
Languages and Abstractions for High-Performance
Scientific Computing

CS598 APK

Andreas Kloeckner

Spring 2025

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Why this class?
▶ Setting: Performance-Constrained Code

When is a code performance-constrained?

A desirable quality (fidelity/capability) is limited by com-
putational cost on a given computer.

▶ If your code is performance-constrained, what is the best
approach?

Use a more efficient method/algorithm.

▶ If your code is performance-constrained, what is the
second-best approach?

Ensure the current algorithm uses your computer effi-
ciently. Observe that this is a desperate measure.

Examples of Performance-Constrained Codes

▶ Simulation codes
▶ Weather/climate models
▶ Oil/gas exploration
▶ Electronic structure
▶ Electromagnetic design
▶ Aerodynamic design
▶ Molecular dynamics / biological systems
▶ Cryptanalysis

▶ Machine Learning
▶ Data Mining

Discussion:
▶ In what way are these codes constrained?
▶ How do these scale in terms of the problem size?

What Problem are we Trying To Solve?

(Cij)
m,n
i ,j=1 =

ℓ∑
k=1

AikBkj

Reference BLAS DGEMM code:
https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/dgemm.f
OpenBLAS DGEMM code:
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/dgemm_kernel_4x8_sandy.S

Demo: intro/DGEMM Performance

Demo Instructions: Compare OpenBLAS against Fortran BLAS on
large square matrix

https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/dgemm.f
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/dgemm_kernel_4x8_sandy.S
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/DGEMM Performance.html

Goals: What are we Allowed to Ask For?

▶ Goal: “make efficient use of the machine”
▶ In general: not an easy question to answer
▶ In theory: limited by some peak machine throughput

▶ Memory Access
▶ Compute

▶ In practice: many other limits (Instruction cache, TLB,
memory hierarchy, NUMA, registers)

Class web page

https://bit.ly/hpcabstr-s25

contains:
▶ Class outline
▶ Slides/demos/materials
▶ Assignments
▶ Virtual Machine Image
▶ Piazza
▶ Grading Policies
▶ Video
▶ HW1 (soon)

https://bit.ly/hpcabstr-s25

Welcome Survey

Please go to:

https://bit.ly/hpcabstr-f18

and click on ’Start Activity’.

If you are seeing this later, you can find the activity at Activity:
welcome-survey.

https://bit.ly/hpcabstr-f18
https://relate.cs.illinois.edu/course/cs598apk-f18//flow/welcome-survey/start
https://relate.cs.illinois.edu/course/cs598apk-f18//flow/welcome-survey/start

Grading / Workload

Four components:
▶ Homework: 25%
▶ Paper Presentation: 25%

▶ 30 minutes (two per class)
▶ Presentation sessions scheduled throughout the semester
▶ Paper list on web page
▶ Sign-up survey: soon

▶ Paper Reactions: 10%
▶ Computational Project: 40%

Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2010-2013 Andreas Kloeckner Copyright (C) 2025
University of Illinois Board of Trustees

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

https://github.com/inducer/numerics-notes

Approaches to High Performance

▶ Libraries (seen)
▶ Black-box Optimizing Compilers
▶ Compilers with Directives
▶ Code Transform Systems
▶ “Active Libraries”

Q: Give examples of the latter two.

▶ Code Transform System: CHiLL
▶ Active Library: PyTorch

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.8396&rep=rep1&type=pdf#page=22
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

Libraries: A Case Study

(Cij)
m,n
i ,j=1 =

ℓ∑
k=1

AikBkj

Demo: intro/DGEMM Performance

Demo Instructions: Compare OpenBLAS on large square and small
odd-shape matrices

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/DGEMM Performance.html

Do Libraries Stand a Chance? (in general)
▶ Tremendously successful approach — Name some examples

(e.g.) LAPACK, Eigen, UMFPACK, FFTW, Numpy,
Deal.ii

▶ Saw: Three simple integer parameters suffice to lose ’good’
performance
▶ Recent effort: “Batch BLAS” e.g.

http://www.icl.utk.edu/files/publications/2017/icl-utk-1032-2017.pdf
▶ Separation of Concerns

Example: Finite differences – e.g. implement ∂x , ∂y , ∂z as
separate (library) subroutines — What is the problem?

Data locality → data should be traversed once, ∂x , ∂y ,
∂z computed together
Separation of concerns → each operator traverses the
data separately.

▶ Flexibility and composition

http://www.icl.utk.edu/files/publications/2017/icl-utk-1032-2017.pdf

(Black-Box) Optimizing Compiler: Challenges

Why is black-box optimizing compilation so difficult?
▶ Application developer knowledge lost

▶ Simple example: “Rough” matrix sizes
▶ Data-dependent control flow
▶ Data-dependent access patterns
▶ Activities of other, possibly concurrent parts of the program
▶ Profile-guided optimization can recover some knowledge

▶ Obtain proofs of required properties
▶ Size of the search space

Consider
http://polaris.cs.uiuc.edu/publications/padua.pdf

http://polaris.cs.uiuc.edu/publications/padua.pdf

Directive-Based Compiler: Challenges

What is a directive-based compiler?

Demo Instructions: Show l2dformta_qbx from
pyfmmlib/vec_wrappers.f90.
▶ Generally same as optimizing compiler
▶ Make use of extra promises made by the user
▶ What should the user promise?
▶ Ideally: feedback cycle between compiler and user

▶ Often broken in both directions
▶ User may not know what the compiler did
▶ Compiler may not be able to express what it needs

▶ Directives: generally not mandatory

Lies, Lies Everywhere
▶ Semantics form a contract between programmer and

language/environment
▶ Within those bounds, the implementation is free to do as it

chooses
▶ True at every level:

▶ Assembly
▶ “High-level” language (C)

Give examples of lies at these levels:

▶ Assembly: Concurrent execution

▶ “High-level” language (C): (e.g.) strength reduction,
eliminated ops

One approach: Lie to yourself
▶ “Domain-specific languages” ← A fresh language, I can do

what I want!
▶ Consistent semantics are notoriously hard to develop

▶ Especially as soon as you start allowing subsets of even (e.g.)
C’s integers

Class Outline

High-level Sections:
▶ Intro, Armchair-level Computer Architecture
▶ Machine Abstractions
▶ Performance: Expectation, Experiment, Observation
▶ Programming Languages for Performance
▶ Program Representation and Optimization Strategies
▶ Code Generation/JIT

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Moore’s Law

Issue: More transistors =
faster?

Work
s

= Clock Frequency

× Work/Clock

Dennard Scaling of MOSFETs

Parameter Factor
Dimension 1/κ
Voltage 1/κ
Current 1/κ
Capacitance 1/κ
Delay Time 1/κ
Power dissipation/circuit 1/κ2

Power density 1

[Dennard et al. ’74, via Bohr ’07]
▶ Frequency = Delay time−1

MOSFETs (“CMOS” – “complementary” MOS): Schematic

[Dennard et al. ‘74]

MOSFETs: Scaling

[Intel Corp.]
▶ ’New’ problem at small scale:

Sub-threshold leakage (due to low voltage, small structure)
Dennard scaling is over – and has been for a while.

Peak Architectural Instructions per Clock: Intel

CPU IPC Year
Pentium 1 1.1 1993
Pentium MMX 1.2 1996
Pentium 3 1.9 1999
Pentium 4 (Willamette) 1.5 2003
Pentium 4 (Northwood) 1.6 2003
Pentium 4 (Prescott) 1.8 2003
Pentium 4 (Gallatin) 1.9 20
Pentium D 2 2005
Pentium M 2.5 2003
Core 2 3 2006
Sandy Bridge. . . 4ish 2011

[Charlie Brej http://brej.org/blog/?p=15]
Discuss: How do we get out of this dilemma?

http://brej.org/blog/?p=15

The Performance Dilemma

▶ IPC: Brick Wall
▶ Clock Frequency: Brick Wall

Ideas:

▶ Make one instruction do more copies of the same thing
(“SIMD”)

▶ Use copies of the same processor (“SPMD”/“MPMD”)

Question: What is the conceptual difference between those ideas?

▶ SIMD executes multiple program instances in lockstep.
▶ SPMD has no synchronization assumptions.

The Performance Dilemma: Another Look

▶ Really: A crisis of the ’starts-at-the-top-ends-at-the-bottom’
prorgramming model

▶ Tough luck: Most of our codes are written that way
▶ Even tougher luck: Everybody on the planet is trained to write

codes this way
So:
▶ Need: Different tools/abstractions to write those codes

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

A Basic Processor: Closer to the Truth

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

▶ loosely based on Intel 8086
▶ What’s a bus?

http://en.wikipedia.org/wiki/Bus_(computing)

A Very Simple Program

i n t a = 5 ;
i n t b = 17 ;
i n t z = a ∗ b ;

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)
b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)
12: 8b 45 f4 mov -0xc(%rbp),%eax
15: 0f af 45 f8 imul -0x8(%rbp),%eax
19: 89 45 fc mov %eax,-0x4(%rbp)
1c: 8b 45 fc mov -0x4(%rbp),%eax

Things to know:
▶ Question: Which is it?

