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What’s the point of this class?

▶ Starting point: Large-scale scientific computing
▶ Many popular numerical algorithms: O(nα) for α > 1

(Think Matvec, Matmat, Gaussian Elimination, LU, . . . )
▶ Build a set of tools that lets you cheat: Keep α small

(Generally: probably not–Special purpose: possible!)
▶ Final goal: Extend this technology to yield PDE solvers
▶ But: Technology applies in many other situations

▶ Many-body simulation
▶ Stochastic Modeling
▶ Image Processing
▶ ‘Data Science’ (e.g. Graph Problems)

▶ This is class is about an even mix of math and computation
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Survey

▶ Home dept
▶ Degree pursued
▶ Longest program ever written

▶ in Python?

▶ Research area
▶ Interest in PDE solvers
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Class web page

https://bit.ly/fastalg-f22

contains:
▶ Class outline
▶ Assignments
▶ Piazza
▶ Grading
▶ Video
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Why study this at all?

▶ Finite difference/element methods are inherently
▶ ill-conditioned
▶ tricky to get high accuracy with

▶ Build up a toolset that does not have these flaws
▶ Plus: An interesting/different analytical and computational point of

view
▶ If you’re not going to use it to solve PDEs, it (or the ideas behind it)

will still help you gain insight.
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FD/FEM: Issues

Idea of these methods:
1. Take differential equations
2. Discretize derivatives
3. Make linear system
4. Solve

So what’s wrong with doing that?
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Discretizing Derivatives: Issues?
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Discretizing Derivatives: Issues?
Result: The better we discretize (the more points we use), the worse the
condition number gets.
Demo: Conditioning of Derivative Matrices
To be fair: Multigrid works around that (by judiciously using fewer points!)
But there’s another issue that’s not fixable.

Q: Are these problems real?

So this class is about starting fresh with methods that (rigorously!) don’t
have these flaws!
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Bonus Advertising Goodie
Both multigrid and fast/IE schemes ultimately are O(N) in the number of
degrees of freedom N.
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Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/fast-alg-ie-notes

Copyright (C) 2013 – 22 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. 13
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Matvec: A Slow Algorithm

Matrix-vector multiplication: our first ‘slow’ algorithm.
O(N2) complexity.

βi =
N∑
j=1

Aijαj

Assume A dense.
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Matrices and Point Interactions

Aij = G (xi , yj)

Does that actually change anything?
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Matrices and Point Interactions

Aij = G (xi , yj)

Graphically, too:
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Matrices and point Interactions

ψ(xi ) =
N∑
j=1

G (xi , yj)φ(yj)

This feels different.

Q: Are there enough matrices that come from globally defined G to make
this worth studying?
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Point Interaction Matrices: Examples (I)
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Point Interaction Matrices: Examples (II)
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Point Interaction Matrices: Examples (III)

So yes, there are indeed lots of these things.
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Integral Operators
Why did we go through the trouble of rephrasing matvecs as

ψ(xi ) =
N∑
j=1

G (xi , yj)φ(yj)?
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Cheaper Matvecs

ψ(xi ) =
N∑
j=1

G (xi , yj)φ(yj)

So what can we do to make evaluating this cheaper?

23



Fast Dense Matvecs
Consider

Aij = uivj ,

let u = (ui ) and v = (vj).
Can we compute Ax quickly? (for a vector x)
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Fast Dense Matvecs (II)

A = u1vT1 + · · ·+ uKvTK

Does this generalize? What is K here?
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Low-Rank Point Interaction Matrices
Usable with low-rank complexity reduction?

ψ(xi ) =
N∑
j=1

G (xi , yj)φ(yj)
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Numerical Rank

What would a numerical generalization of ‘rank’ look like?
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Eckart-Young-Mirsky Theorem
Theorem (Eckart-Young-Mirsky)

SVD A = UΣV T . If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i ,

then
min

rank(B)=k
|A− B|2 = |A− Ak |2 = σk+1.

Q: What’s that error in the Frobenius norm?
So in principle that’s good news:
▶ We can find the numerical rank.
▶ We can also find a factorization that reveals that rank (!)

Demo: Rank of a Potential Evaluation Matrix (Attempt 2)
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Constructing a tool

There is still a slight downside, though.
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Representation

What does all this have to do with (right-)preconditioning?
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Representation (in context)
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Rephrasing Low-Rank Approximations
SVD answers low-rank-approximation (‘LRA’) question. But: too
expensive. First, rephrase the LRA problem:
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Using LRA bases

If we have an LRA basis Q, can we compute an SVD?
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Finding an LRA basis

How would we find an LRA basis?
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Giving up optimality

What problem should we actually solve then?
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Recap: The Power Method

How did the power method work again?
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How do we construct the LRA basis?

Put randomness to work:
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Tweaking the Range Finder (I)

Can we accelerate convergence?
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Tweaking the Range Finder (II)

What is one possible issue with the power method?
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Even Faster Matvecs for Range Finding

Assumptions on Ω are pretty weak–can use more or less anything we want.
→ Make it so that we can apply the matvec AΩ in O(n log ℓ) time.
How? Pick Ω as a carefully-chosen subsampling of the Fourier transform.
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Errors in Random Approximations

If we use the randomized range finder, how close do we get to the optimal
answer?

Theorem
For an m × n matrix A, a target rank k ⩾ 2 and an oversampling
parameter p ⩾ 2 with k + p ⩽ min(m, n), with probability 1 − 6 · p−p,∣∣∣A− QQTA

∣∣∣2 ⩽
(
1 + 11

√
k + p

√
min(m, n)

)
σk+1.

(given a few more very mild assumptions on p)

[Halko/Tropp/Martinsson ‘10, 10.3]

Message: We can probably (!) get away with oversampling parameters as
small as p = 5.
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A-posteriori and Adaptivity

The result on the previous slide was a-priori. Once we’re done, can we find
out ‘how well it turned out’?

45



Adaptive Range Finding: Algorithm
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Rank-revealing/pivoted QR
Sometimes the SVD is too good (aka expensive)–we may need less
accuracy/weaker promises, for a significant decrease in cost.

48



Using RRQR for LRA
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Interpolative Decomposition (ID): Definition

Would be helpful to know columns of A that contribute ‘the most’ to the
rank.
(orthogonal transformation like in QR ’muddies the waters’)
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ID: Computation
How do we construct this (from RRQR): (short/fat case)

Q: What is P , in terms of the RRQR?
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ID Q vs ID A

What does row selection mean for the LRA?

[Martinsson, Rokhlin, Tygert ‘06]
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ID: Remarks

Slight tradeoff here: what?

How would we use the ID in the context of the range finder?

Demo: Interpolative Decomposition
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What does the ID buy us?
Name a property that the ID has over other factorizations.

All our randomized tools have two stages:
1. Find ONB of approximate range
2. Do actual work only on approximate range

Complexity?

What is the impact of the ID?
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Leveraging the ID for SVD (I)

Build a low-rank SVD with row extraction.
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Leveraging the ID for SVD (II)

In what way does this give us an SVD of A?
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Leveraging the ID for SVD (III)

Q: Why did we need to do the row QR?

57



Where are we now?

▶ We have observed that we can make matvecs faster if the matrix has
low-ish numerical rank

▶ In particular, it seems as though if a matrix has low rank, there is no
end to the shenanigans we can play.

▶ We have observed that some matrices we are interested in (in some
cases) have low numerical rank (cf. the point potential example)

▶ We have developed a toolset that lets us obtain LRAs and do useful
work (using SVD as a proxy for “useful work”) in O(N · Kα) time
(assuming availability of a cheap matvec).

Next stop: Get some insight into why these matrices have low rank in the
first place, to perhaps help improve our machinery even further.
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Punchline
What do (numerical) rank and smoothness have to do with each other?

Even shorter punchline?

61



Smoothing Operators
If the operations you are considering are smoothing, you can expect to get
a lot of mileage out of low-rank machinery.

What types of operations are smoothing?

Now: Consider some examples of smoothness, with justification.
How do we judge smoothness?
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Recap: Multivariate Taylor
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Taylor and Error (I)

How can we estimate the error in a Taylor expansion?
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Taylor and Error (II)

Now suppose that we had an estimate that

∣∣∣∣∣ f (p)(c)p!
hp

∣∣∣∣∣ ⩽ αp.
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Connect Taylor and Low Rank

Can Taylor help us establish low rank of an interaction?
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Taylor on Potentials (I)

Compute a Taylor expansion of a 2D Laplace point potential.
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Taylor on Potentials (Ia)

Why is it interesting to consider Taylor expansions of Laplace point
potentials?
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Taylor on Potentials (II)
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Taylor on Potentials (III)
Which of these is the most dangerous (largest) term?
→ Hard to say. They all contain the same number of powers of
components of y.

What’s a bound on it? Let R =
√
y2
1 + y2

2 .∣∣∣∣ 5040y1

(y2
2 + y2

1 )
4

∣∣∣∣ ⩽ C
∣∣∣ y1

R8

∣∣∣ ⩽ C
1
R7 .

‘Generalize’ this bound:

|Dpψ| ⩽ Cp

{
log(R) |p| = 0
R−|p| |p| > 0

.

Appears true at least from the few p we tried. (Actually is true.)
Cp is a ‘generic constant’–its value could change from one time it’s written
to the next.
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Taylor on Potentials (IV)

What does this mean for the convergence of the Taylor series as a whole?
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Taylor on Potentials (V)

Lesson: As long as
maxi |xi − c|2
minj |yj − c|2

=
r

R
< 1,

the Taylor series converges.
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Taylor on Potentials (VI)

A few remarks:
▶ We have just invented one specific example of what we will call a local

expansion (of a potential ψ).
▶ The abstract idea of a local expansion is that:

▶ it converges on the interior of a ball as long as the closest source is
outside that ball,

▶ The error in approximating the potential by a truncated (at order k)
local expansion is

Cp

( r

R

)k+1
=

(
dist(c, furthest target)
dist(c, closest source)

)k+1
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Local expansions as a Computational Tool
Low rank makes evaluating interactions cheap(er). Do local expansions
help with that goal?
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Taylor on Potentials, Again

Stare at that Taylor formula again.
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Multipole Expansions (I)

At first sight, it doesn’t look like much happened, but
mathematically/geometrically, this is a very different animal.
First Q: When does this expansion converge?
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Multipole Expansions (II)
The abstract idea of a multipole expansion is that:
▶ it converges on the exterior of a ball as long as the furthest source is

closer to the center than the closest target,
▶ The error in approximating the potential by a truncated (at order k)

local expansion is (
dist(c, furthest source)
dist(c, closest target)

)k+1

.

The multipole expansion converges everywhere outside the circle!
(Possibly: slowly, if the targets are too close–but it does!) 78



Multipole Expansions (III)

If our particle distribution is like in the figure, then a multipole expansion is
a computationally useful thing. If we set
▶ S = #sources,
▶ T = #targets,
▶ K = #terms in expansion,

then the cost without the expansion is O(ST ), whereas the cost with the
expansion is O(SK + KT ).
If K ≪ S ,T , then that’s going from O(N2) to O(N).

The rank (#terms) of the multipole expansion is the same as above for the
local expansion.

Demo: Multipole/local expansions

79



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness
Local Expansions
Multipole Expansions
Rank Estimates
Proxy Expansions

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

80



Taylor on Potentials: Low Rank?

Connect this to the numerical rank observations:
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On Rank Estimates
So how many terms do we need for a given precision ε?

Demo: Checking rank estimates
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Estimated vs Actual Rank

Our rank estimate was off by a power of log ε. What gives?
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Taylor and PDEs

Look at ∂2
xG and ∂2

yG in the multipole demo again. Notice anything?
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Being Clever about Expansions

How could one be clever about expansions? (i.e. give examples)
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Expansions for Helmholtz
How do expansions for other PDEs arise?

DLMF 10.23.6 shows ‘Graf’s addition theorem’:

H
(1)
0 (κ ∥x − y∥2) =

∞∑
ℓ=−∞

H
(1)
ℓ (κ ∥y − c∥2) e

iℓθ′︸ ︷︷ ︸
singular

Jℓ (κ ∥x − c∥2) e
−iℓθ︸ ︷︷ ︸

nonsingular

where θ = ∠(x − c) and θ′ = ∠(x ′ − c).

