u‖∞, for
the 65-armed star�sh γ65, using the conventional QBX FMM algorithm.
3250 Gauss-Legendre panels, with 33 nodes per panel.



Recap: Local Expansions of Potentials

s

c

t

Truncation Error ∼
(
furthest target

closest source

)p+1



QBX + FMM: Sources of Inaccuracy
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Possible Expansion Sequences

I Source → Multipole(p) → QBX-Local(q)

I Source → Local(p) → QBX-Local(q)

I Source → Multipole(p) → Local(p) → QBX-Local(q)



Translation chains for QBX
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Translation chains for QBX
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Expansions of Expansions?

s

c

t

Truncation Error ∼
(
furthest target

closest source

)p+1

This holds for point evaluations of a single expansion.
Question: Can we generalize it to hold when forming expansions of
expansions?



Example: Local(p) → Local(q) Truncation Error (2D Lap.)

Lemma

Let c , r > 0. Suppose that a single unit strength charge is placed at z0, with
|z0| ≥ (c + 1)r . Suppose that y , z ∈ B(0, r). If |z | < r and |y − z | ≤ r − |z |, the
potential φ due to the charge is described by a power series

φ(y) =
∑∞

l=0 βl(y − z)l . Fix the intermediate local order p ≥ 0. For n ≥ 0, let

β̃n =
1

n!

dn

dzn

(
p∑

k=0

φ(k)(0)

k!
zk

)
.

Fix the local expansion order q ≥ 0. De�ne α = 1/(1 + c). Then

∣∣∣∣∣

q∑

k=0

βk(y − z)k −
q∑

k=0

β̃k(y − z)k
∣∣∣∣∣ ≤

(
q + 1

p + 1

)(
αp+1

1− α

)
.

[Wala, K `18a � arxiv:1801.04070]
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Figure 7: Obtaining the local expansion of a point potential
using an intermediate multipole expansion. The local expan-
sion of the potential due to the source charge is formed by
first forming a multipole expansion inside B(z0, λr) and then
shifting to z. This provides the setting for Lemma 3.
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Figure 8: Obtaining the local expansion of a point potential
using an intermediate local expansion. The local expansion
of the potential due to the source charge is formed inside the
disk B(0, r) and then shifted to the center z. This provides
the setting for Lemma 4.

The main distinction among these we encounter is whether whether the interaction is mediated through
an intermediate multipole or local expansion, or both. The list above shows, abstractly, the order of each
expansion through the values p and q. All results below hold for any non-negative value of p and q, however
in our envisioned usage scenario, q represents the order of the final QBX local expansion and will generically
be lower than p. The reader familiar with conventional adaptive FMMs (e.g. [10]) may discover a direct
correspondence of these types of translation chains and the various interaction lists used in those algorithms.

Without loss of generality, we may assume that an interaction goes through at most a single intermediate
multipole expansion and intermediate local expansion, occupying a single level of the FMM’s hierarchy.
This is due to the fact that, absent additional truncation, the FMM ‘forgets’ intermediate translations in
the following way: the value of a local expansion shifted downward through a sequence of local-to-local
(13) translations only depends on the source and the initial local expansion center. Similarly, the value of
a multipole expansion shifted upward through a sequence of multipole-to-multipole (10) translations only
depends on the source and the final multipole expansion center. (See [21, Lemma 2.3 and Lemma 2.5].)

We recall a technique from complex analysis for bounding the n-th derivative of a complex analytic
function. The proof can be found in [13, IV.2.14 on page 73].

Proposition 1. Let U ⊆ C be open and let φ : U → C be a complex analytic function. Let z ∈ U, r > 0 and
suppose that B(z, r) ⊆ U . Then for all n ≥ 0

|φ(n)(z)| ≤ n!

rn

(
max

w∈B(z,r)
|φ(w)|

)
.

Remark 2. Although Lemmas 3, 4, and 5 are stated for a single source charge of unit strength, the statements
can be straightforwardly generalized for an ensemble of m charges of strengths q1, . . . , qm, with the error bound
scaled by

∑m
k=1 |qk|.

See Figure 7 for context on the following lemma.

Lemma 3 (Truncating a mediating multipole to p-th order on a q-th order local). Let λ, c, r > 0. Suppose
that a single unit strength charge is placed in the closed disk B(z0, λr) with radius λr and center z0, such
that |z0| ≥ (c + 1 + λ)r. The corresponding multipole expansion with coefficients (ak)

∞
k=0 converges in the

closed disk B(0, r) of radius r centered at the origin.
Suppose that y, z ∈ B(0, r). Then if |z| < r and |y − z| ≤ r − |z|, the potential due to the charge is

described by a power series

φ(y) =
∞∑
k=0

βk(y − z)k.