▶ <opcode> <src>, <dest>
▶ <opcode> <dest>, <src>

▶ Addressing modes (Immediate, Register, Base plus Offset)
▶ 0xHexadecimal

http://en.wikipedia.org/wiki/Addressing_mode
http://en.wikipedia.org/wiki/Hexadecimal

A Very Simple Program: Another Look

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)
b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)
12: 8b 45 f4 mov -0xc(%rbp),%eax
15: 0f af 45 f8 imul -0x8(%rbp),%eax
19: 89 45 fc mov %eax,-0x4(%rbp)
1c: 8b 45 fc mov -0x4(%rbp),%eax

A Very Simple Program: Intel Form

4: c7 45 f4 05 00 00 00 mov DWORD PTR [rbp-0xc],0x5
b: c7 45 f8 11 00 00 00 mov DWORD PTR [rbp-0x8],0x11
12: 8b 45 f4 mov eax,DWORD PTR [rbp-0xc]
15: 0f af 45 f8 imul eax,DWORD PTR [rbp-0x8]
19: 89 45 fc mov DWORD PTR [rbp-0x4],eax
1c: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

▶ “Intel Form”: (you might see this on the net)
<opcode> <sized dest>, <sized source>

▶ Previous: “AT&T Form”: (we’ll use this)
▶ Goal: Reading comprehension.
▶ Don’t understand an opcode?

https://en.wikipedia.org/wiki/X86_instruction_listings

https://en.wikipedia.org/wiki/X86_instruction_listings

Assembly Loops

i n t main ()
{

i n t y = 0 , i ;
fo r (i = 0 ;

y < 10 ; ++i)
y += i ;

return y ;
}

0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)
b: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
12: eb 0a jmp 1e <main+0x1e>
14: 8b 45 fc mov -0x4(%rbp),%eax
17: 01 45 f8 add %eax,-0x8(%rbp)
1a: 83 45 fc 01 addl $0x1,-0x4(%rbp)
1e: 83 7d f8 09 cmpl $0x9,-0x8(%rbp)
22: 7e f0 jle 14 <main+0x14>
24: 8b 45 f8 mov -0x8(%rbp),%eax
27: c9 leaveq
28: c3 retq

Things to know:
▶ Condition Codes (Flags): Zero, Sign, Carry, etc.
▶ Call Stack: Stack frame, stack pointer, base pointer
▶ ABI: Calling conventions

Demo Instructions: C → Assembly mapping from
https://github.com/ynh/cpp-to-assembly

http://en.wikipedia.org/wiki/Status_register
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/ynh/cpp-to-assembly

Demos

Demo: intro/Assembly Reading Comprehension

Demo: Source-to-assembly mapping
Code to try:

i n t main ()
{

i n t y = 0 , i ;
fo r (i = 0 ; y < 10 ; ++i)

y += i ;
return y ;

}

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/Assembly Reading Comprehension.html

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Modern Processors?

All of this can be built in about 4000 transistors.
(e.g. MOS 6502 in Apple II, Commodore 64, Atari 2600)

So what exactly are Intel/ARM/AMD/Nvidia doing with the other
billions of transistors?

Execution in a Simple Processor

▶ [IF] Instruction fetch
▶ [ID] Instruction Decode
▶ [EX] Execution
▶ [MEM] Memory Read/Write
▶ [WB] Result Writeback

[Wikipedia]

Solution: Pipelining

[Wikipedia]

MIPS Pipeline: 110,000 transistors

[Wikipedia]

Hazards and Bubbles

Waiting
Instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
IP

E
LI

N
E

Completed
Instructions

0 1 2 3 4 5 6 7 8

Clock Cycle
9

Q: Types of Pipeline Hazards? (aka: what can go wrong?)

▶ Data
▶ Structural
▶ Control

[Wikipedia]

Demo

Demo: intro/Pipeline Performance Mystery

▶ a, a: elapsed time 3.83603 s
▶ a, b: elapsed time 2.58667 s
▶ a, a unrolled: elapsed time 3.83673 s
▶ aa, bb unrolled: elapsed time 1.92509 s
▶ a, b unrolled: elapsed time 1.92084 s

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/Pipeline Performance Mystery.html

A Glimpse of a More Modern Processor

[David Kanter / Realworldtech.com]

A Glimpse of a More Modern Processor: Frontend

[David Kanter / Realworldtech.com]

A Glimpse of a More Modern Processor: Backend

▶ New concept: Instruction-level parallelism (“ILP”,
“superscalar”)

▶ Where does the IPC number from earlier come from?

[David Kanter / Realworldtech.com]

Demo

Demo: intro/More Pipeline Mysteries

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/More Pipeline Mysteries.html

SMT/“Hyperthreading”

Processor front end

Exec.
U
nit

1

Exec.
U
nit

2

Exec.
U
nit

3

Exec.
U
nit

4

Exec.
U
nit

5

Program

Thread 1Thread 2

Q: Potential issues?

▶ n× the cache
demand!

▶ Power?
▶ Some people

just turn it off
and manage
their own ILP.

SMT/“Hyperthreading”

Processor front end

Exec.
U
nit

1

Exec.
U
nit

2

Exec.
U
nit

3

Exec.
U
nit

4

Exec.
U
nit

5

Program

Thread 1Thread 2 Q: Potential issues?

▶ n× the cache
demand!

▶ Power?
▶ Some people

just turn it off
and manage
their own ILP.

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

More Bad News from Dennard
Parameter Factor
Dimension 1/κ
Line Resistance κ
Voltage drop κ
Response time 1
Current density κ

[Dennard et al. ‘74, via Bohr ‘07]
▶ The above scaling law is for on-chip interconnects.
▶ Current ∼ Power vs. response time

Getting information from
▶ processor to memory
▶ one computer to the next

is
▶ slow (in latency)
▶ power-hungry

Somewhere Behind the Interconnect: Memory

Performance characteristics of memory:
▶ Bandwidth
▶ Latency

Flops are cheap
Bandwidth is money
Latency is physics
▶ M. Hoemmen

Minor addition (but important for us)?

▶ Bandwidth is money and code structure

Latency is Physics: Distance

[Wikipedia]

Latency is Physics: Electrical Model

Latency is Physics: DRAM

[Wikipedia]

Latency is Physics: Performance Impact?

What is the performance impact of high memory latency?

Processor stalled, waiting for data.

Idea:
▶ Put a look-up table of recently-used data onto the chip.
▶ Cache

http://en.wikipedia.org/wiki/CPU_cache

Memory Hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

DRAM

Virtual Memory
(hard drive)

1 kB, 1 cycle

10 kB, 10 cycles

100 kB, 10 cycles

10 MB, 100 cycles

1 GB, 1000 cycles

1 TB, 1 M cycles

A Basic Cache
Demands on cache implementation:
▶ Fast, small, cheap, low power
▶ Fine-grained
▶ High “hit”-rate (few “misses”)

Main
Memory

Cache
Memory

Index Data
0 xyz
1 pdq
2 abc
3 rgf

Index Tag Data
0 abc2

0 xyz1

Design Goals: at odds with each other. Why?

Address matching logic expensive

[Wikipedia]

Caches: Engineering Trade-Offs

Engineering Decisions:
▶ More data per unit of access matching logic
→ Larger “Cache Lines”

▶ Simpler/less access matching logic
→ Less than full “Associativity”

▶ Eviction strategy
▶ Size

Associativity

Direct Mapped:

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative:

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

Size/Associativity vs Hit Rate

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer portion of
SPEC CPU2000 [Cantin, Hill 2003]

Demo: Learning about Caches

Demo: intro/Cache Organization on Your Machine

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/Cache Organization on Your Machine.html

Experiments: 1. Strides: Setup

i n t go (uns igned count , uns igned s t r i d e)
{

const uns igned a r r a y_s i z e = 64 ∗ 1024 ∗ 1024 ;
i n t ∗ a ry = (i n t ∗) ma l l o c (s i z e o f (i n t) ∗ a r r a y_s i z e) ;

f o r (uns igned i t = 0 ; i t < count ; ++i t)
{

f o r (uns igned i = 0 ; i < a r r a y_s i z e ; i += s t r i d e)
a r y [i] ∗= 17 ;

}

i n t r e s u l t = 0 ;
f o r (uns igned i = 0 ; i < a r r a y_s i z e ; ++i)

r e s u l t += ary [i] ;

f r e e (a r y) ;
r e t u r n r e s u l t ;

}

What do you expect? [Ostrovsky ‘10]

http://igoro.com/archive/gallery-of-processor-cache-effects/

Experiments: 1. Strides: Results

20 21 22 23 24 25 26 27 28 29 210

Stride

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
T
im

e
 [

s]