Can apply same family of tricks as with Taylor to derive multipole/local
expansions.
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Making Multipole/Local Expansions using Linear Algebra

Actual expansions cheaper than LA approaches. Can this be fixed?
Compare costs for this situation:
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The Proxy Trick
Idea: Skeletonization using Proxies
Demo: Skeletonization using Proxies

Q: What error do we expect from the proxy-based multipole/local
‘expansions’?
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Why Does the Proxy Trick Work?

In particular, how general is this? Does this work for any kernel?
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Where are we now? (I)
Summarize what we know about interaction ranks.
▶ We know that far interactions with a smooth kernel have low rank.

(Because: short Taylor expansion suffices)
▶ If

ψ(x) =
∑
j

G (x, yj)φ(yj)

satisfies a PDE (e.g. Laplace), i.e. if G (x, yj) satisfies a PDE, then
that low rank is even lower.

▶ Can construct interior (‘local’) and exterior (‘multipole’) expansions
(using Taylor or other tools).

▶ Can lower the number of terms using the PDE.
▶ Can construct LinAlg-workalikes for interior (‘local’) and exterior

(‘multipole’) expansions.
▶ Can make those cheap using proxy points.
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Where are we now? (II)
So we can compute interactions where sources are distant from targets (i.e.
where the interaction is low rank) quite quickly.
Problem: In general, that’s not the situation that we’re in.

But: Most of the targets are far away from most of the sources.
(⇔ Only a few sources are close to a chosen ‘close-knit’ group of targets.)
So maybe we can do business yet–we just need to split out the near
interactions to get a hold of the far ones (which (a) constitute the bulk of
the work and (b) can be made cheap as we saw.)

92



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

93



Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

94



Preliminaries: Convolution

(f ∗ g)(x) =
∫
R
f (ξ)g(x − ξ)dξ.

▶ Convolution with shifted δ is the same as shifting the function;

[f ∗ (ξ 7→ δ(ξ − a))](x) = f (x − a)

▶ Convolution is linear (in both arguments) and commutative.
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Preliminaries: Fourier Transform

F(f )(ω) =

∫
R
f (x)e−2πiωxdx

▶ Convolution turns into multiplication: F{f ∗ g} = F f · Fg ,
▶ A single δ turns into: F{δ(x − a)}(ω) = e−iaω

▶ And a “train” of δs turns into:

F

{∑
ℓ∈Z

δ(x − ℓ)

}
(ω) =

∑
k∈Z

δ(ω − 2πk).

What is F{f (x − a)}?

See e.g. [Décoret ‘04].
96

http://maverick.inria.fr/~Xavier.Decoret/resources/maths/impulsion-train.pdf


Simple and Periodic: Ewald Summation
Want to evaluate potential from an infinite periodic grid of sources:

ψ(x) =
∑

m∈Zd

Nsrc∑
j=1

G (x, yj + m)φ(yj)
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Lattice Sums: Convergence

Q: When does this have a right to converge?
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Ewald Summation: Dealing with Smoothness

ψ(x) =
∑
i∈Zd

Nsrc∑
j=1

G (x, yj + i)φ(yj)

Clear: a discrete convolution. Would like to make use of the fact that the
Fourier transform turns convolutions into products. How?
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Ewald Summation: Screens
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Ewald Summation: Field Splitting

We can split the computation (from the perspective of a unit cell target)
as follows:
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Ewald Summation: Summation (1D for simplicity)

Interesting bit: How to sum GLR.
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Ewald Summation: Remarks

In practice: Fourier transforms carried out discretely, using FFT.
▶ Additional error contributions from interpolation

(small if screen smooth enough to be well-sampled by mesh)
▶ O(N logN) cost (from FFT)
▶ Need to choose evaluation grid (‘mesh’)
▶ Resulting method called Particle-Mesh-Ewald (‘PME’)
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Barnes-Hut: Putting Multipole Expansions to Work

nil
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Barnes-Hut: The Task At Hand
Want: All-pairs interaction.
Caution:
▶ In these (stolen) figures: targets sources
▶ Here: targets and sources
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Barnes-Hut: Putting Multipole Expansions to Work

nil
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Barnes-Hut: Putting Multipole Expansions to Work

nil
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Barnes-Hut: Box Targets

For sake of discussion, choose one ‘box’ as targets.
Q: For which boxes can we then use multipole expansions?
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Barnes-Hut: Putting Multipole Expansions to Work

nil
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Barnes-Hut: Accuracy

With this computational outline, what’s the accuracy?

Q: Does this get better or worse as dimension increases?
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Barnes-Hut (Single-Level): Computational Cost

What’s the cost of this algorithm?
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Barnes-Hut Single Level Cost: Observations
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Box Splitting

nil
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Level Count

How many levels?
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Box Sizes

nil

Want to evaluate all the source interactions with the targets in the box.

Q: What would be good sizes for source boxes? What’s the requirement?
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Multipole Sources

nil

Data from which of these boxes could we bring in using multipole
expansions? Does that depend on the type of expansion? (Taylor/special
function vs skeletons)
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Barnes-Hut: Box Properties

nil

What properties do these boxes have?
Simple observation: The further, the bigger.
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Barnes-Hut: Box Properties
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Barnes-Hut: Well-separated-ness
Which boxes in the tree should be allowed to contribute via multipole?
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Barnes-Hut: Revised Cost Estimate

Which of these boxes are well-separated from one another?

nil

What is the cost of evaluating the target potentials, assuming that we
know the multipole expansions already?
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Barnes-Hut: Revised Cost Estimate

122



Barnes-Hut: Next Revised Cost Estimate

nil

Summarize the algorithm (so far) and the associated cost.
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Barnes-Hut: Next Revised Cost Estimate
Summarize the algorithm (so far) and the associated cost.
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Barnes-Hut: Putting Multipole Expansions to Work

nil

How could this process be sped up?
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Barnes-Hut: Clumps of Boxes?

Observation: The amount of work does not really decrease as we go up the
tree: Fewer boxes, but more particles in each of them.
But we already compute multipoles to summarize lower-level boxes. . .
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Barnes-Hut: Putting Multipole Expansions to Work

nil

To get a new ‘big’ multipole from a ‘small’ multipole, we need a new
mathematical tool.
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Barnes-Hut: Translations
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Cost of Multi-Level Barnes-Hut
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Cost of Multi-Level Barnes-Hut: Observations

Observation: Multipole evaluation remains as the single most costly bit of
this algorithm. Fix?

Idea: Exploit the tree structure also in performing this step.
If ‘upward’ translation of multipoles helped earlier, maybe ‘downward’
translation of local expansions can help now.
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Using Multipole-to-Local

nil

Come up with an algorithm that computes the interaction in the figure.
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Using Multipole-to-Local

Come up with an algorithm that computes the interaction in the figure.
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Using Multipole-to-Local: Next Level

nil

Assuming we retain information from the previous level, how can we obtain
a valid local expansion on the target box?
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Using Multipole-to-Local: Next Level

Assuming we retain information from the previous level, how can we obtain
a valid local expansion on the target box?
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Define ‘Interaction List’

For a box b, the interaction list Ib consists of all boxes b′ so that
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The Fast Multipole Method (‘FMM’)

Upward pass

1. Build tree

2. Compute interaction lists

3. Compute lowest-level multipoles
from sources

4. Loop over levels ℓ = L− 1, . . . , 2:

4.1 Compute multipoles at level ℓ
by mp → mp

Downward pass

1. Loop over levels ℓ = 2, 3, . . . , L− 1:

1.1 Loop over boxes b on level ℓ :
1.1.1 Add contrib from Ib to

local expansion by
mp → loc

1.1.2 Add contrib from parent to
local exp by loc → loc

2. Evaluate local expansion and direct
contrib from 9 neighbors.

Overall algorithm: Now O(N) complexity.

Note: L levels, numbered 0, . . . , L− 1. Loop indices above inclusive.
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What about adaptivity?

Figure credit: Carrier et al. (‘88)
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What about adaptivity?676 J. CARRIER, L. GREENGARD, AND V. ROKHLIN

FG. 5. Box (b) and the associated Lists 1-5.

b will denote the p-term local expansion about the center of box b of the field
created by all particles located outside T(Ub)LJ T(Wb). b(r) is the result of the
evaluation of the expansion b at a particle r in T(b).

Ib will denote the local expansion about the center of b of the field due to all
particles in T(Vb).

Ab will denote the local expansion about the center of b representing the field
due to all charges located in T(Xb).

ab(r) will denote the field at r T(b) due to all particles in T(Ub).
fib(r) will denote the field at r T(b) due to all particles in T(Wb).

3.3. Informal description of the algorithm. The algorithm can be viewed as a
recursive process of subdividing the computational cell into increasingly finer meshes
(see Figs. 2-3). For a fixed box b at level l, the computational cell is partitioned into
five subsets, Ub, Vb, Wb, Xb, and Yb, and the following procedure is applied to the
sets of particles T(Ub), T(Vb), T(Wb), T(Xb), and T(Yb).

(1) For each childless box b we combine the particles in T(b) by means of
Theorem 2.1 to form a multipole expansion b. For each parent box B we use Lemma
2.2 to merge the multipole expansions of its children bl, b2, b3, b4 into the expansion

(2) The interactions between particles in T(b) and T(Ub) are computed directly.
For each particle r T(b), the result of these calculations is ab(r).

(3) We use Lemma 2.3 to convert the multipole expansion of each box in Vb into
a local expansion about the center of b, and add the resulting expansions to obtain Fb.

(4) For every particle r in b, we compute the field b(r) due to all particles in
T(Wb) by evaluating the p-term multipole expansions w of each box w in Wb at r,
and adding them up.

(5) We convert the field of each particle in T(Xb) into a local expansion about
the center of box b (see Remark 2.1), and add up the resulting expansions to obtain

(6) We shift the center of the local expansion Fn of b’s parent B to the centers
of b and the other children of B by means of Lemma 2.4. We add the local expansion
obtained to Fb.

(7) For each box b, we evaluate the sum of the local expansions Fb and Ab at
every particle r in b and add the result to Otb(r and fib(r) obtaining the field at r.
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Adaptivity: what changes?
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FMM: List of Interaction Lists

Make a list of cases:
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What about solving?

Likely computational goal: Solve a linear system Ax = b. How do our
methods help with that?
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A Matrix View of Low-Rank Interaction
Only parts of the matrix are low-rank! What does this look like from a
matrix perspective?
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(Recursive) Coordinate Bisection (RCB)

Left Right
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Block-separable matrices

A =


D1 A12 A13 A14
A21 D2 A23 A24
A31 A32 D3 A34
A41 A42 A43 D4


where Aij has low rank: How to capture rank structure?
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Proxy Recap

Saw: If A comes from a kernel for which Green’s formula holds, then the
same skeleton will work for all of space, for a given set of sources/targets.
What would the resulting matrix look like?
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Rank and Proxies

Unlike FMMs, partitions here do not include “buffer” zones of near
elements. What are the consequences?
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Block-Separable Matrices

A block-separable matrix looks like this:

A =


D1 P1Ã12Π2 P1Ã13Π3 P1Ã14Π4

P2Ã21Π1 D2 P2Ã23Π3 P2Ã24Π4

P3Ã31Π1 P3Ã32Π2 D3 P3Ã34Π4

P4Ã41Π1 P4Ã42Π2 P4Ã43Π3 D4


Here:
▶ Ãij smaller than Aij

▶ Di has full rank (not necessarily diagonal)
▶ Pi shared for entire row
▶ Πi shared for entire column

Q: Why is it called that?
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Block-Separable Matrix: Questions
Q: Why is it called that?

Q: How expensive is a matvec?

Q: How about a solve?
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BSS Solve (I)
Use the following notation:

B =


0 P1Ã12 P1Ã13 P1Ã14

P2Ã21 0 P2Ã23 P2Ã24

P3Ã31 P3Ã32 0 P3Ã34

P4Ã41 P4Ã42 P4Ã43 0


and

D =


D1

D2
D3

D4

 , Π =


Π1

Π2
Π3

Π4

 .
Then A = D + BΠ and [

D B
−Π Id

] [
x
x̃

]
=

[
b
0

]
is equivalent to Ax = b.
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BSS Solve (II)
Q: What are the matrix sizes? The vector lengths of x and ~x?