12

Slightly more subtle, but essentially con�rms

Truncation Error ∼
(
furthest target

closest source

)p+1

.

https://arxiv.org/abs/1801.04070
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an intermediate multipole or local expansion, or both. The list above shows, abstractly, the order of each
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The main distinction among these we encounter is whether whether the interaction is mediated through
an intermediate multipole or local expansion, or both. The list above shows, abstractly, the order of each
expansion through the values p and q. All results below hold for any non-negative value of p and q, however
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function. The proof can be found in [13, IV.2.14 on page 73].

Proposition 1. Let U ⊆ C be open and let φ : U → C be a complex analytic function. Let z ∈ U, r > 0 and
suppose that B(z, r) ⊆ U . Then for all n ≥ 0

|φ(n)(z)| ≤ n!

rn

(
max

w∈B(z,r)
|φ(w)|

)
.

Remark 2. Although Lemmas 3, 4, and 5 are stated for a single source charge of unit strength, the statements
can be straightforwardly generalized for an ensemble of m charges of strengths q1, . . . , qm, with the error bound
scaled by

∑m
k=1 |qk|.

See Figure 7 for context on the following lemma.

Lemma 3 (Truncating a mediating multipole to p-th order on a q-th order local). Let λ, c, r > 0. Suppose
that a single unit strength charge is placed in the closed disk B(z0, λr) with radius λr and center z0, such
that |z0| ≥ (c + 1 + λ)r. The corresponding multipole expansion with coefficients (ak)

∞
k=0 converges in the

closed disk B(0, r) of radius r centered at the origin.
Suppose that y, z ∈ B(0, r). Then if |z| < r and |y − z| ≤ r − |z|, the potential due to the charge is

described by a power series

φ(y) =
∞∑
k=0

βk(y − z)k.

12

Slightly more subtle, but essentially con�rms

Truncation Error ∼
(
furthest target

closest source

)p+1

.

https://arxiv.org/abs/1801.04070


A Glimpse of Expansion Technology

I M/L expansions typically work by
separation of variables
I In angular + radial coordinates

I Basis for capturing the angular
dependency in 3D?

I Known: Expanded potential solves PDE

I So: Expansion fully speci�ed if known
on surface of sphere
I (Interior Dirichlet BVP, e.g.)
I Radial dependency: �nd ODE,

straightforward to evaluate



Expansions on the Surface of a Sphere

I Generalizing to n dimensions: (we care about d = 2, 3)
Sd−1 = {x ∈ Rd : ‖x‖ = 1}

I A polynomial p : Rd → C is homogeneous of degree k if p if p
satis�es p(rx) = rkp(x) for all x ∈ Rd .

I Space of spherical harmonics Yd
n : restrictions to the unit sphere Sd−1

of the harmonic (4p = 0), homogeneous polynomials of degree n.

I Fourier-Laplace series:

Fpf (ξ) =

p∑

n=0

Pnf (ξ), ξ ∈ Sd−1,

where Pn[·] is an orthogonal projection onto Yd
n .



Convergence of Fourier-Laplace Series

Proposition (Norm of the Fourier-Laplace partial sum)

Let f ∈ C (Sd−1). Then a constant Λn,d > 0 exists such that

‖Fpf ‖∞ ≤ Λp,d ‖f ‖∞ ,

where, in dimensions d = 2 and d = 3,

Λp,2 =
4

π2
log p + O(1),

Λp,3 = 2

√
2p

π
+ o(
√
p),

asymptotically as p →∞.

[Rivlin `69], [Gronwall 1911]



Expansions of Expansions: M2QBXL

B(0,R)

0

R

c
′

t

B(c , r)

c

s

Mp
c [Ks ]

ρ

r
Lq

c
′ [Mp

c [Ks ]]

Lq
c
′ [Ks ]



Analyzing M2QBXL

Lemma (Source → Multipole(p) → Local(q))

Let R > 0 and ρ > r > 0. Consider a closed ball of radius r centered at c ,
with ‖c‖ = R + ρ, containing a unit-strength source s. Also, let a ball of
radius R centered at the origin contain points t and c

′ satisfying ‖c‖ ≤ R
and ‖t − c

′‖ ≤ R − ‖c ′‖.
Then, in the situation of the previous slide:

∣∣Lq
c
′ [Ks ](t)− Lq

c
′ [Mp

c
[Ks ]](t)

∣∣ ≤ Λq,d

∥∥∥(Ks −Mp
c
[Ks ])|B(0,R)

∥∥∥
∞
.