Experiments: 2. Bandwidth: Setup
i n t go (unsigned a r r a y_s i z e , unsigned s t e p s)
{

i n t ∗ a ry = (i n t ∗) ma l l o c (s i z e o f (i n t) ∗ a r r a y_s i z e) ;
unsigned asm1 = a r r a y_s i z e − 1 ;

f o r (unsigned i = 0 ; i < 100∗ s t e p s ;)
{

#d e f i n e ONE ary [(i ++∗16) & asm1] ++;
#d e f i n e FIVE ONE ONE ONE ONE ONE
#d e f i n e TEN FIVE FIVE
#d e f i n e FIFTY TEN TEN TEN TEN TEN
#d e f i n e HUNDRED FIFTY FIFTY
HUNDRED

}

i n t r e s u l t = 0 ;
f o r (unsigned i = 0 ; i < a r r a y_s i z e ; ++i)

r e s u l t += ary [i] ;

f r e e (a r y) ;
re tu rn r e s u l t ;

}

What do you expect? [Ostrovsky ‘10]

http://igoro.com/archive/gallery-of-processor-cache-effects/

Experiments: 2. Bandwidth: Results

212 214 216 218 220 222 224 226 228

Array Size [Bytes]

10-1

100

101

102

103
E
ff

.
B

a
n
d
w

id
th

 [
G

B
/s

]

Experiments: 3. A Mystery: Setup
i n t go (uns igned a r r a y_s i z e , uns igned s t r i d e , uns igned s t e p s)
{

char ∗ a ry = (char ∗) ma l l o c (s i z e o f (i n t) ∗ a r r a y_s i z e) ;

uns igned p = 0 ;
f o r (uns igned i = 0 ; i < s t e p s ; ++i)
{

a ry [p] ++;
p += s t r i d e ;
i f (p >= a r r a y_s i z e)

p = 0 ;
}

i n t r e s u l t = 0 ;
f o r (uns igned i = 0 ; i < a r r a y_s i z e ; ++i)

r e s u l t += ary [i] ;

f r e e (a r y) ;
r e t u r n r e s u l t ;

}

What do you expect? [Ostrovsky ‘10]

http://igoro.com/archive/gallery-of-processor-cache-effects/

Experiments: 3. A Mystery: Results

100 200 300 400 500 600
Stride [bytes]

5

10

15

20
A

rr
a
y
 S

iz
e
 [

M
B

]

Color represents achieved bandwidth:
▶ Red: high
▶ Blue: low

Thinking about the Memory Hierarchy

▶ What is a working set?
▶ What is data locality of an algorithm?
▶ What does this have to with caches?

Case Study: Streaming Workloads

Q: Estimate expected throughput for saxpy on an architecture with
caches. What are the right units?

zi = αxi + yi (i = 1, . . . , n)

▶ Units: GBytes/s
▶ Net memory accessed: n × 4× 3 bytes
▶ Actual memory accessed: n × 4× 4 bytes

(To read z read into the cache before modification)

Demo: https://github.com/lcw/stream_ispc

https://github.com/lcw/stream_ispc

Special Store Instructions
At least two aspects to keep apart:

▶ Temporal Locality: Are we likely to refer to this data
again soon? (non-temporal store)

▶ Spatial Locality: Will (e.g.) the entire cache line be
overwritten? (streaming store)

What hardware behavior might result from these aspects?

▶ Non-temporal: Write past cache entirely (/invalidate),
or evict soon

▶ Spatial: Do not fetch cache line before overwriting

▶ Comment on what a compiler can promise on these aspects.
▶ Might these ’flags’ apply to loads/prefetches?

(see also: [McCalpin ‘18])

http://sites.utexas.edu/jdm4372/2018/01/01/notes-on-non-temporal-aka-streaming-stores/

Case study: Matrix-Matrix Mult. (’MMM’): Code Structure

▶ How would you structure a high-performance MMM?
▶ What are sources of concurrency?
▶ What should you consider your working set?

A

B

A · B

▶ Sources of concurrency:
row, column loop,
summation loop (?)

▶ Working set: artificially
created blocks

▶ Provide enough concurrency:
SIMD, ILP, Core

Case study: Matrix-Matrix Mult. (’MMM’) via Latency

Come up with a simple cost model for MMM in a two-level
hierarchy based on latency:

Avg latency per access =
(1−Miss ratio) · Cache Latency

+Miss ratio ·Mem Latency
Assume: Working set fits in cache, No conflict misses
Calculation:
▶ Total accesses: 4N3

B (NB : block size)
▶ Misses: 3N2

B

▶ Miss rate:
3

4NB · cache line size

[Yotov et al. ’07]

https://doi.org/10.1145/1248377.1248394

Case study: Matrix-Matrix Mult. (’MMM’) via Bandwidth
Come up with a cost model for MMM in a two-level hierarchy
based on bandwidth:

▶ FMA throughput: 16× 2 SP FMAs per clock (e.g.)
▶ Cycle count: 2N3/(2 · 32) = N3/32
▶ Required cache bandwidth:

(words accessed)/(cycles) = 4N3/(N3/32) = 128
floats/cycle (GB/s?)

▶ Total mem. data motion:
blocks · 4 · (block size) = (N/NB)

3 · 4N2
B = 4N3/NB

▶ Required mem. bandwidth: (Mem.motion)/(cycles) =
4N3/NB/(N

3/32) = 128/NB floats/cycle (GB/s?)
▶ What size cache do we need to get to feasible memory

bandwidth?

[Yotov et al. ’07]

https://doi.org/10.1145/1248377.1248394

Case study: Matrix-Matrix Mult. (’MMM’): Discussion

Discussion: What are the main simplifications in each model?

Bandwidth:
▶ Miss assumptions
▶ Multiple cache levels
▶ Latency effects

Latency:
▶ Miss assumptions
▶ Concurrency/parallelism of memory accesses
▶ (HW) prefetching
▶ Machine Limits

[Yotov et al. ’07]

General Q: How can we analyze cache cost of algorithms in general?

https://doi.org/10.1145/1248377.1248394

Hong/Kung: Red/Blue Pebble Game

Simple means of I/O cost analysis: “Red/blue pebble game”
▶ A way to quantify I/O cost on a DAG (why a DAG?)
▶ “Red Hot” pebbles: data that can be computed on
▶ “Blue Cool” pebbles: data that is stored, but not available for

computation without I/O
Note: Can allow “Red/Purple/Blue/Black”: more levels

Q: What are the cost metrics in this model?

▶ I/O Cost: Turn a red into a blue pebble and vice versa
▶ Number of red pebbles (corresponding to size of ’near’

storage)

[Hong/Kung ‘81]

https://doi.org/10.1145/800076.802486

Cache-Oblivious Algorithms

Annoying chore: Have to pick multiple machine-adapted block sizes
in cache-adapted algorithms, one for each level in the memory
hierarchy, starting with registers.
Idea:
▶ Step 1: Express algorithm recursively in divide & conquer

manner
▶ Step 2: Pick a strategy to decrease block size

Give examples of block size strategies, e.g. for MMM:

▶ All dimensions
▶ Largest dimension

Result:
▶ Asymptotically optimal on Hong/Kung metric

Cache-Oblivious Algorithms: Issues

What are potential issues on actual hardware?

▶ In pure form:
▶ Function call overhead
▶ Register allocation

▶ With good base case:
▶ I-cache overflow
▶ Instruction scheduling

[Yotov et al. ’07]

https://doi.org/10.1145/1248377.1248394

Recall: Big-O Notation

Classical Analysis of Algorithms (e.g.):

Cost(n) = O(n3).

Precise meaning? Anything missing from that statement?

Missing: ‘as n→∞’

There exists a C and an N0 independent of n so that for all
n ≥ N0,

Cost(n) ≤ C · n3.

Comment: “Asymptotically Optimal”

Comments on asymptotic statements about cost in relation to high
performance?
▶ No statement about finite n

▶ No statement about the constant
Net effect: Having an understanding of asymptotic cost is
necessary, but not sufficient for high performance.

HPC is in the business of minimizing C in:

Cost(n) ≤ C · n3 (for all n)

Alignment

Alignment describes the process of matching the base address of:
▶ Single word: double, float
▶ SIMD vector
▶ Larger structure

To machine granularities:

▶ Natural word size
▶ Vector size
▶ Cache line

Q: What is the performance impact of misalignment?

Performance Impact of Misalignment

· · ·
Matched structure

· · ·
Matched structure

SIMD: Basic Idea

What’s the basic idea behind SIMD?

+
=

What architectural need does it satisfy?

▶ Insufficient instruction decode/dispatch bandwidth
▶ Tack more operations onto one decoded instruction

Typically characterized by width of data path:
▶ SSE: 128 bit (4 floats, 2 doubles)
▶ AVX-2: 256 bit (8 floats, 4 doubles)
▶ AVX-512: 512 bit (16 floats, 8 doubles)

SIMD: Architectural Issues
Realization of inter-lane comm. in SIMD? Find instructions.