Now work towards doing just a ‘coarse’ solve on ~x, using, effectively, the \
Schur complement. Multiply first row by ΠD−1, add to second:
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BSS Solve (III)

Focus in on the second row:

(Id+ΠD−1B)x̃ = ΠD−1b

Every non-zero entry in ΠD−1B looks like

Define a diagonal entry:
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BSS Solve (IV)

Next, left-multiply (Id+ΠD−1B) by diag(Ãii ):
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BSS Solve: Summary

What have we achieved?
▶ Instead of solving a linear system of size

(NL0 boxes ·m)× (NL0 boxes ·m)

we solve a linear system of size

(NL0 boxes · K )× (NL0 boxes · K ),

which is cheaper by a factor of (K/m)3.
▶ We are now only solving on the skeletons.

(Figure credit: G.
Martinsson)
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Hierarchically Block-Separable
To get to O(N), realize we can recursively
▶ group skeletons
▶ eliminate more variables.

Where does this process start?
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Hierarchically Block-Separable

In order to get O(N) complexity, could we apply this procedure recursively?

(Figure credit: G. Martinsson)
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Hierarchically Block-Separable

▶ Using this hierarchical grouping gives us
Hierarchically Block-Separable (HBS) matrices.

▶ If you have heard the word H-matrix and H2-matrix, the ideas are
very similar. Differences:
▶ H-family matrices don’t typically use the ID

(instead often use Adaptive Cross Approximation or ACA)
▶ H2 does target clustering (like FMM), H does not (like Barnes-Hut)
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Telescoping Factorization

(Figure credit: G. Martinsson)

▶ The most decrease in ‘volume’ happens in the off-diagonal part of the
matrix. → Rightfully so!

▶ All matrices are block-diagonal, except for the highest-level
matrix–but that is small!
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Recap: Fast Fourier Transform

The Discrete Fourier Transform (DFT) is given by:

Xk =
N−1∑
n=0

xne
− 2πi

N
nk (k = 0, . . . ,N − 1)

The foundation of the Fast Fourier Transform (FFT) is the factorization:

Xk =

N/2−1∑
m=0

x2me
− 2πi

N/2mk

︸ ︷︷ ︸
DFT of even−indexed part of xn

+e−
2πi
N

k

N/2−1∑
m=0

x2m+1e
− 2πi

N/2mk

︸ ︷︷ ︸
DFT of odd−indexed part of xn

.
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FFT: Data Flow

Perhaps a little bit like a butterfly?
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Fourier Transforms: A Different View

Claim:
The [numerical] rank of the normalized Fourier transform with ker-
nel e iγxt is bounded by a constant times γ, at any fixed precision
ϵ.

(i.e. rank is bounded by the area of the rectangle swept out by x and t)
[O’Neil et al. ‘10]

Demo: Butterfly Factorization (Part I)
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Recompression: Making use of Area-Bounded Rank
How do rectangular submatrices get expressed so as to reveal their
constant rank?
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Observations
Demo: Butterfly Factorization (Part II)
For which types of matrices is the Butterfly factorization guaranteed
accurate?

For which types of n × n matrices does the butterfly lead to a reduction in
cost?

Explore the limit cases of the characterization.
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Observations: Cost
What is the cost (in the reduced-cost case) of the matvec?

Comments?
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PDEs: Simple Ones First, More Complicated Ones Later
Laplace Helmholtz
△u = 0 △u + k2u = 0

▶ Steady-state ∂tu = 0 of wave
propagation, heat conduction

▶ Electric potential u for applied
voltage

▶ Minimal surfaces/“soap films”
▶ ∇u as velocity of incompressible

flow

▶ Assume time-harmonic behavior
ũ = e±iωtu(x) in time-domain
wave equation:

∂2
t ũ = △ũ

▶ Sign in ũ determines direction of
wave: Incoming/outgoing if
free-space problem

▶ Applications: Propagation of
sound, electromagnetic waves
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Fundamental Solutions
Laplace Helmholtz
−△u = δ △u + k2u = δ

Monopole

Dipole

Quadrupole
aka. Free space Green’s Functions
How do you assign a precise meaning to the statement with the δ-function?
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Green’s Functions
Why care about Green’s functions?

What is a non-free-space Green’s function? I.e. one for a specific domain?
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Green’s Functions (II)
Why not just use domain Green’s functions?

What if we don’t know a Green’s function for our PDE. . . at all?
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Fundamental Solutions

Laplace Helmholtz

G (x) =

{
1

−2π log |x | 2D
1
4π

1
|x | 3D

G (x) =

{
i
4H

1
0 (k |x |) 2D

1
4π

e ik|x|

|x | 3D

Monopole

∂

∂x
G (x)

∂

∂x
G (x)

Dipole
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Layer Potentials (I)

(Skσ)(x) :=

∫
Γ
Gk(x − y)σ(y)dsy

(S ′
kσ)(x) := n · ∇xPV

∫
Γ
Gk(x − y)σ(y)dsy

(Dkσ)(x) := PV

∫
Γ
n · ∇yGk(x − y)σ(y)dsy

(D ′
kσ)(x) := n · ∇x f .p.

∫
Γ
n · ∇yGk(x − y)σ(y)dsy

▶ Gk is the Helmholtz kernel (k = 0 → Laplace)
▶ Operators–map function σ on Γ to. . .

▶ . . . function on Rn

▶ . . . function on Γ (in particular)
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Layer Potentials (II)

▶ Alternate (“standard”) nomenclature:
Ours Theirs
S V
D K
S ′ K ′

D ′ T

▶ S ′′ (and higher) analogously
▶ Called layer potentials:

▶ S is called the single-layer potential
▶ D is called the double-layer potential

▶ (Show pictures using pytential/examples/layerpot.py, observe
continuity properties.)
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How does this actually solve a PDE?
Solve a (interior Laplace Dirichlet) BVP, ∂Ω = Γ

△u = 0 in Ω, u|Γ = f |Γ.

1. Pick representation:
u(x) := (Sσ)(x)

2. Take (interior) limit onto Γ:

u|Γ = Sσ

3. Enforce BC:
u|Γ = f

4. Solve resulting linear system:

Sσ = f

(quickly–using the methods we’ve developed: It is precisely of the
form that suits our fast algorithms!)

5. Obtain PDE solution in Ω by evaluating representation
175



IE BVP Solve: Observations (I)

Observations:
▶ One can choose representations relatively freely. Only constraints:

▶ Can I get to the solution with this representation?
I.e. is the solution I’m looking for represented?

▶ Is the resulting integral equation solvable?

Q: How would we know?
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IE BVP Solve: Observations (II)

▶ Some representations lead to better integral equations than others.
The one above is actually terrible (both theoretically and practically).
Fix above: Use u(x) = Dσ(x) instead of u(x) = Sσ(x).
Q: How do you tell a good representation from a bad one?

▶ Need to actually evaluate Sσ(x) or Dσ(x). . .
Q: How?

→ Need some theory
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Norms

Definition
(Norm) A norm ∥ · ∥ maps an element of a vector space into [0,∞). It
satisfies:
▶ ∥x∥ = 0 ⇔ x = 0
▶ ∥λx∥ = |λ|∥x∥
▶ ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

Can create norm from inner product: ∥x∥ =
√
⟨x , x⟩

180



Function Spaces

Name some function spaces with their norms.
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Convergence

Name some ways in which a sequence can ‘converge’.
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Operators
X ,Y : Banach spaces, A : X → Y linear operator

Definition (Operator norm)

∥A∥ := sup{∥Ax∥ : x ∈ X , ∥x∥ = 1}

Theorem
∥A∥ bounded ⇔ A continuous

Other facts?

▶ What does ‘linear’ mean here?
▶ Is there a notion of ‘continuous at x ’ for linear operators?
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Operators: Examples

Which of these is bounded as an operator on functions on the real line?
▶ Multiplication by a scalar
▶ “Left shift”
▶ Fourier transform
▶ Differentiation
▶ Integration
▶ Integral operators
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Integral Equations: Zoology
Volterra Fredholm∫ x
a k(x , y)f (y)dy = g(x)

∫
G k(x , y)f (y)dy = g(x)

First kind Second Kind∫
G k(x , y)f (y)dy = g(x) f (x) +

∫
G k(x , y)f (y)dy = g(x)

Questions:
▶ First row: First or second kind?
▶ Second row: Volterra or Fredholm?
▶ Matrix (i.e. finite-dimensional) analogs?
▶ What can happen in 2D/3D?
▶ Factor allowable in front of the identity?
▶ Why even talk about ‘second-kind operators’?

▶ Throw a +δ(x − y) into the kernel, back to looking like first kind. So?
▶ Is the identity in (I + K ) crucial?

185



Connections to Complex Variables

Complex analysis is full of integral operators:
▶ Cauchy’s integral formula:

f (a) =
1

2πi

∮
γ

1
z − a

f (z) dz

▶ Cauchy’s differentiation formula:

f (n)(a) =
n!

2πi

∮
γ

1
(z − a)n+1 f (z) dz
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Integral Operators: Boundedness (=Continuity)

Theorem (Continuous kernel ⇒ bounded)

G ⊂ Rn closed, bounded (“compact”), K ∈ C (G 2). Let

(Aϕ)(x) :=

∫
G
K (x , y)ϕ(y)dy .

Then
∥A∥∞ = max

x∈G

∫
G
|K (x , y)|dy .

Show ‘⩽’.
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Solving Integral Equations

Given
(Aϕ)(x) :=

∫
G
K (x , y)φ(y)dy ,

are we allowed to ask for a solution of

(Id+A)φ = g?
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Attempt 1: The Neumann series

Want to solve
φ− Aφ = (I − A)φ = g .

Formally:
φ = (I − A)−1g .

What does that remind you of?
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Attempt 1: The Neumann series (II)
Theorem

A : X → X Banach, ∥A∥ < 1 (I − A)−1 =
∞∑
k=0

Ak with

∥(I − A)−1∥ ≤ 1/(1 − ∥A∥).

▶ How does this rely on completeness/Banach-ness?
▶ There’s an iterative procedure hidden in this.

(Called Picard Iteration. Cf: Picard-Lindelöf theorem.)
Hint: How would you compute

∑
k A

k f ?
Q: Why does this fall short?
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Compact Sets

Definition (Precompact/Relatively compact)

M ⊆ X precompact:⇔ all sequences (xk) ⊂ M contain a subsequence
converging in X

Definition (Compact/‘Sequentially complete’)

M ⊆ X compact:⇔ all sequences (xk) ⊂ M contain a subsequence
converging in M

▶ Precompact ⇒ bounded
▶ Precompact ⇔ bounded (finite dim. only!)
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Compact Sets (II)

Counterexample to ‘precompact ⇔ bounded’? (∞ dim)
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Compact Operators

X ,Y : Banach spaces

Definition (Compact operator)

T : X → Y is compact :⇔ T (bounded set) is precompact.

Theorem

▶ T ,S compact ⇒ αT + βS compact
▶ One of T ,S compact ⇒ S ◦ T compact
▶ Tn all compact, Tn → T in operator norm ⇒ T compact

Questions:
▶ Let dimT (X ) <∞. Is T compact?
▶ Is the identity operator compact?
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Intuition about Compact Operators

▶ Compact operator: As finite-dimensional as you’re going to get in
infinite dimensions.

▶ Not clear yet–but they are moral (∞-dim) equivalent of a matrix
having low numerical rank.

▶ Are compact operators continuous (=bounded)?
▶ What do they do to high-frequency data?
▶ What do they do to low-frequency data?
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Arzelà-Ascoli
Let G ⊂ Rn be compact.

Theorem (Arzelà-Ascoli)

U ⊂ C (G ) is precompact iff it is bounded and equicontinuous.

Equicontinuous means

Continuous means:
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Arzelà-Ascoli: Proof Sketch
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Arzelà-Ascoli (II)
Intuition?

“Uniformly continuous”?

When does uniform continuity happen?