[Wala-K `19�in prep.]



Translation Chains for QBX

Rigorous truncation error bounds for local expansions for scenarios QBX
locals near box locals:
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Targets with Extent: Target Con�nement Regions

Box

Target Con�nement Region

(1 + tf )R

R

r

QBX center `not in' box

Box

Target Con�nement region

(1 + tf )R

R

r

QBX center `in' box



M2L Convergence Factor with 2-Away, TCF (3D)

√
3(1 + tf )r

r6r

√
3r

3D, tf = 0.9: Conv. factor ≈ 0.77



GIGAQBX Fast Algorithm: End-to-End Accuracy (2D/3D)

Theorem (GIGAQBX FMM for Laplace (2D/3D))

Let the center c be owned by the box b and let t be a target associated
with the center c . Assuming that 0 ≤ tf ≤ 6/

√
d − 2, and de�ning the

constants

ω =

√
d(1 + tf )

6−
√
d

, A =

NS∑

i=1

|wi | ,

and letting D be the minimum box width in the tree, the (absolute)
acceleration error in the GIGAQBX FMM is bounded as follows:

∥∥Lq
c

[φ](t)− Gp,q
c

[φ](t)
∥∥ ≤


AΛq,2 max

(
1

1−
√
2

3

(√
2

3

)p+1
,
1+Λp,2
1−ω

ωp+1

)
, d = 2,

AΛq,3
D

max

(
1

3−
√
3

(√
3

3

)p+1
,

1+Λp,3

6−2
√
3−
√
3tf
ωp+1

)
, d = 3.

[Wala-K `19�in prep.]

�GIGAQBX�:

I Consider sized targets (QBX
expansions)

I Introduce a Target
Con�nement Rule

I Some M2P and P2L must be
direct

I Targets in Non-Leaf Boxes

I Two-Box Separation
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direct
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Interaction Lists



Complexity (3D, Point-and-Shoot)

Modeled Operation Count What

NL Build tree
NSpFMM

2 + NBpFMM
3 Form M, Upward pass

(27(NC + NS)nmax + NCMC )pQBX
2 List 1: P2QBXL

875NBpFMM
3 List 2: M2L

NCMCq
2 + 124LNSnmaxpQBX

2 List 3: P2QBXL+M2QBXL
375NBnmaxpFMM

2 + 250NCnmaxpQBX
2 List 4: P2QBXL+P2L

8NBpFMM
3 Downward

NCpFMM
3 L2QBXL

NTpQBX
2 QBXL2P



Complexity (3D)

Theorem

Assume that pFMM = O(|log ε|), and that pQBX ≤ pFMM. For a �xed value
of nmax, using a level-restricted octree and with tf <

√
3− 1, the cost in

modeled �ops of the evaluation stage of the GIGAQBX FMM is

O((NC + NS + NB)|log ε|3 + NCMC |log ε|2 + NT |log ε|2).

Assuming that the particle distribution satis�es NB = O(N) and
MC = O(1), the worst-case modeled cost using a level-restricted octree
and tf <

√
3− 1 is linear in N.

[Wala-K `18]



Curve Interaction Lists
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Spherical Harmonic Expansions: Notation

I s: source point

I t: target point

I c : expansion center

I a = t − c

I b = s − c

I γ: angle between a and b

I p: expansion order

b

a

c

s

t

γ



Spherical Harmonic Expansions: Notation

Expansion of Laplace potential in 3D:

(4π)−1

‖a− b‖ =
∞∑

n=0

1

2n + 1

‖a‖n

‖b‖n+1

n∑

m=−n
Ym
n (θa, φa)Y−mn (θb, φb)

Valid for |a| < |b|.

Total cost: O((p + 1)2(N + M)) (for M targets, N sources)



Spherical Harmonic Expansions: An Identity

By Legendre addition theorem

Pn(cos γ) =
1

2n + 1

n∑

m=−n
Ym
n (θa, φa)Y−mn (θb, φb)

Pn are Legendre polynomials
Results in line expansion (or `target-speci�c expansion'):

(4π)−1

‖a− b‖ =
∞∑

n=0

‖a‖n

‖b‖n+1Pn(cos γ)

Total cost: O((p + 1)NM)

First use in `local' QBX: [Siegel, Tornberg '17]
Downside: Sources/targets no longer separated.