▶ Misaligned stores/loads? (no)
▶ Broadcast, Unpack+Interleave, Shuffle, Permute
▶ Reductions (“horizontal”)

Name tricky/slow aspects in terms of expressing SIMD:

▶ Divergent control flow
▶ Masking
▶ Reconvergence

▶ Indirect addressing: gather/scatter

x86 SIMD suffixes: What does the “ps” suffix mean? “sd”?

▶ ps: Packed single precision
▶ sd: Scalar double precision

SIMD: Transposes

Why are transposes important? Where do they occur?

▶ Whenever SIMD encounters a mismatched data layout
▶ For example: MMM of two row-major matrices

Example implementation aspects:
▶ HPTT: [Springer et al. ‘17]
▶ github: springer13/hptt 8x8 transpose microkernel
▶ Q: Why 8x8?

https://github.com/springer13/hptt
https://github.com/springer13/hptt/blob/e1017ef8b8ed0b6f3bb3b70df825a87f94c643e8/src/transpose.cpp#L137

Outline

Introduction
Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About This Class
Why Bother with Parallel Computers?
Lowest Accessible Abstraction: Assembly
Architecture of an Execution Pipeline
Architecture of a Memory System
Shared-Memory Multiprocessors

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Multiple Cores vs Bandwidth

Assume (roughly right for Intel):
▶ memory latency of 100 ns
▶ peak DRAM bandwidth of 50 GB/s (per socket)

How many cache lines should be/are in flight at one time?

▶ 100ns · 50GB/s = 5000bytes
▶ About 80 cache lines
▶ Oops: Intel hardware can only handle about 10 pending

requests per core at one time
▶ 10 · 64/100ns ≈ 6.4GB/s

[McCalpin ‘18]

http://sites.utexas.edu/jdm4372/2018/01/01/notes-on-non-temporal-aka-streaming-stores/

Topology and NUMA

1-4

 X10DRi/X10DRi-T Motherboard User’s Manual

 Notes:

•	See Chapter 2 for detailed information on jumpers, I/O ports and JF1 front
panel connections.

•	" " indicates the location of "Pin 1".

•	Jumpers/LED Indicators not indicated are for testing only.

•	LAN1/LAN2 ports support Gigabit LAN (GLAN) connections on the X10DRi, and
10G (T) LAN connections on the X10DRi-T.

•	Use only the correct type of onboard CMOS battery as specified by the manufac-
turer. Do not install the onboard battery upside down to avoid possible explosion.

X10DRi/X10DRi-T Quick Reference

JPI2C1
JPW

R1
JPW

R2

JOH1

JL1

JSD1

JSTBY1
JTPM1

JPB1

JWD1

JVRM1
JI2C2

JPME2
JI2C1

SP1

JIPMB1

LE2

FAN4

FAN2

FAN3

FAN1

FANB
S-SATA2

MAC CODE

BAR CODE

S-SATA3S-SATA0

S-SATA1

Fan5

T-SGPIO3

USB2/3

IPMI_LAN

UID

JBT1

T-SGPIO2
T-SGPIO1

I-SATA1

I-SATA0

I-SATA3

I-SATA5
I-SATA4

COM
2

CPU1 SLOT1 PCI-E 3.0 X8

CPU1 SLOT2 PCI-E 3.0 X16

CPU1 SLOT3 PCI-E 3.0 X8

CPU2 SLOT4 PCI-E 3.0 X16

CPU2 SLOT5 PCI-E 3.0 X8

CPU2 SLOT6 PCI-E 3.0 X16
P1 DIMMC2
P1 DIMMC1

P2 DIMME1
P2 DIMME2

P1 DIMMD1

P1 DIMMD2

P2 DIMMF1
P2 DIMMF2

VGA

P1 DIMMB2

P2 DIMMH2
P1 DIMMA1
P1 DIMMA2

P2 DIMMG1

P2 DIMMH1
P2 DIMMG2

LAN2

COM1

LAN1

USB0/1LE1
Fan6LEDM1

BIOS

JD1

USB4/5

I-SATA2

FANA

JPG1
JPL1

JF1

P1 DIMMB1

FPCTRL

Battery

X10DRi-(T)
Rev. 1.02

Intel PCH

LAN CTRL

BMC

BMC FW

J24

VGA/BMC
Memory

(2.0)

(USB2.0) (USB2.0)

CLOSE 1st

OPEN 1st

CLOSE 1st

OPEN 1st

USB6/7(3.0)

USB8/9(3.0)
USB10 (3.0)

CPU2

CPU1

JUIDB1

JVRM2

J23

J25
J27

J26
J-USB3-1AA

JSD2

[SuperMicro Inc. ‘15]
Demo: Show lstopo on porter, from hwloc.

https://github.com/open-mpi/hwloc

Placement and Pinning
Who decides on what core my code runs? How?

▶ The OS scheduler: “Oh, hey, look! A free core!”
▶ You, explicitly, by pinning:

▶ OMP_PLACES=cores
▶ pthread_setaffinity_np()

Who decides on what NUMA node memory is allocated?

▶ malloc uses ’first touch’
▶ You can decide explicitly (through libnuma)

Demo: intro/NUMA and Bandwidths
What is the main expense in NUMA?

Latency (but it impacts bandwidth by way of queuing)

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/NUMA and Bandwidths.html

Cache Coherence

What is cache coherence?

▶ As soon as you make a copy of (cache) something, you
risk inconsistency with the original

▶ A set of guarantees on how (and in what order)
changes to memory become visible to other cores

How is cache coherence implemented?

▶ Snooping
▶ Protocols, operating on cache line states (e.g. “MESI”)

What are the performance impacts?
▶ Demo: intro/Threads vs Cache
▶ Demo: intro/Lock Contention

https://en.wikipedia.org/wiki/MESI_protocol
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/Threads vs Cache.html
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/intro/Lock Contention.html

’Conventional’ vs Atomic Memory Update

Read Increment Write

Interruptible! Interruptible!

Read Increment Write

Protected Protected

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Atomic Operations: Compare-and-Swap
#inc lude <stda tom i c . h>
_Bool atomic_compare_exchange_strong (

v o l a t i l e A∗ obj ,
C∗ expected , C d e s i r e d) ;

What does volatile mean?

Memory may change at any time, do not keep in register.

What does this do?

▶ Store (*obj == *expected) ? desired : *obj
into *obj.

▶ Return true iff memory contents was as expected.

How might you use this to implement atomic FP multiplication?

Read previous, perform operation, try CAS, maybe retry

Memory Ordering
Why is Memory Ordering a Problem?

▶ Out-of-order CPUs reorder memory operations
▶ Compilers reorder memory operations

What are the different memory orders and what do they mean?

▶ Atomicity itself is unaffected
▶ Makes sure that ’and then’ is meaningful

Types:
▶ Sequentially consistent: no reordering
▶ Acquire: later loads may not reorder across
▶ Release: earlier writes may not reorder across
▶ Relaxed: reordering OK

Example: A Semaphore With Atomics

#inc lude <stda tom i c . h> // mo_−>memory_order , a_−>atomic
typedef s t ruc t { atomic_int v ; } naive_sem_t ;
void sem_down(naive_sem_t ∗ s)
{

whi le (1) {
whi le (a_ l o ad_exp l i c i t (&(s−>v) , mo_acquire) < 1)

sp in loop_body () ;
i n t tmp=a_fe tch_add_exp l i c i t (&(s−>v) , −1, mo_acq_rel) ;
i f (tmp >= 1)

break ; // we got the l o c k
e l s e // undo our attempt

a_fe tch_add_exp l i c i t (&(s−>v) , 1 , mo_relaxed) ;
}

}
void sem_up(naive_s_t ∗ s) {

a_fe tch_add_exp l i c i t (&(s−>v) , 1 , mo_release) ;
}

[Cordes ‘16] — Hardware implementation: how?

https://stackoverflow.com/a/36097001

C: What is ’order’?
C11 Committee Draft, December ‘10, Sec. 5.1.2.3, “Program
execution”:
▶ (3) Sequenced before is an asymmetric, transitive, pair-wise relation

between evaluations executed by a single thread, which induces a
partial order among those evaluations. Given any two evaluations A
and B, if A is sequenced before B, then the execution of A shall
precede the execution of B. (Conversely, if A is sequenced before B,
then B is sequenced after A.) If A is not sequenced before or after
B, then A and B are unsequenced. Evaluations A and B are
indeterminately sequenced when A is sequenced either before or
after B, but it is unspecified which. The presence of a sequence
point between the evaluation of expressions A and B implies that
every value computation and side effect associated with A is
sequenced before every value computation and side effect associated
with B. (A summary of the sequence points is given in annex C.)

Q: Where is this definition used (in the standard document)?

In defining the semantics of atomic operations.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=32
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=32

C: What is ’order’? (Encore)
C11 Draft, 5.1.2.4 “Multi-threaded executions and data races”:
▶ All modifications to a particular atomic object M occur in

some particular total order, called the modification order of M.
▶ An evaluation A carries a dependency to an evaluation B if . . .
▶ An evaluation A is dependency-ordered before an evaluation B

if. . .
▶ An evaluation A inter-thread happens before an evaluation B

if. . .
▶ An evaluation A happens before an evaluation B if. . .