(Note: Kress LIE 2nd ed. defines ‘uniform equicontinuity’ in one go.) 198
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Integral Operators are Compact
Theorem (Continuous kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.20])

G ⊂ Rm compact, K ∈ C (G 2). Then

(Aϕ)(x) :=

∫
G
K (x , y)ϕ(y)dy .

is compact on C (G ).

Use A-A. (a statement about compact sets) What is there to show?
Pick U ⊂ C (G ). A(U) bounded?

A(U) equicontinuous?
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Weakly singular
G ⊂ Rn compact

Definition (Weakly singular kernel)

▶ K defined, continuous everywhere except at x = y

▶ There exist C > 0, α ∈ (0, n] such that

|K (x , y)| ≤ C |x − y |α−n (x ̸= y)

Theorem (Weakly singular kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.22])

K weakly singular. Then

(Aϕ)(x) :=

∫
G
K (x , y)ϕ(y)dy .

is compact on C (G ), where cl(G ◦) = G .
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Weakly singular: Proof Outline

Outline the proof of ‘Weakly singular kernel ⇒ compact’.
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Weakly singular (on surfaces)
Ω ⊂ Rn bounded, open, ∂Ω is C 1 (what does that mean?)

Definition (Weakly singular kernel (on a surface))

▶ K defined, continuous everywhere except at x = y

▶ There exist C > 0, α ∈ (0, n − 1] such that

|K (x , y)| ≤ C |x − y |α−n+1 (x , y ∈ ∂Ω, x ̸= y)

Theorem (Weakly singular kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.23])

K weakly singular on ∂Ω. Then (Aϕ)(x) :=

∫
∂Ω

K (x , y)ϕ(y)dy is compact

on C (∂Ω).

Q: Has this estimate gotten worse or better?
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Riesz Theory (I)

Still trying to solve

Lϕ := (I − A)ϕ = ϕ− Aϕ = f

with A compact.

Theorem (First Riesz Theorem [Kress, Thm. 3.1])

N(L) is finite-dimensional.

Questions:
▶ What is N(L) again?
▶ Why is this good news?
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Riesz First Theorem: Proof Outline

Show it.
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Riesz Theory (II)
Theorem (Riesz theory [Kress, Thm. 3.4])

A compact. Then:
▶ (I − A) injective ⇔ (I − A) surjective

▶ It’s either bijective or neither s nor i.

▶ If (I − A) is bijective, (I − A)−1 is bounded.

Rephrase for solvability:

Key shortcoming?
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Riesz Theory: Boundedness Proof Outline

Assuming (I − A) is bijective, show that (I − A)−1 is bounded.
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Hilbert spaces
Hilbert space: Banach space with a norm coming from an inner product:

(αx + βy , z) =?

(x , αy + βz) =?

(x , x)?

(y , x) =?

Is C 0(G ) a Hilbert space?

Name a Hilbert space of functions.
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Continuous and Square-Integrable

Can we carry over C 0(G ) boundedness/compactness results to L2(G )?

X , Y normed spaces with a scalar product so that |(ϕ, ψ)| ≤ ∥ϕ∥ ∥ψ∥ for
ϕ, ψ ∈ X .

Theorem (Lax dual system [Kress LIE 3rd ed. Thm. 4.13])

Let U ⊆ X be a subspace and let A : X → Y and B : Y → X be bounded
linear operators with

Aϕ, ψ) = (ϕ,Bψ) (ϕ ∈ U, ψ ∈ Y ).

Then A : U → Y is bounded with respect to ∥·∥s induced by the scalar
product and ∥A∥2

s ≤ ∥A∥ ∥B∥.

Based on this, it is also possible to carry over compactness results.
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Adjoint Operators
Definition (Adjoint oeprator)

A∗ called adjoint to A if

(Ax , y) = (x ,A∗y)

for all x , y .

Facts:

▶ A∗ unique
▶ A∗ exists
▶ A∗ linear
▶ A bounded ⇒ A∗ bounded
▶ A compact ⇒ A∗ compact
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Adjoint Operator: Observations?
What is the adjoint operator in finite dimensions? (in matrix
representation)

What do you expect to happen with integral operators?

Adjoint of the single-layer?

Adjoint of the double-layer?
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Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE 2nd ed. Thm. 4.14])

A : X → X compact. Then either:
▶ I − A and I − A∗ are bijective

or:
▶ dimN(I − A) = dimN(I − A∗)

▶ (I − A)(X ) = N(I − A∗)⊥

▶ (I − A∗)(X ) = N(I − A)⊥

Seen these statements before?
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Fundamental Theorem of Linear Algebra

A(ℝn)

N(AT)N(A)

AT(ℝm)

0 0
A A 

A 

A T

T

n − r m − r

dim r dim r

A T

A 

ℝmℝn
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Fredholm Alternative in IE terms

Translate to language of integral equation solvability:
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Fredholm Alternative: Further Thoughts

What about symmetric kernels (K (x , y) = K (y , x))?

Where to get uniqueness?
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Spectral Theory: Terminology
A : X → X bounded, λ is a . . . value:

Definition (Eigenvalue)

There exists an element ϕ ∈ X , ϕ ̸= 0 with Aϕ = λϕ.

Definition (Regular value)

The “resolvent” (λI − A)−1 exists and is bounded.

Can a value be regular and “eigen” at the same time?

What’s special about ∞-dim here?
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Resolvent Set and Spectrum

Definition (Resolvent set)

ρ(A) := {λ is regular}

Definition (Spectrum)

σ(A) := C \ ρ(A)

219



Spectral Theory of Compact Operators

Theorem
A : X → X compact linear operator, X ∞-dim.
Then:
▶ 0 ∈ σ(A) (show! )
▶ σ(A) \ {0} consists only of eigenvalues
▶ σ(A) \ {0} is at most countable
▶ σ(A) has no accumulation point except for 0
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Spectral Theory of Compact Operators: Proofs

Show the first part.

Show second part.
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Spectral Theory of Compact Operators: Implications

Rephrase last two: how many eigenvalues with | · | ≥ R?

Recap: What do compact operators do to high-frequency data?

Don’t confuse I − A with A itself!
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Recap: Layer potentials

(Sσ)(x) :=

∫
Γ
G (x − y)σ(y)dsy

(S ′σ)(x) := PV n̂ · ∇x

∫
Γ
G (x − y)σ(y)dsy

(Dσ)(x) := PV

∫
Γ
n̂ · ∇yG (x − y)σ(y)dsy

(D ′σ)(x) := f .p. n̂ · ∇x

∫
Γ
n̂ · ∇yG (x − y)σ(y)dsy

Definition (Harmonic function)

△u = 0

Where are layer potentials harmonic?
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On the double layer again

Is the double layer actually weakly singular? Recap:

Definition (Weakly singular kernel)

▶ K defined, continuous everywhere except at x = y

▶ There exist C > 0, α ∈ (0, n − 1] such that

|K (x , y)| ≤ C |x − y |α−n+1 (x , y ∈ ∂Ω, x ̸= y)
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Actual Singularity in the Double Layer

∂

∂x
log(|0 − x |) = x

x2 + y2

▶ Singularity with approach on y = 0?
▶ Singularity with approach on x = 0?
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Cauchy Principal Value

But I don’t want to integrate across a singularity! → punch it out.

Problem: Make sure that what’s left over is well-defined∫ 1

−1

1
x
dx?
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Principal Value in n dimensions
y

x

Γ

n
x0

Integration Contour ε

Again: Symmetry matters!

What about even worse singularities?
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Recap: Layer potentials

(Sσ)(x) :=

∫
Γ
G (x − y)σ(y)dsy

(S ′σ)(x) := PV n̂ · ∇x

∫
Γ
G (x − y)σ(y)dsy

(Dσ)(x) := PV

∫
Γ
n̂ · ∇yG (x − y)σ(y)dsy

(D ′σ)(x) := f .p. n̂ · ∇x

∫
Γ
n̂ · ∇yG (x − y)σ(y)dsy

Important for us: Recover ‘average’ of interior and exterior limit without
having to refer to off-surface values.
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Green’s Theorem
Ω bounded

Theorem (Green’s Theorem [Kress LIE 2nd ed. Thm 6.3])

∫
Ω
u△v +∇u · ∇v =

∫
∂Ω

u(n̂ · ∇v)ds∫
Ω
u△v − v△u =

∫
∂Ω

u(n̂ · ∇v)− v(n̂ · ∇u)ds

If △v = 0 and u = 1, then ∫
∂Ω

n̂ · ∇v =?
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Green’s Formula

What if △v = 0 and u = G (|y − x |) in Green’s second identity?∫
Ω
u△v − v△u =

∫
∂Ω

u(n̂ · ∇v)− v(n̂ · ∇u)ds

Can you write that more briefly?
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Green’s Formula (Full Version)

Ω bounded

Theorem (Green’s Formula [Kress LIE 2nd ed. Thm 6.5])

If △u = 0, then

(S(n̂ · ∇u)− Du)(x) =


u(x) x ∈ Ω,
u(x)

2 x ∈ ∂Ω,

0 x ̸∈ Ω.
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Green’s Formula and Cauchy Data
Suppose I know ‘Cauchy data’ (u|∂Ω, n̂ · ∇u|∂Ω) of u. What can I do?

What if Ω is an exterior domain?

What if u = 1? Do you see any practical uses of this?
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Mean Value Theorem

Theorem (Mean Value Theorem [Kress LIE 2nd ed. Thm 6.7])

If ∆u = 0, u(x) =
∫

B(x ,r)
u(y)dy =

∫
∂B(x ,r)

u(y)dy

Define
∫

?

Trace back to Green’s Formula (say, in 2D):
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Maximum Principle

Theorem (Maximum Principle [Kress LIE 2nd ed. 6.9])

If △u = 0 on compact set Ω̄:
u attains its maximum on the boundary.

Suppose it were to attain its maximum somewhere inside an open set. . .

What do our constructed harmonic functions (layer potentials) do there?
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Green’s Formula at Infinity: Statement
Ω ⊆ Rn bounded, C 1, connected boundary, △u = 0 in Rn \ Ω, u bounded

Theorem (Green’s Formula in the exterior [Kress LIE 3rd ed. Thm 6.11])

(S∂Ω(n̂ · ∇u)− D∂Ωu)(x) + PVu∞ = u(x)

for some constant u∞. Only for n = 2,

u∞ =
1

2πr

∫
|y |=r

u(y)dsy .

Realize the power of this statement:
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Green’s Formula at Infinity: Proof (1/4)

We will focus on R3. WLOG assume 0 ∈ Ω. Let M = ∥u∥L∞(Rn\Ω̄).
First, show ∥∇u∥ ≤ 6M/ ∥x∥ for x ≥ R0.
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Green’s Formula at Infinity: Proof (2/4)

Let x ∈ R3 \ Ω̄. Let r be such that Ω̄ ⊂ B(x , r). Apply Green’s formula on
bounded domains to B(x , r) \ Ω̄:

(S∂Ω(∂nu)− D∂Ωu)(x) + (S∂B(x ,r)(∂nu)− D∂B(x ,r)u)(x) = u(x).

Show S∂B(x ,r)(∂nu) → 0 as r → ∞:
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Green’s Formula at Infinity: Proof (3/4)
It remains to bound the term

D∂B(x ,r)u)(x) =
4π
r2

∫
∂B(x ,r)

u(y)dSy .

Can we transplant that ball to the origin in some sense?
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Green’s Formula at Infinity: Proof (4/4)

Observe ∣∣∣∣∣4πr2

∫
∂B(0,r)

u(y)dSy

∣∣∣∣∣ ≤ 4πM.

Consider the sequence

µn :=
4π
r2
n

∫
∂B(0,rn)

u(y)dSy .

Because of its boundedness and sequential compactness of the bounding
interval, out of a sequence of radii rn, we can pick a subsequence so that
(µn(k)) converges. Call the limit u∞.
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Green’s Formula at Infinity: Impact

Can we use this to bound u as x → ∞?
Consider the behavior of the kernel as r → ∞. Focus on 3D for simplicity.
(But 2D holds also.)

How about u’s derivatives?
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Jump relations:

r

r
Sµ

µ

Γ

S ′µ
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Jump Relations: Mathematical Statement
Let [X ] = X+ − X−. (Normal points towards “+”=“exterior”.)