Details

I QBX [K et al `13]: Uni�es toolset for quad. and accel.

I QBX FMM [Rachh et al `16]: Geometry proc., �rst fast alg.

I Truncation Result [Wala, K `18]: Exact density basis

I GIGAQBX 2D [Wala, K `18]: Guaranteed-Accuracy Accel.

I GIGAQBX 3D [Wala, K `18]: `2 TC, improved geom. proc.

I GIGAQBX-TS [Wala, K `19]: Reduce accel. cost

I Fourier-Laplace bounds [Wala, K `19�in prep.]:
2D/3D analysis
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Layer Potentials: Accuracy (2D GIGAQBX)

(1/2)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

0 (direct) 4.35e=6 6.21e=7 1.05e=7 5.71e=8
6e=2 3 5.16e=3 6.35e=3 6.33e=3 6.34e=3
2e=2 5 3.83e=4 5.95e=4 5.95e=4 5.93e=4
5e=4 10 4.35e=6 4.82e=6 6.94e=6 9.30e=6
2e=5 15 4.35e=6 6.21e=7 1.05e=7 1.76e=7
5e=7 20 4.35e=6 6.21e=7 1.05e=7 5.71e=8

`∞ error in Green's formula S(∂nu)−D(u) = u/2, scaled by 1/‖u‖∞, for
the 65-armed star�sh γ65, using the GIGAQBX FMM algorithm.
3250 Gauss-Legendre panels, with 33 nodes per panel.



Layer Potentials: Accuracy (2D Straightforward)

(1/2)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

0 (direct) 4.35e=6 6.21e=7 1.05e=7 5.71e=8
6e=2 3 2.55e=2 2.96e=2 4.07e=2 5.77e=2
2e=2 5 6.94e=3 1.61e=2 2.29e=2 3.10e=2
5e=4 10 4.95e=4 1.75e=3 5.80e=3 9.48e=3
2e=5 15 1.58e=5 1.85e=4 6.40e=4 3.17e=3
5e=7 20 4.35e=6 1.31e=5 8.99e=5 5.01e=4

`∞ error in Green's formula S(∂nu)−D(u) = u/2, scaled by 1/‖u‖∞, for
the 65-armed star�sh γ65, using the conventional QBX FMM algorithm.
3250 Gauss-Legendre panels, with 33 nodes per panel.



Layer Potentials: Accuracy in 3D

(3/4)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

3.16e=1 3 8.29e=3 9.68e=3 9.15e=3 9.18e=3
1.78e=1 5 1.43e=3 2.67e=3 2.85e=3 2.78e=3
4.22e=2 10 6.08e=5 6.44e=5 1.27e=4 1.47e=4
1.00e=2 15 6.08e=5 6.38e=6 3.24e=6 7.07e=6
2.38e=3 20 6.08e=5 6.38e=6 1.41e=6 2.51e=7

`∞ error in Green's formula S(∂nu)−D(u) = u/2, scaled by 1/‖u‖∞, for the
8-armed `urchin' geometry γ8.

Stage 1: 48500 triangles, stage 2: 277712 triangles, with 295 nodes per triangle.

`Urchin' geometry γ8, based on 8th
order spherical harmonics



Layer Potentials: Accuracy in 3D

(3/4)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

3.16e=1 3 8.29e=3 9.68e=3 9.15e=3 9.18e=3
1.78e=1 5 1.43e=3 2.67e=3 2.85e=3 2.78e=3
4.22e=2 10 6.08e=5 6.44e=5 1.27e=4 1.47e=4
1.00e=2 15 6.08e=5 6.38e=6 3.24e=6 7.07e=6
2.38e=3 20 6.08e=5 6.38e=6 1.41e=6 2.51e=7

`∞ error in Green's formula S(∂nu)−D(u) = u/2, scaled by 1/‖u‖∞, for the
8-armed `urchin' geometry γ8.

Stage 1: 48500 triangles, stage 2: 277712 triangles, with 295 nodes per triangle.