Why is this so subtle?

▶ Many common optimizations depend on the ability to
reorder operations.

▶ Two options:
1. Lose the ability to do those optimizations
2. Specify precisely how much of the order should be

externally observable

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=32

C: How Much Lying is OK?

C11 Committee Draft, December ‘10, Sec. 5.1.2.3, “Program
execution”:
▶ (1) The semantic descriptions in this International Standard

describe the behavior of an abstract machine in which issues of
optimization are irrelevant.

▶ (2) Accessing a volatile object, modifying an object, modifying
a file, or calling a function that does any of those operations
are all side effects, which are changes in the state of the
execution environment. [. . .]

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=32
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=32

C: How Much Lying is OK?
▶ (4) In the abstract machine, all expressions are evaluated as

specified by the semantics. An actual implementation need not
evaluate part of an expression if it can deduce that its value is
not used and that no needed side effects are produced
(including any caused by calling a function or accessing a
volatile object).

▶ (6) The least requirements on a conforming implementation
are:
▶ Accesses to volatile objects are evaluated strictly according to

the rules of the abstract machine.
▶ At program termination, all data written into files shall be

identical to the result that execution of the program according
to the abstract semantics would have produced.

▶ The input and output dynamics of interactive devices shall
take place as specified in 7.21.3. The intent of these
requirements is that unbuffered or line-buffered output appear
as soon as possible, to ensure that prompting messages
actually appear prior to a program waiting for input.

This is the observable behavior of the program.

Arrays

Why are arrays the dominant data structure in high-performance
code?

▶ Performance is mostly achieved with regular, structured
code (e.g. SIMD, rectangular loops)

▶ Arrays are a natural fit for that type of code
▶ Abstractions of linear algebra map directly onto arrays

Any comments on C’s arrays?

▶ 1D arrays: fine, no surprises
▶ nD arrays: basically useless: sizes baked into types

▶ Interestinglly: Fortran is (incrementally) smarter

Arrays vs Abstraction
Arrays-of-Structures or Structures-of-Arrays? What’s the
difference? Give an example.

▶ Example: Array of XYZ coordinates:
▶ XYZXYZXYZ. . .
▶ XXX. . . .YYY. . . ZZZ. . .

▶ Which of these will be suitable for SIMD? (e.g.
computing a norm?)

▶ Structures-of-Arrays if at all possible – to expose
regularity

Language aspects of the distinction? Salient example?

▶ C struct forces you into arrays-of-structures
▶ AoS: more “conceptually sound”
▶ SoA: better for performance

▶ Complex numbers

C and Multi-Dimensional Arrays: A Saving Grace

// YES :
void f (i n t m, i n t n , double (∗) [m] [n]) ;

// NO:
s t ruct a ry {

i n t m;
i n t n ;
double (∗ a r r a y) [m] [n] ;

} ;

// YES :
s t ruct a r y {

i n t m;
i n t n ;
double a [] ;

} ;

SIMD

Name language mechanisms for SIMD:

▶ Inline Assembly
▶ Intrinsics
▶ Vector Types typedef int v4si __attribute__

((vector_size (16)));
▶ #pragma simd
▶ Merging of scalar program instances (in hw/sw)

Demo: machabstr/Ways to SIMD

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/machabstr/Ways to SIMD.html

Outer-Loop/inner-Loop Vectorization

Contrast outer-loop vs inner-loop vectorization.

▶ Inner-loop: Inner-most loop vectorized
▶ Outer loop: Vectorize a whole kernel. Requires:

▶ Changed memory layout
▶ Must be able to express all control flow

Side q: Would you consider GPUs outer- or inner-loop-vectorizing?

Alignment: How?

The old way:

i n t __attribute__ ((a l i g n e d (8))) a_int ;

Difference between these two?

i n t __attribute__ ((a l i g n e d (8))) ∗ ptr_t_1 ;
i n t ∗__attribute__ ((a l i g n e d (8))) ptr_t_2 ;

The ’new’ way (C/C++11):

s t ruct a l i g n a s (64) somest ruct_t { /∗ . . . ∗/ } ;
s t ruct a l i g n a s (a l i g n o f (other_t))

somest ruct_t { /∗ . . . ∗/ } ;
s t ruct

a l i g n a s (
s t d : : h a r dwa r e_de s t r u c t i v e_ i n t e r f e r e n c e_ s i z e)
somest ruct_t { /∗ . . . ∗/ } ;

What is constructive interference?

Alignment: Why?

What is the concrete impact of the constructs on the previous slide?

▶ Compiler needs to know whether data is aligned
▶ Generate the correct instructions (which encode

alignment promises)
▶ Stack-allocate memory of the correct alignment

▶ Heap-allocated memory needs to actually satisfy the
alignment promise!
▶ posix_memalign
▶ Hack it by overallocating
▶ In numpy: overallocate in bytes, get base address,

offset, obtain view

Pointers and Aliasing

Demo: machabstr/Pointer Aliasing

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/machabstr/Pointer Aliasing.html

Register Pressure

What if the register working set gets larger than the registers can
hold? What is the performance impact?

▶ “Register Spill”: save/reload code being generated
▶ CPU: L1 is relatively fast
▶ Other architectures: can be quite dramatic

Demo: machabstr/Register Pressure

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/machabstr/Register Pressure.html

Object-Oriented Programming

Object-oriented programming: The weapon of choice for
encapsulation and separation of concerns!
Performance perspective on OOP?

▶ Fine-grain OOP leads to an AoS disaster
▶ Long expressions create many temporaries

▶ Memory traffic

▶ Return values
▶ Run-time polymorphism (virtual methods) lead to

fine-grain flow control
Summary: No good, very bad. Must have sufficient granular-
ity to offset cost.

Demo: machabstr/Object Orientation vs Performance

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/machabstr/Object Orientation vs Performance.html

Being Nice to Your Compiler

Some rules of thumb:
▶ Use indices rather than pointers
▶ Extract common subexpressions
▶ Make functions static
▶ Use const
▶ Avoid store-to-load dependencies

What are the concrete impacts of doing these things?

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

13

[Fatahalian ‘08]

Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Slimming down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

14

[Fatahalian ‘08]

More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Two cores (two fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

15

[Fatahalian ‘08]

Even more

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17 [Fatahalian ‘08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian ‘08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian ‘08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian ‘08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian ‘08]

Latency Hiding
▶ Latency (mem, pipe) hurts

non-OOO cores
▶ Do something while waiting

What is the unit in which work
gets scheduled on a GPU?

A SIMD vector
(’warp’ (Nvidia), ’Wave-
front’ (AMD))

How can we keep busy?

▶ More vectors
(bigger group)

▶ ILP

Change in architectural picture?

Before:
Fetch/
Decode

Register File

Scratchpad/L1

After:

Fetch/
Decode

Register FileRegister FileRegister FileRegister File

Scratchpad/L1

More
state
space!

GPUs: Core Architecture Ideas

Three core ideas:

▶ Remove things that help with latency in single-thread
▶ Massive core and SIMD parallelism
▶ Cover latency with concurrency

▶ SMT
▶ ILP

‘SIMT’

Axis 0

A
xi

s
1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Fetch/
Decode

Register File

Scratchpad/L1

Wrangling the Grid

Axis 0

A
xi

s
1

▶ get_local_id(axis)?/size(axis)?
▶ get_group_id(axis)?/num_groups(axis)?
▶ get_global_id(axis)?/size(axis)?

axis=0,1,2,...

Demo CL code

Demo: machabstr/Hello GPU

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/machabstr/Hello GPU.html

‘SIMT’ and Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

29
[Fatahalian ‘08]

GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?
▶ View concrete counts as an implementation detail

▶ SIMD lane
▶ Core
▶ Scheduling slot

▶ Program as if there are infinitely many of them
▶ Hardware division is expensive

Make nD grids part of the model to avoid it
▶ Design the model to expose extremely fine-grain concurrency

(e.g. between loop iterations!)
▶ Draw from the same pool of concurrency to hide latency

GPU Program ’Scopes’

Hardware CL adjective OpenCL CUDA
SIMD lane private Work Item Thread
SIMD Vector — Subgroup Warp
Core local Workgroup Thread Block
Processor global NDRange Grid

GPU: Communication

What forms of communication exist at each scope?

▶ Subgroup: Shuffles (!)
▶ Workgroup: Scratchpad + barrier, local atomics +

mem fence
▶ Grid: Global atomics

Can we just do locking like we might do on a CPU?

▶ Independent forward progress of all threads is not
guaranteed: no.
(true until recently)

▶ But: Device partitioning can help!