Theorem (Jump Relations [Kress LIE 2nd ed. Thm. 6.14, 6.17,6.18])

[Sσ] = 0

lim
x→x0±

(S ′σ) =

(
S ′ ∓ 1

2
I

)
(σ)(x0) ⇒ [S ′σ] = −σ

lim
x→x0±

(Dσ) =

(
D ± 1

2
I

)
(σ)(x0) ⇒ [Dσ] = σ

[D ′σ] = 0

Truth in advertising: Assumptions on Γ?
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Jump Relations: Proof Sketch for SLP

Sketch the proof for the single layer.
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Jump Relations: Proof Sketch for DLP

Sketch proof for the double layer.
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Boundary Value Problems: Overview

Dirichlet Neumann
Int. limx→∂Ω− u(x) = g

+ unique
limx→∂Ω− n̂ · ∇u(x) = g
o may differ by constant

Ext. limx→∂Ω+ u(x) = g

u(x) =

{
O(1) 2D
o(1) 3D

as |x | → ∞

+ unique

limx→∂Ω+ n̂ · ∇u(x) = g
u(x) = o(1) as |x | → ∞
+ unique

with g ∈ C (∂Ω).
What does f (x) = O(1) mean? (and f (x) = o(1)?)
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Uniqueness Proofs

Dirichlet uniqueness: why?

Neumann uniqueness: why?
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Uniqueness: Remaining Points

Truth in advertising: Missing assumptions on Ω?

What’s a DtN map?

Next mission: Find IE representations for each.
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Uniqueness of Integral Equation Solutions

Theorem (Nullspaces [Kress LIE 2nd ed. Thm 6.20])

▶ N(I/2 − D) = N(I/2 − S ′) = {0}
▶ N(I/2 + D) = span{1}, N(I/2 + S ′) = span{ψ},

where
∫
ψ ̸= 0.
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IE Uniqueness: Proofs (1/3)

Show N(I/2 − D) = {0}.
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IE Uniqueness: Proofs (2/3)

Show N(I/2 − S ′) = {0}.
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IE Uniqueness: Proofs (3/3)
Show N(I/2 + D) = span{1}.

What conditions on the RHS do we get for int. Neumann and
ext. Dirichlet?

→ “Clean” Existence for 3 out of 4.
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Patching up Exterior Dirichlet
Problem: N(I/2 + S ′) = {ψ}. . . do not know ψ. Use different kernel:

n̂ · ∇yG (x , y) → n̂ · ∇yG (x , y) +
1

|x |n−2

Note: Singularity only at origin! (assumed ∈ Ω)
▶ 2D behavior? 3D behavior?
▶ Still a solution of the PDE? Compact?
▶ Jump condition? Exterior limit? Deduce u = 0 on exterior.

▶ Consider ∂nG = O(1/rn−1).

▶ |x |n−2u(x) =? as |x | → ∞?
▶ Thus

∫
ϕ = 0. Contribution of the second term?

▶ ϕ/2 + Dϕ = 0, i.e. ϕ ∈ N(I/2 + D) =?
▶ Existence/uniqueness?

→ Existence for 4 out of 4.
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Domains with Corners

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

What’s the problem? (Hint: Jump condition for constant density)
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Domains with Corners (II)

At corner x0: (2D)

lim
x→x0±

=

∫
∂Ω

n̂ · ∇yG (x , y)ϕ(y)dsy ±
1
2
⟨opening angle on ± side⟩

π
ϕ

→ non-continuous behavior of potential on Γ at x0
What space have we been living in? How do we fix this mess?

Numerically: Needs consideration, can drive up cost through refinement.
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Where does Helmholtz come from?
Derive the Helmholtz equation from the wave equation ∂2

t U = c2△U,. Q:
What is c?
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Helmholtz vs. Yukawa

Helmholtz Equation
▶ △u + k2u(x) = 0
▶ Indefinite operator
▶ Oscillatory solution
▶ Difficult to solve, especially for

large k

Yukawa Equation
▶ −△u + k2u(x) = 0
▶ Positive definite operator
▶ Smooth solutions
▶ ‘Screened Coulomb’ interaction
▶ Generally quite simple to solve

263



The prototypical Helmholtz BVP: A Scattering Problem

Ω

Rn \ Ω
Γ

uinc

u

Ansatz:
utot = u + uinc

Solve for scattered field u.
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Helmholtz: Some Physics
Physical quantities:
▶ Velocity potential: U(x , t) = u(x)e−iωt

(fix phase by e.g. taking real part)
▶ Velocity: v = (1/ρ0)∇U

▶ Pressure: p = −∂tU = iωue−iωt

▶ Equation of state: p = f (ρ)

What’s ρ0?

What happens to a pressure BC as ω → 0?
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Helmholtz: Boundary Conditions
Interfaces between media: What’s continuous?

▶ Sound-soft: Scatterer “gives”
▶ Pressure remains constant in time
▶ u = f → Dirichlet

▶ Sound-hard: Scatterer “does not give”
▶ Pressure varies, same on both sides of interface
▶ n̂ · ∇u = 0 → Neumann

▶ Impedance: Some pressure translates into motion
▶ Scatterer “resists”
▶ n̂ · ∇u + ikλu = 0 → Robin (λ > 0)

▶ Sommerfeld radiation condition: allow only outgoing waves (n-dim)

r
n−1
2

(
∂

∂r
− ik

)
u(x) → 0 (r → ∞)

Many interesting BCs → many IEs! :) 266



Unchanged from Laplace
Theorem (Green’s Formula [Colton/Kress IAEST Thm 2.1])

If △u + k2u = 0, then

(S(n̂ · ∇u)− Du)(x) =


u(x) x ∈ D
u(x)

2 x ∈ ∂D

0 x ̸∈ D

[Su] = 0

lim
x→x0±

(S ′u) =

(
S ′ ∓ 1

2
I

)
(u)(x0) ⇒ [S ′u] = −u

lim
x→x0±

(Du) =

(
D ± 1

2
I

)
(u)(x0) ⇒ [Du] = u

[D ′u] = 0 267



Unchanged from Laplace

Why is singular behavior (esp. jump conditions) unchanged?

Why does Green’s formula survive?
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Resonances

−△ on a bounded (interior) domain with homogeneous Dirichlet/Neumann
BCs has countably many real, positive eigenvalues.
What does that have to with Helmholtz?

Why could it cause grief?
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Helmholtz: Boundary Value Problems

Find u ∈ C (D̄) with △u + k2 = 0 such that
Dirichlet Neumann

Int. limx→∂D− u(x) = g
o unique (−resonances)

limx→∂D− n̂ · ∇u(x) = g
o unique (−resonances)

Ext. limx→∂D+ u(x) = g
Sommerfeld
+ unique

limx→∂D+ n̂ · ∇u(x) = g
Sommerfeld
+ unique

with g ∈ C (∂D).

Find layer potential representations for each.
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Patching up resonances

Issue: Ext. IE inherits non-uniqueness from ‘adjoint’ int. BVP

Fix: Tweak representation [Brakhage/Werner ‘65, . . . ]
(also called the CFIE or combined field integral equation)

u = Dϕ− iαSϕ

(α: tuning knob → 1 is fine, ∼ k better for large k)
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Patching up resonances: CFIE (1/3)
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Patching up resonances: CFIE (2/3)
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Patching up resonances: CFIE (3/3)
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Helmholtz Uniqueness

Uniqueness for remaining IEs similar:
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A word about D ′

Show that D ′ is self-adjoint. [Kress LIE 3rd ed. Sec 7.6]
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Towards Calderón
Show that (Sφ,D ′ψ) = ((S ′ + I/2)φ, (D − I/2)ψ).

(φ,SD ′ψ)?
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Calderón Identities: Summary

▶ SD ′ = D2 − I/4
▶ D ′S = S ′2 − I/4

Also valid for Laplace (jump relation same after all!)

Why do we care?
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Numerics: What do we need?

▶ Discretize curves and surfaces
▶ Interpolation
▶ Grid management
▶ Adaptivity

▶ Discretize densities
▶ Discretize integral equations

▶ Nyström, Collocation, Galerkin
▶ Compute integrals on them

▶ “Smooth” quadrature
▶ Singular quadrature

▶ Solve linear systems
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Constructing Discrete Function Spaces
Floating point numbers (Degrees of Freedom or DoFs) ↔ Functions

Discretization relies on three things:
▶ Base/reference domain
▶ Basis of functions
▶ Meaning of DoFs

Related finite element concept: Ciarlet triple

Discretization options for a curve?
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What do the DoFs mean?

Common DoF choices:
▶ Point values of function
▶ Point values of (directional?) derivatives
▶ Basis coefficients
▶ Moments

Often: useful to have both “modes”, “nodes”, jump back and forth
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Why high order?
Order p: Error bounded as |uh − u| ≤ Chp

Thought experiment:

First order Fifth order
1,000 DoFs ≈ 1,000 triangles 1,000 DoFs ≈ 66 triangles
Error: 0.1 Error: 0.1
Error: 0.01 → ? Error: 0.01 → ?

Complete the table.

Remarks:
▶ Want p ≥ 3 available.
▶ Assumption: Solution sufficiently smooth
▶ Ideally: p chosen by user
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What is an Unstructured Mesh?

Why have an unstructured mesh? What is the trade-off in going
unstructured?

Demo: CAD software
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Fixed-order vs Spectral
Fixed-order Spectral
Number of DoFs n
∼
Number of ‘elements’

Error ∼ 1
np

Examples?
▶ Piecewise Polynomials

Number of DoFs n
∼
Number of modes resolved

Error ∼ 1
Cn

Examples?
▶ Global Fourier
▶ Global Orth. Polynomials

What assumptions are buried in each of these?
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Fixed-order vs Spectral
What should the DoFs be?

What’s the difficulty with purely modal discretizations?
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Vandermonde Matrices


x0
0 x1

0 · · · xn0
x0
1 x1

1 · · · xn1
...

...
. . .

...
x0
n x1

n · · · xnn



a0
a1
...
an

 = ?
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Generalized Vandermonde Matrices


ϕ0(x0) ϕ1(x0) · · · ϕn(x0)
ϕ0(x1) ϕ1(x1) · · · ϕn(x1)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) · · · ϕn(xn)



a0
a1
...
an

 = ?
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Generalized Vandermonde Matrices


ϕ0(x0) ϕ1(x0) · · · ϕn(x0)
ϕ0(x1) ϕ1(x1) · · · ϕn(x1)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) · · · ϕn(xn)

MODALCOEFFS = NODALCOEFFS

▶ Node placement? Demo: Interpolation node placement
▶ Vandermonde conditioning? Demo: Vandermonde conditioning
▶ What about multiple dimensions?

▶ Demo: Visualizing the 2D PKDO Basis
▶ Demo: 2D Interpolation Nodes
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Common Operations

(Generalized) Vandermonde matrices simplify common operations:
▶ Modal ↔ Nodal (“Global interpolation”)

▶ Filtering
▶ Up-/Oversampling

▶ Point interpolation (Hint: solve using V T )
▶ Differentiation
▶ Indefinite Integration
▶ Inner product
▶ Definite integration
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Unstructured Mesh

▶ Design a data structure to represent this
▶ Compute normal vectors
▶ Compute area
▶ Compute integral of a function
▶ How is the function represented?

Demo: Working with Unstructured Meshes
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Integral Equation Discretizations: Overview

ϕ(x)−
∫
Γ
K (x , y)ϕ(y)dy = f (y)

Nyström Projection

▶ Approximate integral by
quadrature:∫
Γ f (y)dy →

∑n
k=1 ωk f (yk)

▶ Evaluate quadrature’d IE at
quadrature nodes, solve

▶ Consider residual:
R := ϕ− Aϕ− f

▶ Pick projection Pn onto
finite-dimensional subspace
Pnϕ :=

∑n
k=1⟨ϕ, vk⟩wk →

DOFs ⟨ϕ, vk⟩
▶ Solve PnR = 0
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Projection/Galerkin
▶ Equivalent to projection: Test IE with test functions
▶ Important in projection methods: sub-space (e.g. of C (Γ))

Name some generic discrete projection bases.

Collocation and Nyström: the same?