`Urchin' geometry γ8, based on 8th
order spherical harmonics



Layer Potentials: (Somewhat) Complex Geometry



Cost Scaling: 3D GIGAQBX FMM
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Figure 9: Modeled operation counts for the GIGAQBX FMM for evaluating the single layer potential on a
sequence of ‘urchin’ geometries of increasing particle count. The operations are counted according to the
model presented in Table 4. Here, nmax = 512 and tf = 0.9. The scaling test used the ‘urchin’ geometries
γ2, γ4, . . . , γ10.

in three dimensions, makes its influence felt. A further factor in the large contribution of W far is the high
cost of translations even when the target (QBX) expansion is of comparatively low order, cf. Section 5.4.1.

In accordance with the results of Section 5.4, the experiments support the conclusion that the algorithm
exhibits linear scaling in the number of source and target particles, with one decade of geometry growth
(indicated by the vertical grid lines) leading to one decade of cost growth (indicated by horizontal grid lines).

6.4 Cost Implications of the `2-Based Target Confinement Region

Next, we seek to understand the impact of the change in the shape of the TCR, which was box-shaped and
defined by the `∞-norm in the earlier version of our algorithm [57], but which now is spherical and measured
by an `2-norm to better match the actual region of convergence of the obtained local expansions. Table 5
summarizes the results of an experiment determining the comparative cost of both approaches. Both versions
of the algorithm were balanced individually before conducting the experiments, in both cases nmax = 512
turned out to be near-optimal. First, we observe that the algorithmic change has led to a reduction of
(modeled) computational cost by around 25 per cent. We note a marked increase in the cost contribution of
Vb, as well as marked decreases in the cost of Ub and W far

b , all of which are indicative of the higher efficiency
of the method with the `2 TCR.

7 Conclusion

This paper introduces a fast algorithm for the accurate evaluation of layer potentials in three dimensions
using Quadrature by Expansion (QBX).

Our work builds on and extends the GIGAQBX algorithm in two dimension [57]. Many features of
the algorithm carry over broadly unchanged from the two dimensional setting. However, some parts have
required careful redevelopment. A practical QBX implementation must provide a mechanism to control for
truncation error, quadrature error, and error introduced by FMM acceleration. To address these challenges
in three dimensions, our work combines new error estimates for FMM translations in three dimensions, a new
local truncation error estimator, and a novel adaptive refinement scheme for achieving source quadrature
resolution. In a series of numerical experiments, we demonstrate that this combination can achieve high
accuracy for layer potential evaluation on complicated geometries. In particular, we show how the FMM
acceleration recovers levels of point-FMM style accuracy. The numerical evidence for the usefulness of
our error control strategies is robust. A rigorous mathematical treatment of these error control strategies

31

Modeled operation counts for the GIGAQBX FMM for Sµ.
nmax = 512 and tf = 0.9. Geometries: γ2, γ4, . . . , γ10.



�Balancing� an FMM
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Line/Target-Speci�c Expansions: Cost Impact

I Operator: Single layer

I Orders: QBX: 9, FMM: 20
(9~digits)

I Points: 19M → 2.1M
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nmax: 96→ 928, nmpole: 40→ 380
Speedup: 3.3× [Wala-K `19]
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Poisson: 3D, CAD Geometry

Volume degree: 7 · Boundary degree: 6 · QBX order: 3
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Inhomogeneous Problems

Example: Poisson
4u = f , u = g on ∂Ω.

Steps:

1. Solve the PDE (without the boundary condition) using the free-space
Green's function G :

ũ = G ∗ f ,
where `∗' represents convolution.

2. Solve
4û = 0, û = g − ũ on ∂Ω

using a boundary integral equation.

3. Add
u = ũ + û,

which solves the Poisson problem.



Eigenvalue Problems

Example: Solve
4u = λu.

Two options:

I Volume linear eigenvalue problem with Laplace kernel

I Surface nonlinear eigenvalue problem with Helmholtz kernel



Maxwell's equations

Example: Solve a scattering problem from a perfect electric conductor.
Use Vector Potential ~A to represent magnetic �eld:

~H = ~∇× ~A,

where
4~A + k2 ~A = ~0.

Since ~A solves vector Helmholtz, simply represent as

~A(x) = Sk ~Js ,

where
−→
J s (physically) amounts to a surface current density.



Maxwell's: Towards the MFIE

Then use

I the continuity condition

~n × [ ~Htot] = ~Js ,

I the extinction theorem for perfect electrical conductors:

~H−tot = ~0

inside the scatterer.

I the jump conditions

together to obtain the Magnetic Field Integral Equation (MFIE):

~n × ~H+
inc =

Js
2
− ~n × (PV)~∇× Sk ~Js .



Stokes �ow

(see project presentation)
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