GPU Programming Model: Commentary

Advantage:
▶ Clear path to scaling in tmers of core count
▶ Clear path to scaling in tmers of SIMD lane count

Disadvantages:
▶ “Vector” / “Warp” / “Wavefront”

▶ Important hardware granularity
▶ Poorly/very implicitly represented

▶ What is the impact of reconvergence?

Performance: Limits to Concurrency

What limits the amount of concurrency exposed to GPU hardware?

▶ Amount of register space
Important: Size of (per-lane) register file is variable

▶ Amount of scratchpad space
Size of (per-group) scratchpad space is variable

▶ Block size
▶ Available ILP
▶ Number of scheduler (warp/group) slots (not really)
▶ Synchronization

Memory Systems: Recap

Processor Memory

CLK

R/W̄

A0..15

D0..15

Parallel Memories
Problem: Memory chips have only one data bus.
So how can multiple threads read multiple data items from memory
simultaneously?

Broadly:
▶ Split a really wide data bus, but have only one address

bus
▶ Have many ’small memories’ (’banks’) with separate

data and address busses, select by address LSB.

Where does banking show up?

▶ Scratchpad
▶ GPU register file
▶ Global memory

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]

local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]

local_variable[f(gid(0))]

Memory Banking: Observations

▶ Factors of two in the stride: generally bad
▶ In a conflict-heavy access pattern, padding can help

▶ Usually not a problem since scratchpad is transient by
definition

▶ Word size (bank offset) may be adjustable (Nvidia)
Given that unit strides are beneficial on global memory access, how
do you realize a transpose?

Workgroup size (e.g.): 16x16
__local float tmp[16 * 17];
tmp[lid(0)*17 + lid(1)] = a[lid(1) * 16 +
lid(0)];
barrier(CLK_LOCAL_MEM_FENCE);

GPU Global Memory System

GCN Optimization Manual, AMD

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf

GPU Global Memory Channel Map: Example

Byte address decomposition:

Address

8 | 7 0

Chnl

11 | 10

Bank

?

Address

31

Implications:
▶ Transfers between compute unit and channel have granularity

▶ Reasonable guess: warp/wavefront size × 32bits
▶ Should strive for good utilization (’Coalescing’)

▶ Channel count often not a power of two -> complex mapping
▶ Channel conflicts possible

▶ Also banked
▶ Bank conflicts also possible

GPU Global Memory: Performance Observations

Key quantities to observe for GPU global memory access:

▶ Stride
▶ Utilization

Are there any guaranteed-good memory access patterns?

Unit stride, just like on the CPU

▶ Need to consider access pattern across entire device
▶ GPU caches: Use for spatial, not for temporal locality
▶ Switch available: L1/Scratchpad partitioning

▶ Settable on a per-kernel basis

▶ Since GPUs have meaningful caches at this point:
Be aware of cache annotations (see later)

Host-Device Concurrency

▶ Host and Device run
asynchronously

▶ Host submits to queue:
▶ Computations
▶ Memory Transfers
▶ Sync primitives
▶ . . .

▶ Host can wait for:
▶ drained queue
▶ Individual “events”

▶ Profiling

. . .
HostHost

DeviceDevice

Q
ue
ue

1
Q
ue
ue

1

Q
ue
ue

2
Q
ue
ue

2

Timing GPU Work
How do you find the execution time of a GPU kernel?

▶ Do a few ’warm-up’ calls to the kernel
▶ Drain the queue
▶ Start the timer
▶ Run the kernel enough times to get to a few

milliseconds run time
▶ Drain the queue
▶ Stop the timer, divide by the number of runs

How do you do this asynchronously?

▶ Enqueue ’markers’ instead of draining the queue.
▶ Find timing of ’markers’ after work is complete

Host-Device Data Exchange

Sad fact: Must get data onto device to compute
▶ Transfers can be a bottleneck
▶ If possible, overlap with computation
▶ Pageable memory incurs difficulty in GPU-host transfers, often

entails (another!) CPU side copy
▶ “Pinned memory”: unpageable, avoids copy

▶ Various system-defined ways of allocating pinned memory

“Unified memory” (CUDA)/“Shared Virtual Memory” (OpenCL):
▶ GPU directly accesses host memory
▶ Main distinction: Coherence

▶ “Coarse grain”: Per-buffer fences
▶ “Fine grain buffer”: Byte-for-byte coherent (device mem)
▶ “Fine grain system”: Byte-for-byte coherent (anywhere)

Performance: Ballpark Numbers?
Bandwidth host/device:

PCIe v2: 8 GB/s — PCIe v3: 16 GB/s — NVLink: 200 GB/s

Bandwidth on device:

Registers: $∼$10 TB/s — Scratch: $∼$10 TB/s — Global:
500 GB/s

Flop throughput?

10 TFLOPS single precision – 3 TFLOPS double precision

Kernel launch overhead?

10 microseconds

Good source of details: Wikipedia: List of Nidia GPUs

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Die Shot Gallery

Nv GT200
(2008)

Nv Fermi
(2010)

Intel IVB
(2012)

AMD Tahiti
(2012)

Nv GK110
(2012?)

Trends in Processor Architecture

What can we expect from future processor architectures?

▶ Commodity chips
▶ “Infinitely” many cores
▶ “Infinite” vector width
▶ Must hide memory latency (→ ILP, SMT)
▶ Compute bandwidth ≫ Memory bandwidth
▶ Bandwidth only achievable by homogeneity
▶ Can’t keep the whole thing powered all the time

anyway. Consequence?
Lots of weird stoff springs up. Examples: “Raytracing
Cores”, “Tensor Cores”

Common Challenges

What are the common challenges encountered by both CPUs and
GPUs?

▶ Dealing with Latency (ILP/SMT/Caches)
▶ Exposing concurrency
▶ Expose a coherent model for talking to SIMD
▶ Making memory system complexity manageable

Goal: Try to see CPUs and GPUs as points in a design space
’continuum’ rather than entirely different things.

Outline

Introduction

Machine Abstractions
C
OpenCL/CUDA
Convergence, Differences in Machine Mapping
Lower-Level Abstractions: SPIR-V, PTX

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

PTX: Demo

Demo: machabstr/PTX and SASS
Nvidia PTX manual

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/machabstr/PTX and SASS.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators

PTX: Cache Annotations

Loads:

.ca Cache at all levels–likely to be accessed again

.cg Cache at global level (cache in L2 and below and not L1)

.cs Cache streaming–likely to be accessed once

.lu Last use

.cv Consider cached system memory lines stale–fetch again

Stores:

.wb Cache write-back all coherent levels

.cg Cache at global level (cache in L2 and below and not L1)

.cs Cache streaming–likely to be accessed once

.wt Cache write-through (to system memory)

Lost/hidden at the C level!

SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate
representations to feed GPUs.
Downsides:
▶ Compiler heuristics may be focused on human-written code
▶ Parsing overhead (preprocessor!)
▶ C semantics may not match (too high-level)

SPIR-V:
▶ Goal: Common intermediate representation (“IR”) for all

GPU-facing code (Vulkan, OpenCL)
▶ “Extended Instruction Sets”:

▶ General compute (OpenCL/CUDA) needs: pointers, special
functions

▶ Different from “SPIR” (tweaked LLVM IR)

SPIR-V Example
%2 = OpTypeVoid
%3 = OpTypeFunction %2 ; void ()
%6 = OpTypeFloat 32 ; 32-bit float
%7 = OpTypeVector %6 4 ; vec4
%8 = OpTypePointer Function %7 ; function-local vec4*

%10 = OpConstant %6 1
%11 = OpConstant %6 2
%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)
%13 = OpTypeInt 32 0 ; 32-bit int, sign-less
%14 = OpConstant %13 5
%15 = OpTypeArray %7 %14

[...]
%34 = OpLoad %7 %33
%38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]
%39 = OpLoad %7 %38
%40 = OpFAdd %7 %34 %39

OpStore %31 %40
OpBranch %29

%41 = OpLabel ; else
%43 = OpLoad %7 %42
%44 = OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt
%45 = OpLoad %7 %9
%46 = OpFMul %7 %44 %45

OpStore %31 %46

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Qualifying Performance

▶ What is good performance?
▶ Is speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful

way to assess performance?
▶ How else could one form an understanding of performance?

Modeling: how understanding works in science

Hager et al. ‘17
Hockney et al. ‘89

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf
https://doi.org/10.1016/0167-8191(89)90100-2

A Story of Bottlenecks
Imagine:
▶ A bank with a few service desks
▶ A revolving door at the entrance

What situations can arise at steady-state?

▶ Line inside the bank (good)
▶ Line at the door (bad)

What numbers do we need to characterize performance of this
system?

▶ Ppeak: [task/sec] Peak throughput of the service desks
▶ I : [tasks/customer] Intensity
▶ b: [customers/sec] Throughput of the revolving door

A Story of Bottlenecks (cont’d)

▶ Ppeak: [task/sec] Peak throughput of the service desks
▶ I : [tasks/customer] Intensity
▶ b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

Bottleneck is either
▶ the service desks (good) or
▶ the revolving door (bad).