Are projection methods implementable?
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Nyström Discretizations (1/4)
Nyström consists of two distinct steps:

1. Approximate integral by quadrature:

φn(x)−
n∑

k=1

ωkK (x , yk)φn(yk) = f (x) (1)

2. Evaluate quadrature’d IE at quadrature nodes, solve discrete system

φ
(n)
j −

n∑
k=1

ωkK (xj , yk)φ
(n)
k = f (xj) (2)

with xj = yj and φ(n)
j = φn(xj) = φn(yj)

Is version (1) solvable?
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Nyström Discretizations (2/4)
What’s special about (2)?

Solution density also only known at point values. But: can get
approximate continuous density. How?

Assuming the IE comes from a BVP. Do we also only get the BVP solution
at discrete points?
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Nyström Discretizations (3/4)
Does (1) ⇒ (2) hold?

Does (2) ⇒ (1) hold?
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Nyström Discretizations (4/4)
What good does that do us?

Does Nyström work for first-kind IEs?

301



Convergence for Nyström (1/2)

Increase number of quadrature points n:
Get sequence (An)
Want An → A in some sense
What senses of convergence are there for sequences of functions fn?

What senses of convergence are there for sequences of operators An?

302



Convergence for Nyström (2/2)
Will we get norm convergence ∥An − A∥∞ → 0 for Nyström? {[Kress LIE 2nd
ed. Thm. 12.8]}]

Is functionwise convergence good enough?
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Compactness-Based Convergence
X Banach space (think: of functions)

Theorem (Not-quite-norm convergence [Kress LIE 2nd ed. Cor 10.4])

An : X → X bounded linear operators,
functionwise convergent to A : X → X
Then convergence is uniform on compact subsets U ⊂ X , i.e.

sup
ϕ∈U

∥Anϕ− Aϕ∥ → 0 (n → ∞)

How is this different from norm convergence?

304



Collective Compactness

Set A of operators A : X → X

Definition (Collectively compact)

A is called collectively compact if and only if
for U ⊂ X bounded, A(U) is relatively compact.

What was relative compactness (=precompactness)?
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Collective Compactness: Questions (1/2)

Is each operator in the set A compact?

Is collective compactness the same as “every operator in A is compact”?
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Collective Compactness: Questions (2/2)
When is a sequence collectively compact?

Is the limit operator of such a sequence compact?

How can we use the two together?
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Making use of Collective Compactness

X Banach space, An : X → X , (An) collectively compact, An → A
functionwise.

Corollary (Post-compact convergence [Kress LIE 3rd ed. Cor 10.11])

▶ ∥(An − A)A∥ → 0
▶ ∥(An − A)An∥ → 0

(n → ∞)
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Anselone’s Theorem
(I − A)−1 exists, with A : X → X compact, (An) : X → X collectively
compact and An → A functionwise.

Theorem (Nyström error estimate [Kress LIE 3rd ed. Thm 10.12])

For sufficiently large n, (I − An) is invertible and

∥ϕn − ϕ∥ ≤ C (∥(An − A)ϕ∥+ ∥fn − f ∥)

C =
1 + ∥(I − A)−1An∥

1 − ∥(I − A)−1(An − A)An∥
I + (I − A)−1A =?
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Anselone’s Theorem: Proof (I)

Define approximate inverse Bn = I + (I − A)−1An.

How good of an inverse is it?

Id ≈? Bn(I − An)

= (I + (I − A)−1An)(I − An)

= [I + (I − A)−1An]− [An + (I − A)−1AnAn]

= [I + (I − A)−1An]− [(I − A)−1(I − A)An + (I − A)−1AnAn]

= [I + (I − A)−1An]− [(I − A)−1IAn − (I − A)−1AAn + (I − A)−1AnAn]

= I + (I − A)−1 AAn −(I − A)−1AnAn

= I + (I − A)−1(A− An)An︸ ︷︷ ︸
−Sn

= I − Sn
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Anselone’s Theorem: Proof (II)
Want Sn → 0 somehow. Prior result gives us ∥(A− An)An∥ → 0.
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Anselone’s Theorem: Proof (III)
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Anselone: A Question

Nyström: specific to I + compact. Why?
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Nyström: Collective Compactness

We assumed collective compactness. Do we have that? Assume∑
|quad. weights for n points| ≤ C (independent of n) (3)
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Nyström: Collective Compactness

Also assumed functionwise uniform convergence, i.e. ∥Anϕ− Aϕ∥ → 0 for
each ϕ.
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Projection Method

X Banach space, U ⊂ X nontrivial subspace, A : X → Y injective,
Xn ⊂ X , Yn ⊂ Y , dimXn = n, dimYn = n, Pn :? →?

▶ P is a projection ⇔ P|U = Id ⇔ P2 = P

▶ ∥P∥ ≥ 1
▶ Orthogonal projectors: ∥P∥ = 1
▶ Interpolators (“collocation projection”): Also projections
▶ Projection method: PnAϕn = Pnf (#)

Define convergence:

317



Assumptions on the Approximation Spaces

What’s needed of Xn so that it can even approximate the solution?
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Norm Convergence of Inverses

X , Y Banach spaces, A : X → Y bounded, A−1 bounded

Theorem (Norm Convergence of Inverses [Kress LIE 3rd ed. Thm. 10.1])

If ∥An − A∥ → 0 as n → ∞. Then for sufficiently large n, A−1
n exists and

is bounded by ∥∥A−1
n

∥∥ ⩽

∥∥A−1
∥∥

1 − ∥A−1(An − A)∥
.

For Aφ = f and Anφn = fn, we have the estimate

∥φn − φ∥ ⩽

∥∥A−1
∥∥

1 − ∥A−1(An − A)∥
[∥(An − A)φ∥+ ∥fn − f ∥] .
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Norm Convergence of Inverses: Proof

Prove the result:
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Projection Methods for Second Kind

Write out the projected version of the second-kind equation φ− Aφ = f :
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Error Estimate for Second Kind Projection

X Banach, A : X → X compact, I − A injective

Theorem (Second Kind Projection Estimate [Kress LIE 3rd ed. Thm. 13.10])

Assume ∥PnA− A∥ → 0 (n → ∞). Then for sufficiently large n,

φn − PnAφn = Pnf

is uniquely solvable for all f ∈ X , and we have ∥φn − φ∥ ⩽ M ∥Pnφ− φ∥
for M a constant depending on A.
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Error Estimate for Second Kind Projection: Proof

Prove the result:
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Perturbations of Projection Methods for Second Kind

In actual numerical use, we’re not solving

φn − PnAφn = Pnf

but
φ̃n − PnAnφ̃n = Pnfn,

where
▶ An approximates A,
▶ fn approximates f .
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Perturbations of Projection Methods for Second Kind: Estimate
X Banach, A : X → X compact, I − A injective

Theorem (SK Projection Perturbation [Kress LIE 3rd ed. Cor. 13.11])

Assume that functionwise PnAn − PnA → 0 and ∥PnAn − PnA∥ → 0
(n → ∞). Then for sufficiently large n φ̃n − PnAnφ̃n = Pnfn is uniquely
solvable and for some positive constant M,

∥φ̃n − φ∥ ⩽ M (∥Pnφ− φ∥+ ∥(PnAn − PnA)φn∥+ ∥Pn(fn − f )∥) .
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Iterative Methods and Corners [Bremer et al. ‘11]

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

Problem: Singular behavior at corner points. Density may blow up.
Can the density be convergent in the ∥ · ∥∞ sense?
Conditioning of the discrete system?
GMRES will flail and break, because it sees ℓ2 ∼ l∞ ∼ L∞ convergence.
Make GMRES ‘see’ L2 convergence by redefining density DOFs:

σh :=


√
ω1σ(x1)

...√
ωnσ(xn)

 =
√
ωσh

So σh · σh =?
Also fixes system conditioning! Why?
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‘Off-the-shelf’ ways to compute integrals
How do I compute an integral of a nasty singular kernel?
Symbolic integration

Why not Gaussian?
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Singular and Near-Singular Quadrature

Numerically distinct scenarios:
▶ Near-Singular quadrature

▶ Integrand nonsingular
▶ But may locally require lots of
▶ Adaptive quadrature works, but. . .

▶ Singular quadrature
▶ Integrand singular
▶ Conventional quadrature fails
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Kussmaul-Martensen quadrature

Theorem (A special integral [Kress LIE Lemma 8.21])

1
2π

∫ 2π

0
log
(
4 sin2 t

2

)
e imtdt =

{
0 m = 0,
− 1

|m| m = ±1,±2 . . . .

Why is that exciting?
Demo: Kussmaul-Martensen quadrature
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Singularity Subtraction
∫

⟨Thing X you would like to integrate⟩

=

∫
⟨Thing Y you can integrate⟩

+

∫
⟨Difference X − Y which is easy to integrate (numerically)⟩

Give a typical application.

Drawbacks?
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High-Order Corrected Trapezoidal Quadrature

▶ Conditions for new nodes, weights
(→ linear algebraic system, dep. on n)
to integrate

⟨smooth⟩ · ⟨singular⟩+ ⟨smooth⟩

▶ Allowed singularities: |x |λ (for |λ| < 1 ), log |x |
▶ Generic nodes and weights for log singularity
▶ Nodes and weights copy-and-pasteable from paper

[Kapur, Rokhlin ‘97]

Alpert ‘99 conceptually similar:
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Generalized Gaussian

▶ “Gaussian”:
▶ Integrates 2n functions exactly with n nodes
▶ Positive weights

▶ Clarify assumptions on system of functions (“Chebyshev system”) for
which Gaussian quadratures exist

▶ When do (left/right) singular vectors of integral operators give rise to
Chebyshev systems?
▶ In many practical cases!

▶ Find nodes/weights by Newton’s method
▶ With special starting point

▶ Very accurate
▶ Nodes and weights for download

[Yarvin/Rokhlin ‘98]
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Singularity cancellation: Polar coordinate transform

∫ ∫
∂Ω

K (x, y)ϕ(y)dsy

=∫ R

0

∫
x+r∈∂Ω∩∂B(x,r)

K (x, x + r)ϕ(x + r)d⟨angles⟩ r dr

=∫ R

0

∫
x+r∈∂Ω∩∂B(x,r)

Kless singular(x, x + r)
r

ϕ(x + r)d⟨angles⟩ r dr

where Kless singular = K · r .
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Quadrature on Triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target)
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Quadrature on Triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target)
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Kernel regularization
Singularity makes integration troublesome: Get rid of it!

· · ·√
(x − y)2

→ · · ·√
(x − y)2 + ϵ2

Use Richardson extrapolation to recover limit as ϵ→ 0.
(May also use geometric motivation: limit along line towards singular
point.)
Primary drawbacks:
▶ Low-order accurate
▶ Need to make ϵ smaller (i.e. kernel more singular) to get better

accuracy
Can take many forms–for example:
▶ Convolve integrand to smooth it

(→ remove/weaken singularity)
▶ Extrapolate towards no smoothing

Related: [Beale/Lai ‘01]
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Acceleration and Quadature

How can singular quadrature and FMM acceleration be made compatible?

338



FMMs and other Layer Potentials
How does an FMM evaluate a double layer?

How does an FMM evaluate S ′?

What effect does this have on accuracy?
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Layer Potential Evaluation: Some Intuition
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QBX: Idea
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Curve Γ Source quad. nodes x ′

Target point x

Expansion center
Potential from
expansion

“Naive”
potential
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QBX: An Experiment
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QBX: An Experiment
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QBX: An Experiment
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QBX: An Experiment
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QBX: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k |x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)
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QBX: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k |x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)
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QBX: Formulation, Discretization

Compute layer potential on the disk as

Skσ(x) =
∞∑

l=−∞
αlJl(kρ)e

−ilθ

with

αl =
i

4

∫
Γ
H

(1)
l (k|x ′ − c |)e ilθ′σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.
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QBX: Formulation, Discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e
−ilθ

with

αl =
i

4
TN

(∫
Γ
H

(1)
l (k |x ′ − c |)e ilθ′σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.
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Quadrature by Expansion (QBX)
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0.0

lo
g 1

0(
E
rr

o
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Error ≤

(
C rp+1︸︷︷︸

Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
∥σ∥

[K, Barnett, Greengard, O’Neil JCP ‘13]
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Achieving high order

Error ≤

(
C rp+1︸︷︷︸

Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
∥σ∥

Two approaches:
▶ Asymptotically convergent: r =

√
h

▶ + Error → 0 as h → 0
▶ - Low order: h(p+1)/2

▶ Convergent with controlled precision: r = 5h
▶ - Error ̸→ 0 as h → 0
▶ + High order: hp+1 to controlled precision ϵ := (1/5)q
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Other layer potentials

Can’t just do single-layer potentials:

αD
l =

i

4

∫
Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ′µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.): Take derivative of local
expansion.
Analysis says: Will lose an order.
Slight issue: QBX computes one-sided limits.
Fortunately: Jump relations are known–e.g.