P ≤ min(Ppeak, I · b)

Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Application in Computation
Translate the bank analogy to computers:

▶ Revolving door: typically: Memory interface
▶ Revolving door throughput: Memory bandwidth

[bytes/s]
▶ Service desks: Functional units (e.g. floating point)
▶ Ppeak: Peak FU throughput (e.g.: [flops/s])
▶ Intensity: e.g. [flops/byte]

Which parts of this are task-dependent?

▶ All of them! This is not a model, it’s a guideline for
making models.

▶ Specifically Ppeak varies substantially by task

P ≤ min(Ppeak, I · b)
Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

A Graphical Representation: ’Roofline’
Plot (often log-log, but not necessarily):
▶ X-Axis: Intensity
▶ Y-Axis: Performance

What does our inequality correspond to graphically?

P ≤ min(Ppeak, I · b)

IntensityPe
rf
or
m
an
ce

What does the shaded area mean?

Achievable performance

Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Example: Vector Addition
double r , s , a [N] ;
fo r (i =0; i<N; ++i)

a [i] = r + s ∗ a [i] ; }

Find the parameters and make a prediction.

Machine model:
▶ Memory Bandwidth: e.g. b = 10 GB/s
▶ Ppeak: e.g. 4 GF/s

Application model:
▶ I = 2 flops / 16 bytes = 0.125 flops/byte

IntensityPe
rf
or
m
an
ce

Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Refining the Model

▶ Pmax: Applicable peak performance of a loop, assuming that
data comes from the fastest data path (this is not necessarily
Ppeak)

▶ Computational intensity (“work” per byte transferred) over the
slowest data path utilized

▶ b: Applicable peak bandwidth of the slowest data path utilized
Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Calibrating the Model: Bandwidth

Typically done with the STREAM benchmark.
Four parts: Copy, Scale, Add, Triad a[i] = b[i] + s\cdot c[i]
Do the four measurements matter?

▶ No–they’re a crude attempt at characterizing intensity.
▶ On a modern machine, all four measurements should be

identical.

Any pitfalls?

Streaming stores, remember?

McCalpin: STREAM

https://www.cs.virginia.edu/stream/

Calibrating the Model: Peak Throughput

Name aspects that should/could be factored in when determining
peak performance:

▶ Types of operation (FMA? Or only adds?)
▶ SIMD
▶ Pipeline utilization / operation latency
▶ Throughput of faster datapaths

Practical Tool: IACA

Question: Where to obtain an estimate of Pmax?
Demo: perf/Forming Architectural Performance Expectations
Questions:
▶ What does IACA do about memory access? / the memory

hierarchy?

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/perf/Forming Architectural Performance Expectations.html

An Example: Exploring Titan V Limits

▶ Memory bandwidth: 652 GB/s theoretical, 540 GB/s
achievable

▶ Scratchpad / L1 throughput:
80 (cores) x 32 (simd width) x 4 (word bytes) x 1.2 (base
clock) ~= 12.288 TB/s

▶ Theoretical peak flops of 6.9 TFLOPS/s [Wikipedia]
Warburton ‘18

https://www.paranumal.com/single-post/2018/10/11/Rough-n-ready-Roofline-Titan-V-edition

Rooflines: Assumptions

What assumptions are built into the roofline model?

▶ Perfect overlap
(What would imperfect overlap be in the bank
analogy?)

▶ Only considers the dominant bottleneck
▶ Throughput-only (!)

No latency effects, no start-up effects, only steady-state

Important to remember:
▶ It is what you make of it–the better your calibration, the more

info you get
▶ But: Calibrating on experimental data loses predictive power

(e.g. SPMV)

Modeling Parallel Speedup: A ‘Universal’ Scaling Law

Develop a model of throughput X (N) for a given load N, assuming
execution resources scale with N.

X (N) =
γN

1+ α · (N − 1) + βN · (N − 1)

What do the individual terms model?
▶ γ: Throughput increase per load increase
▶ α: Contention due to waiting/queueing for shared

resources/sequential sections
(“Amdahl’s law”)

▶ β: Incoherence penalty due to waiting for data to
become coherent through point-to-point exchange

[Gunther ‘93]

http://www.perfdynamics.com/Manifesto/USLscalability.html#njg93

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Combining Multiple Measurements

How can one combine multiple performance measurements? (e.g.
“average speedup”?)
Example: Which computer should you buy?

Execution time [s] Computer A Computer B Computer C
Program 1 1 10 20
Program 2 1000 100 20

Computer A Computer B Computer C
Arithmetic mean 500.5 55 20
Geometric mean 31.622 31.622 20

Combining Multiple Measurements: Observations
Computer A Computer B Computer C

Arithmetic mean 500.5 55 20
Geometric mean 31.622 31.622 20

▶ Depending on normalization, the arithmetic mean will
produce an arbitrary ranking

▶ Geometric mean n
√
a1 · · · an: consistent ranking

▶ Is geomean good? (What is the meaning of multiplying
times?)

Take-home message:
▶ Be mindful of units when combining measurements

(e.g. sums of times make sense, but products of times
may not)

▶ Avoid combined measurements if you can
▶ Ideally: purposefully choose a weighting

Wikipedia

https://en.wikipedia.org/w/index.php?title=Geometric_mean&oldid=865245779#Properties

Timing Experiments: Pitfalls

What are potential issues in timing experiments? (What can you do
about them?)

▶ Warm-up effects (do a few runs before timing to only
time steady state)

▶ Timing noise
▶ Know your timer granularity
▶ Know your clock kinds (wall, montone, process)
▶ Know your clock sources (RTC, PIT, APIC, TSC

(nominal), TSC (actual))
▶ Know your overheads (function call/kernel launch)
▶ Make sure your timing granularity is appropriate

(On-node: one second is a reasonable number)

Timing Experiments: Pitfalls (part 2)
What are potential issues in timing experiments? (What can you do
about them?)

▶ NUMA placement (use numactl, libnuma, or respect
first-touch)

▶ Thread migration between cores (and resulting cache
effects)
▶ Pin your threads to cores

▶ Uninitialized pages are never fetched
▶ Is calloc good enough?

▶ Frequency Scaling
▶ Turn it off or run long enough for thermal steady-state
▶ Understand how RAPL (“Running average power limit”)

and “power leases” work
▶ Realize there’s a dependency on what instructions you

execute

▶ Noise from other users

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Profiling: Basic Approaches

Measurement of “quantities” relating to performance
▶ Exact: Through binary instrumentation (valgrind/Intel

Pin/. . .)
▶ Sampling: At some interval, examine the program state

We will focus on profiling by sampling.
Big questions:
▶ What to measure?
▶ At what intervals?

Defining Intervals: Performance Counters

A performance counter is a counter that increments every time a
given event occurs.
What events?
▶ Demo: perf/Using Performance Counters
▶ see also Intel SDM, Volume 3

Interaction with performance counters:
▶ Read repeatedly from user code
▶ Interrupt program execution when a threshold is reached
▶ Limited resource!

▶ Only a few available: 4-8 per core
▶ Each can be configured to count one type of event
▶ Idea: Alternate counter programming at some rate

(requires steady-state execution!)

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/perf/Using Performance Counters.html
https://software.intel.com/en-us/articles/intel-sdm

Profiling: What to Measure

▶ Raw counts are hard to interpret
▶ Often much more helpful to look at ratios of counts

per core/subroutine/loop/. . .
What ratios should one look at?
Demo: perf/Using Performance Counters

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/perf/Using Performance Counters.html

Profiling: Useful Ratios
Basic examples:
▶ (Events in Routine 1)/(Events in Routine 2)
▶ (Events in Line 1)/(Events in Line 2)
▶ (Count of Event 1 in X)/(Count of Event 2 in X)

Architectural examples:

▶ instructions / cycles
▶ L1-dcache-load-misses / instructions
▶ LLC-load-misses / instructions
▶ stalled-cycles-frontend / cycles
▶ stalled-cycles-backend / cycles

Issue with ’instructions’ as a metric?

May or may not correlate with ’amount of useful work’

“Top-Down” Performance Analysis

Idea: Account for useful work per available issue slot
What is an issue slot?

A clock cycle that passed at an interface to an execution
pipeline

[Yasin ‘14]

https://doi.org/10.1109/ISPASS.2014.6844459

Issue Slots: Recap

[David Kanter / Realworldtech.com]

What can happen to an issue slot: at a high level?

[Yasin ‘14]

https://doi.org/10.1109/ISPASS.2014.6844459

What can happen to an issue slot: in detail?