(PV )D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1
2
µ(x).

Alternative: Two-sided average → Preferred because of conditioning
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Understanding Truncation Behavior
Let Γ = ∂Ω− be piecewise C 2 with no inward facing cusps. Let Ψ be the
exterior Riemann map that maps the exterior Ω+ onto the exterior of the
unit disk.

Theorem (A basis of QBX-exact densities)

A function on the interior f : Ω− → R is a harmonic polynomial of degree
n if and only if f has the representation f = Dφ and the associated
double-layer density function φ takes the form

φ(z) =
n∑

k=0

λk cos(kθ(z) + µk), z ∈ Γ

for some set of real coefficients λk , µk , where θ(w) = argΨ(w) is the
boundary correspondence.

[Wala, K ‘18]
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QBX and Conformal Mapping
Require: A smooth Jordan boundary Γ, with 0 in the interior.
Require: A boundary sign s: +1 for exterior, −1 for interior.
Ensure: Computes the boundary correspondence θ.

Stage 1
Solve the following integral equation for the density σ, for all ζ ∈ Γ:

ζ =

(
D − 1

2

)
σ(ζ) if s = +1

ζ−1 =

(
D +

∫
+

1
2

)
σ(ζ) if s = −1.

Stage 2

Let σ̃(ζ) = σ(ζ) +
s

2πi

∫
Γ

σ(y)

y
dy (ζ ∈ Γ).

Stage 3

Let θ(ζ) = arg

(
−s

σ̃(ζ)

|σ̃(ζ)|

)
(ζ ∈ Γ).
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Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature
A Bag of Quadrature Tricks
Quadrature by expansion (‘QBX’)
QBX Acceleration
Reducing Complexity through better Expansions
Results: Layer Potentials
Results: Poisson

Going General: More PDEs
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Local QBX: Viewing QBX as a Local Correction
What happens if one attempts to use QBX quadrature as a ’local
correction’?
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QBX + FMM : A straightforward coupling

Box local ex-
pansion

QBX center

QBX expan-
sion

Γ
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Accuracy vs FMM/QBX orders: Straightforward (2D)

(1/2)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

0 (direct) 4.35e−6 6.21e−7 1.05e−7 5.71e−8
6e−2 3 2.55e−2 2.96e−2 4.07e−2 5.77e−2
2e−2 5 6.94e−3 1.61e−2 2.29e−2 3.10e−2
5e−4 10 4.95e−4 1.75e−3 5.80e−3 9.48e−3
2e−5 15 1.58e−5 1.85e−4 6.40e−4 3.17e−3
5e−7 20 4.35e−6 1.31e−5 8.99e−5 5.01e−4

ℓ∞ error in Green’s formula S(∂nu)−D(u) = u/2, scaled by 1/∥u∥∞, for
the 65-armed starfish γ65, using the conventional QBX FMM algorithm.
3250 Gauss-Legendre panels, with 33 nodes per panel.
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Recap: Local Expansions of Potentials

s

c

t

Truncation Error ∼
(

furthest target
closest source

)p+1
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QBX + FMM: Sources of Inaccuracy
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Possible Expansion Sequences

▶ Source → Multipole(p) → QBX-Local(q)
▶ Source → Local(p) → QBX-Local(q)
▶ Source → Multipole(p) → Local(p) → QBX-Local(q)
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Translation chains for QBX
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Translation chains for QBX
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Expansions of Expansions?

s

c

t

Truncation Error ∼
(

furthest target
closest source

)p+1

This holds for point evaluations of a single expansion.
Question: Can we generalize it to hold when forming expansions of
expansions?
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Example: Local(p) → Local(q) Truncation Error (2D Lap.)

Lemma
Let c , r > 0. Suppose that a single unit strength charge is placed at z0, with
|z0| ≥ (c + 1)r . Suppose that y , z ∈ B(0, r). If |z | < r and |y − z | ≤ r − |z |, the
potential ϕ due to the charge is described by a power series
ϕ(y) =

∑∞
l=0 βl(y − z)l . Fix the intermediate local order p ≥ 0. For n ≥ 0, let

β̃n =
1
n!

dn

dzn

(
p∑

k=0

ϕ(k)(0)
k!

zk

)
.

Fix the local expansion order q ≥ 0. Define α = 1/(1 + c). Then∣∣∣∣∣
q∑

k=0

βk(y − z)k −
q∑

k=0

β̃k(y − z)k
∣∣∣∣∣ ≤

(
q + 1
p + 1

)(
αp+1

1 − α

)
.

[Wala, K ‘18a – arxiv:1801.04070]
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Figure 7: Obtaining the local expansion of a point potential
using an intermediate multipole expansion. The local expan-
sion of the potential due to the source charge is formed by
first forming a multipole expansion inside B(z0, λr) and then
shifting to z. This provides the setting for Lemma 3.
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Figure 8: Obtaining the local expansion of a point potential
using an intermediate local expansion. The local expansion
of the potential due to the source charge is formed inside the
disk B(0, r) and then shifted to the center z. This provides
the setting for Lemma 4.

The main distinction among these we encounter is whether whether the interaction is mediated through
an intermediate multipole or local expansion, or both. The list above shows, abstractly, the order of each
expansion through the values p and q. All results below hold for any non-negative value of p and q, however
in our envisioned usage scenario, q represents the order of the final QBX local expansion and will generically
be lower than p. The reader familiar with conventional adaptive FMMs (e.g. [10]) may discover a direct
correspondence of these types of translation chains and the various interaction lists used in those algorithms.

Without loss of generality, we may assume that an interaction goes through at most a single intermediate
multipole expansion and intermediate local expansion, occupying a single level of the FMM’s hierarchy.
This is due to the fact that, absent additional truncation, the FMM ‘forgets’ intermediate translations in
the following way: the value of a local expansion shifted downward through a sequence of local-to-local
(13) translations only depends on the source and the initial local expansion center. Similarly, the value of
a multipole expansion shifted upward through a sequence of multipole-to-multipole (10) translations only
depends on the source and the final multipole expansion center. (See [21, Lemma 2.3 and Lemma 2.5].)

We recall a technique from complex analysis for bounding the n-th derivative of a complex analytic
function. The proof can be found in [13, IV.2.14 on page 73].

Proposition 1. Let U ⊆ C be open and let φ : U → C be a complex analytic function. Let z ∈ U, r > 0 and
suppose that B(z, r) ⊆ U . Then for all n ≥ 0

|φ(n)(z)| ≤ n!

rn

(
max

w∈B(z,r)
|φ(w)|

)
.

Remark 2. Although Lemmas 3, 4, and 5 are stated for a single source charge of unit strength, the statements
can be straightforwardly generalized for an ensemble of m charges of strengths q1, . . . , qm, with the error bound
scaled by

∑m
k=1 |qk|.

See Figure 7 for context on the following lemma.

Lemma 3 (Truncating a mediating multipole to p-th order on a q-th order local). Let λ, c, r > 0. Suppose
that a single unit strength charge is placed in the closed disk B(z0, λr) with radius λr and center z0, such
that |z0| ≥ (c + 1 + λ)r. The corresponding multipole expansion with coefficients (ak)

∞
k=0 converges in the

closed disk B(0, r) of radius r centered at the origin.
Suppose that y, z ∈ B(0, r). Then if |z| < r and |y − z| ≤ r − |z|, the potential due to the charge is

described by a power series

φ(y) =
∞∑
k=0

βk(y − z)k.

12

Slightly more subtle, but essentially confirms

Truncation Error ∼
(

furthest target
closest source

)p+1

.
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Figure 8: Obtaining the local expansion of a point potential
using an intermediate local expansion. The local expansion
of the potential due to the source charge is formed inside the
disk B(0, r) and then shifted to the center z. This provides
the setting for Lemma 4.
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A Glimpse of Expansion Technology

▶ M/L expansions typically work by
separation of variables
▶ In angular + radial coordinates

▶ Basis for capturing the angular
dependency in 3D?

▶ Known: Expanded potential solves PDE
▶ So: Expansion fully specified if known

on surface of sphere
▶ (Interior Dirichlet BVP, e.g.)
▶ Radial dependency: find ODE,

straightforward to evaluate
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Expansions on the Surface of a Sphere

▶ Generalizing to n dimensions: (we care about d = 2, 3)
Sd−1 = {x ∈ Rd : ∥x∥ = 1}

▶ A polynomial p : Rd → C is homogeneous of degree k if p if p
satisfies p(rx) = rkp(x) for all x ∈ Rd .

▶ Space of spherical harmonics Yd
n : restrictions to the unit sphere Sd−1

of the harmonic (△p = 0), homogeneous polynomials of degree n.

▶ Fourier-Laplace series:

Fpf (ξ) =

p∑
n=0

Pnf (ξ), ξ ∈ Sd−1,

where Pn[·] is an orthogonal projection onto Yd
n .
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Convergence of Fourier-Laplace Series

Proposition (Norm of the Fourier-Laplace partial sum)

Let f ∈ C (Sd−1). Then a constant Λn,d > 0 exists such that

∥Fpf ∥∞ ≤ Λp,d ∥f ∥∞ ,

where, in dimensions d = 2 and d = 3,

Λp,2 =
4
π2 log p + O(1),

Λp,3 = 2

√
2p
π

+ o(
√
p),

asymptotically as p → ∞.

[Rivlin ‘69], [Gronwall 1911]
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Expansions of Expansions: M2QBXL

B(0,R)

0

R

c ′
t

B(c , r)
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Mp
c [Ks ]

ρ

r
Lq
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c [Ks ]]

Lq
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Analyzing M2QBXL

Lemma (Source → Multipole(p) → Local(q))

Let R > 0 and ρ > r > 0. Consider a closed ball of radius r centered at c ,
with ∥c∥ = R + ρ, containing a unit-strength source s. Also, let a ball of
radius R centered at the origin contain points t and c ′ satisfying ∥c∥ ≤ R
and ∥t − c ′∥ ≤ R − ∥c ′∥.

Then, in the situation of the previous slide:∣∣Lq
c′ [Ks ](t)− Lq

c′ [Mp
c [Ks ]](t)

∣∣ ≤ Λq,d

∥∥∥(Ks −Mp
c [Ks ])|B(0,R)

∥∥∥
∞
.

[Wala-K ‘19—in prep.]
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Translation Chains for QBX
Rigorous truncation error bounds for local expansions for scenarios QBX
locals near box locals:
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Targets with Extent: Target Confinement Regions

Box

Target Confinement Region

(1 + tf )R

R

r

QBX center ‘not in’ box

Box

Target Confinement region

(1 + tf )R

R

r

QBX center ‘in’ box
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M2L Convergence Factor with 2-Away, TCF (3D)

√
3(1 + tf )r

r6r

√
3r

3D, tf = 0.9: Conv. factor ≈ 0.77
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GIGAQBX Fast Algorithm: End-to-End Accuracy (2D/3D)
Theorem (GIGAQBX FMM for Laplace (2D/3D))

Let the center c be owned by the box b and let t be a target associated
with the center c . Assuming that 0 ≤ tf ≤ 6/

√
d − 2, and defining the

constants

ω =

√
d(1 + tf )

6 −
√
d

, A =

NS∑
i=1

|wi | ,

and letting D be the minimum box width in the tree, the (absolute)
acceleration error in the GIGAQBX FMM is bounded as follows:

∥∥Lq
c [ϕ](t) − Gp,q

c [ϕ](t)
∥∥ ≤


AΛq,2 max

(
1

1−
√

2
3

(√
2

3

)p+1
,

1+Λp,2
1−ω

ωp+1
)

, d = 2,

AΛq,3
D

max

(
1

3−
√

3

(√
3

3

)p+1
,

1+Λp,3
6−2

√
3−

√
3tf

ωp+1
)

, d = 3.

[Wala-K ‘19—in prep.]

“GIGAQBX”:
▶ Consider sized targets (QBX

expansions)
▶ Introduce a Target

Confinement Rule
▶ Some M2P and P2L must be

direct
▶ Targets in Non-Leaf Boxes
▶ Two-Box Separation
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∥∥Lq
c [ϕ](t) − Gp,q

c [ϕ](t)
∥∥ ≤


AΛq,2 max

(
1

1−
√

2
3

(√
2

3

)p+1
,

1+Λp,2
1−ω

ωp+1
)

, d = 2,

AΛq,3
D

max

(
1

3−
√

3

(√
3

3

)p+1
,

1+Λp,3
6−2

√
3−

√
3tf

ωp+1
)

, d = 3.

[Wala-K ‘19—in prep.]

“GIGAQBX”:
▶ Consider sized targets (QBX

expansions)
▶ Introduce a Target

Confinement Rule
▶ Some M2P and P2L must be

direct
▶ Targets in Non-Leaf Boxes
▶ Two-Box Separation
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Interaction Lists
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Complexity (3D, Point-and-Shoot)

Modeled Operation Count What
NL Build tree
NSpFMM

2 + NBpFMM
3 Form M, Upward pass

(27(NC + NS)nmax + NCMC )pQBX
2 List 1: P2QBXL

875NBpFMM
3 List 2: M2L

NCMCq
2 + 124LNSnmaxpQBX

2 List 3: P2QBXL+M2QBXL
375NBnmaxpFMM

2 + 250NCnmaxpQBX
2 List 4: P2QBXL+P2L

8NBpFMM
3 Downward

NCpFMM
3 L2QBXL

NTpQBX
2 QBXL2P
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Complexity (3D)

Theorem
Assume that pFMM = O(|log ϵ|), and that pQBX ≤ pFMM. For a fixed value
of nmax, using a level-restricted octree and with tf <

√
3 − 1, the cost in

modeled flops of the evaluation stage of the GIGAQBX FMM is

O((NC + NS + NB)|log ϵ|3 + NCMC |log ϵ|2 + NT |log ϵ|2).

Assuming that the particle distribution satisfies NB = O(N) and
MC = O(1), the worst-case modeled cost using a level-restricted octree
and tf <

√
3 − 1 is linear in N.

[Wala-K ‘18]
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Curve Interaction Lists
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Spherical Harmonic Expansions: Notation

▶ s: source point
▶ t: target point
▶ c : expansion center
▶ a = t − c

▶ b = s − c

▶ γ: angle between a and b

▶ p: expansion order

b

a

c

s

t

γ
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Spherical Harmonic Expansions: Notation

Expansion of Laplace potential in 3D:

(4π)−1

∥a− b∥
=

∞∑
n=0

1
2n + 1

∥a∥n

∥b∥n+1

n∑
m=−n

Ym
n (θa, ϕa)Y

−m
n (θb, ϕb)

Valid for |a| < |b|.

Total cost: O((p + 1)2(N +M)) (for M targets, N sources)
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Spherical Harmonic Expansions: An Identity
By Legendre addition theorem

Pn(cos γ) =
1

2n + 1

n∑
m=−n

Ym
n (θa, ϕa)Y

−m
n (θb, ϕb)

Pn are Legendre polynomials
Results in line expansion (or ‘target-specific expansion’):

(4π)−1

∥a− b∥
=

∞∑
n=0

∥a∥n

∥b∥n+1Pn(cos γ)

Total cost: O((p + 1)NM)

First use in ‘local’ QBX: [Siegel, Tornberg ’17]
Downside: Sources/targets no longer separated.
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Details

▶ QBX [K et al ‘13]: Unifies toolset for quad. and accel.
▶ QBX FMM [Rachh et al ‘16]: Geometry proc., first fast alg.
▶ Truncation Result [Wala, K ‘18]: Exact density basis
▶ GIGAQBX 2D [Wala, K ‘18]: Guaranteed-Accuracy Accel.
▶ GIGAQBX 3D [Wala, K ‘18]: ℓ2 TC, improved geom. proc.
▶ GIGAQBX-TS [Wala, K ‘19]: Reduce accel. cost
▶ Fourier-Laplace bounds [Wala, K ‘19–in prep.]:

2D/3D analysis
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Layer Potentials: Accuracy (2D GIGAQBX)

(1/2)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

0 (direct) 4.35e−6 6.21e−7 1.05e−7 5.71e−8
6e−2 3 5.16e−3 6.35e−3 6.33e−3 6.34e−3
2e−2 5 3.83e−4 5.95e−4 5.95e−4 5.93e−4
5e−4 10 4.35e−6 4.82e−6 6.94e−6 9.30e−6
2e−5 15 4.35e−6 6.21e−7 1.05e−7 1.76e−7
5e−7 20 4.35e−6 6.21e−7 1.05e−7 5.71e−8

ℓ∞ error in Green’s formula S(∂nu)−D(u) = u/2, scaled by 1/∥u∥∞, for
the 65-armed starfish γ65, using the GIGAQBX FMM algorithm.
3250 Gauss-Legendre panels, with 33 nodes per panel.
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Layer Potentials: Accuracy (2D Straightforward)

(1/2)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

0 (direct) 4.35e−6 6.21e−7 1.05e−7 5.71e−8
6e−2 3 2.55e−2 2.96e−2 4.07e−2 5.77e−2
2e−2 5 6.94e−3 1.61e−2 2.29e−2 3.10e−2
5e−4 10 4.95e−4 1.75e−3 5.80e−3 9.48e−3
2e−5 15 1.58e−5 1.85e−4 6.40e−4 3.17e−3
5e−7 20 4.35e−6 1.31e−5 8.99e−5 5.01e−4

ℓ∞ error in Green’s formula S(∂nu)−D(u) = u/2, scaled by 1/∥u∥∞, for
the 65-armed starfish γ65, using the conventional QBX FMM algorithm.
3250 Gauss-Legendre panels, with 33 nodes per panel.

382



Layer Potentials: Accuracy in 3D

(3/4)pFMM+1 pFMM pQBX = 3 pQBX = 5 pQBX = 7 pQBX = 9

3.16e−1 3 8.29e−3 9.68e−3 9.15e−3 9.18e−3
1.78e−1 5 1.43e−3 2.67e−3 2.85e−3 2.78e−3
4.22e−2 10 6.08e−5 6.44e−5 1.27e−4 1.47e−4
1.00e−2 15 6.08e−5 6.38e−6 3.24e−6 7.07e−6
2.38e−3 20 6.08e−5 6.38e−6 1.41e−6 2.51e−7

ℓ∞ error in Green’s formula S(∂nu)−D(u) = u/2, scaled by 1/∥u∥∞, for the
8-armed ‘urchin’ geometry γ8.

Stage 1: 48500 triangles, stage 2: 277712 triangles, with 295 nodes per triangle.

‘Urchin’ geometry γ8, based on 8th
order spherical harmonics
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8-armed ‘urchin’ geometry γ8.

Stage 1: 48500 triangles, stage 2: 277712 triangles, with 295 nodes per triangle.

‘Urchin’ geometry γ8, based on 8th
order spherical harmonics
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Layer Potentials: (Somewhat) Complex Geometry
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Cost Scaling: 3D GIGAQBX FMM
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Figure 9: Modeled operation counts for the GIGAQBX FMM for evaluating the single layer potential on a
sequence of ‘urchin’ geometries of increasing particle count. The operations are counted according to the
model presented in Table 4. Here, nmax = 512 and tf = 0.9. The scaling test used the ‘urchin’ geometries
γ2, γ4, . . . , γ10.

in three dimensions, makes its influence felt. A further factor in the large contribution of W far is the high
cost of translations even when the target (QBX) expansion is of comparatively low order, cf. Section 5.4.1.

In accordance with the results of Section 5.4, the experiments support the conclusion that the algorithm
exhibits linear scaling in the number of source and target particles, with one decade of geometry growth
(indicated by the vertical grid lines) leading to one decade of cost growth (indicated by horizontal grid lines).

6.4 Cost Implications of the `2-Based Target Confinement Region

Next, we seek to understand the impact of the change in the shape of the TCR, which was box-shaped and
defined by the `∞-norm in the earlier version of our algorithm [57], but which now is spherical and measured
by an `2-norm to better match the actual region of convergence of the obtained local expansions. Table 5
summarizes the results of an experiment determining the comparative cost of both approaches. Both versions
of the algorithm were balanced individually before conducting the experiments, in both cases nmax = 512
turned out to be near-optimal. First, we observe that the algorithmic change has led to a reduction of
(modeled) computational cost by around 25 per cent. We note a marked increase in the cost contribution of
Vb, as well as marked decreases in the cost of Ub and W far

b , all of which are indicative of the higher efficiency
of the method with the `2 TCR.

7 Conclusion

This paper introduces a fast algorithm for the accurate evaluation of layer potentials in three dimensions
using Quadrature by Expansion (QBX).

Our work builds on and extends the GIGAQBX algorithm in two dimension [57]. Many features of
the algorithm carry over broadly unchanged from the two dimensional setting. However, some parts have
required careful redevelopment. A practical QBX implementation must provide a mechanism to control for
truncation error, quadrature error, and error introduced by FMM acceleration. To address these challenges
in three dimensions, our work combines new error estimates for FMM translations in three dimensions, a new
local truncation error estimator, and a novel adaptive refinement scheme for achieving source quadrature
resolution. In a series of numerical experiments, we demonstrate that this combination can achieve high
accuracy for layer potential evaluation on complicated geometries. In particular, we show how the FMM
acceleration recovers levels of point-FMM style accuracy. The numerical evidence for the usefulness of
our error control strategies is robust. A rigorous mathematical treatment of these error control strategies

31

Modeled operation counts for the GIGAQBX FMM for Sµ.
nmax = 512 and tf = 0.9. Geometries: γ2, γ4, . . . , γ10.
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“Balancing” an FMM
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Line/Target-Specific Expansions: Cost Impact

▶ Operator: Single layer
▶ Orders: QBX: 9, FMM: 20

(9~digits)
▶ Points: 19M → 2.1M

0% 20% 40% 60% 80% 100%
Percentage of Baseline

base
ts

nmax
nmpole

W close
b

X close
b

W far
b

X far
b

Ub

(other)

Vb

nmax: 96 → 928, nmpole: 40 → 380
Speedup: 3.3× [Wala-K ‘19]
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Poisson: 3D, CAD Geometry

Volume degree: 7 · Boundary degree: 6 · QBX order: 3
389
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Inhomogeneous Problems
Example: Poisson

△u = f , u = g on ∂Ω.

Steps:
1. Solve the PDE (without the boundary condition) using the free-space

Green’s function G :
ũ = G ∗ f ,

where ‘∗’ represents convolution.
2. Solve

△û = 0, û = g − ũ on ∂Ω

using a boundary integral equation.
3. Add

u = ũ + û,

which solves the Poisson problem.
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Eigenvalue Problems

Example: Solve
△u = λu.

Two options:
▶ Volume linear eigenvalue problem with Laplace kernel
▶ Surface nonlinear eigenvalue problem with Helmholtz kernel
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Maxwell’s equations

Example: Solve a scattering problem from a perfect electric conductor.
Use Vector Potential A⃗ to represent magnetic field:

H⃗ = ∇⃗ × A⃗,

where
△A⃗+ k2A⃗ = 0⃗.

Since A⃗ solves vector Helmholtz, simply represent as

A⃗(x) = Sk J⃗s ,

where
−→
J s (physically) amounts to a surface current density.
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Maxwell’s: Towards the MFIE
Then use
▶ the continuity condition

n⃗ × [H⃗tot] = J⃗s ,

▶ the extinction theorem for perfect electrical conductors:

H⃗−
tot = 0⃗

inside the scatterer.
▶ the jump conditions

together to obtain the Magnetic Field Integral Equation (MFIE):

n⃗ × H⃗+
inc =

Js
2

− n⃗ × (PV)∇⃗ × Sk J⃗s .
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Stokes flow

(see project presentation)
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