[Yasin ‘14]

https://doi.org/10.1109/ISPASS.2014.6844459

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation
Forming Expectations of Performance
Timing Experiments and Potential Issues
Profiling and Observable Quantities
Practical Tools: perf, toplev, likwid

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation

Demo: Performance Counters

Show the rest of:
Demo: perf/Using Performance Counters

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/perf/Using Performance Counters.html

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
Expression Trees
Parallel Patterns and Array Languages

Polyhedral Representation and Transformation

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
Expression Trees
Parallel Patterns and Array Languages

Polyhedral Representation and Transformation

Expression Trees and Term Rewriting

Demos:
▶ Demo: lang/01 Expression Trees
▶ Demo: lang/02 Traversing Trees
▶ Demo: lang/03 Defining Custom Node Types
▶ Demo: lang/04 Common Operations

How do expression trees come to be? (not our problem here)

▶ Partitioning, classification of input stream into tokens
(lexing)

▶ Extraction of higher-level constructs from token stream
(parsing)
▶ Recursive descent
▶ Table/automata-based (e.g. Yacc, ANTLR, PLY,

boost::spirit)

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/01 Expression Trees.html
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/02 Traversing Trees.html
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/03 Defining Custom Node Types.html
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/04 Common Operations.html

Embedded languages

Main challenge: Obtaining a syntax tree. Approaches?

▶ Symbolic execution (seen above, runtime)
▶ Type system abuse

▶ Demo: lang/Expression Templates

▶ boost::metaparse (string → tree at compile time)
▶ “Reflection”

▶ Demo: lang/05 Reflection in Python

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/Expression Templates.html
https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/05 Reflection in Python.html

Macros: Goals and Approaches

What is a macro?

▶ In C: Simple textual replacement with parameters
▶ Generally: any type of compile-time computation (that

operates on the code)
▶ Question: How would you express loops in the C

preprocessor?

What data do macro systems operate on?

▶ Character-streams
▶ Syntax/expression trees

Macros: Textual and Syntactic, Hygiene

Macros: What can go wrong if you’re not careful?

#def ine INCI (i) do { i n t a=0; ++i ; } while (0)
i n t main (void)
{

i n t a = 4 , b = 8 ;
INCI (a) ;
INCI (b) ;
p r i n t f ("a␣ i s ␣now␣%d , ␣b␣ i s ␣now␣%d\n" , a , b) ;
return 0 ;

}

How can the problem above be avoided?

Ensure macro-internal identifiers (e.g. a above)

Towards Execution

Demo: lang/06 Towards Execution

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/06 Towards Execution.html

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions
Expression Trees
Parallel Patterns and Array Languages

Polyhedral Representation and Transformation

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)

where N is the input size.
Also known as
▶ Lisp/Python function reduce (Scheme: fold)
▶ C++ STL std::accumulate

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Approach to Reduction

f (x
, y
)?

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Processor allocation?

Mapping Reduction to SIMD/GPU

▶ Obvious: Want to use tree-based approach.
▶ Problem: Two scales, Work group and Grid

▶ to occupy both to make good use of the machine.

▶ In particular, need synchronization after each tree stage.
▶ Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations to achieve
inter-workgroup synchronization.

Map-Reduce

Sounds like this:

y = f (· · · f (f (g(x1), g(x2)),
g(x3)), . . . , g(xN))

where N is the input size.
▶ Lisp naming, again
▶ Mild generalization of reduction

But no. Not even close.

Map-Reduce: Graph

y1

x0

g

x1

g

x2

g

x3

g

y2

x4

g

x5

g

x6

g

x7

g

Scan

y1 = x1
y2 = f (y1, x2)
... = ...

yN = f (yN−1, xN)

where N is the input size. (Think: N large, f (x , y) = x + y)
▶ Prefix Sum/Cumulative Sum
▶ Abstract view of: loop-carried dependence
▶ Also possible: Segmented Scan

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

Again: Need assumptions on f .
Associativity, commutativity.

Scan: Implementation

Work-efficient?

Scan: Implementation II

Two sweeps: Upward, downward, both
tree-shape

On upward sweep:
▶ Get values L and R from left and right

child
▶ Save L in local variable Mine
▶ Compute Tmp = L + R and pass to parent

On downward sweep:
▶ Get value Tmp from parent
▶ Send Tmp to left child
▶ Sent Tmp+Mine to right child

Scan: Examples

Name examples of Prefix Sums/Scans:

▶ Anything with a loop-carried dependence
▶ One row of Gauss-Seidel
▶ One row of triangular solve
▶ Segment numbering if boundaries are known
▶ Low-level building block for many higher-level

algorithms algorithms, e.g. predicate filter, sort
▶ FIR/IIR Filtering
▶ Blelloch ‘93

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Data-parallel language: Goals
Goal: Design a full data-parallel programming language
Example: What should the (asymptotic) execution time for
Quicksort be?

O(log(N))

Question: What parallel primitive could be used to realize this?

▶ Segmented Scan, i.e. a scan with data-dep. boundaries
▶ Any basic scan operation can be segmented while

retaining

Blelloch ‘95

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-95-169.html

NESL Example: String Search

teststr = "string strap asop string" : [char]
>>> candidates = [0:#teststr-5];
candidates = [0, 1, 2, 3, : [int]
>>> {a == ‘s: a in teststr -> candidates};
it = [T, F, F, F, F, F, F, T, F, F....] : [bool]
>>> candidates = {c in candidates;
... a in teststr -> candidates | a == ‘s};
candidates = [0, 7, 13, 20, 24] : [int]
>>> candidates = {c in candidates;
... a in teststr -> {candidates+1:candidates}
... | a == ‘t};

▶ Work and depth of this example?
▶ NESL specifies work and depth for its constructs
▶ How can scans be used to realize this?

Blelloch ‘95

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-95-169.html

Array Languages

Idea:
▶ Operate on entire array at once
▶ Inherently data-parallel

Examples:
▶ APL, numpy
▶ Tensorflow (talk on Friday), Pytorch

Important axes of distinction:
▶ Lazy or eager
▶ Imperative (with in-place modification) or pure/functional

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation
Polyhedral Model: What?

Outline

Introduction

Machine Abstractions

Performance: Expectation, Experiment, Observation

Performance-Oriented Languages and Abstractions

Polyhedral Representation and Transformation
Polyhedral Model: What?

Basic Object: Presburger Set

Think of the problem statement here as representing an
arbitrary-size (e.g.: dependency) graph.
Presburger sets correspond to a subset of predicate logic acting on
tuples of integers.
Important: Think of this as a mathematical tool that can be used
in many settings.

Basic Object: Presburger Set

Terms:
▶ Variables, Integer Constants
▶ +, −
▶ ⌊·/d⌋

Predicates:
▶ (Term) ≤ (Term)
▶ (Pred) ∧ (Pred), (Pred) ∨ (Pred), ¬(Pred)
▶ ∃v : (Pred)(v)

Sets: integer tuples for which a predicate is true
Verdoolaege ‘13

http://labexcompilation.ens-lyon.fr/wp-content/uploads/2013/02/Sven-slides.pdf

Presburger Sets: Reasoning

What’s “missing”? Why?

▶ Multiplication, Division
▶ Most questions become undecidable in its presence

Why is this called ’quasi-affine’?

▶ Affine: a⃗ · x⃗ + b.
▶ Quasi: inclusion of modulo/existential quantifier

Presburger Sets: Reasoning

What do the resulting sets have to do with polyhedra? When are
they convex?

▶ Each constraint specifies a half-space
▶ Intersection of half-spaces is a convex polyehdron
▶ Unions can be used to make non-convex polyhedra

Why polyhedra? Why not just rectangles?

▶ Rectangular domains are not closed under many
transformations

▶ E.g. strip-mining

Demo: Constructing and Operating on Presburger Sets

Demo: lang/Operating on Presburger Sets

https://relate.cs.illinois.edu/course/cs598apk-f18//f/demos/upload/lang/Operating on Presburger Sets.html

Making Use of Presburger Sets

▶ Loop Domains
▶ Array Access Relations (e.g. write, read: per statement)
▶ Schedules, with “lexicographic time”
▶ Dependency graphs
▶ (E.g. cache) interference graphs

Q: Specify domain and range for the relations above.

Example: Dependency Graph

Given:
▶ Write access relation W : Loop domain → array indices
▶ Read access relation R

▶ Schedule S for statement Si : Loop domain D → lex. time of
statement instance

▶ Relation ≺: Lexicographic ’before’
Find the dependency graph:

D = ((W−1 ◦ R) ∪ (R−1 ◦W) ∪ (W−1 ◦W)) ∩ (S ≺ S)

Verdoolaege ‘13

http://labexcompilation.ens-lyon.fr/wp-content/uploads/2013/02/Sven-slides.pdf

Example: Last Instance
Given:
▶ Write access relation W : Loop domain → array indices
▶ Read access relation R

▶ Schedule S for statement Si : Loop domain D → lex. time of
statement instance

▶ Relation ≺: Lexicographic ’before’
Find the statement instances accessing array element:

(R ∪W)−1

Find the last statement instance accessing array element:

lexmax((R ∪W)−1)

Verdoolaege ‘13

http://labexcompilation.ens-lyon.fr/wp-content/uploads/2013/02/Sven-slides.pdf

Primitive Transformations (I)

[Aho/Ullman/Sethi ‘07]

Primitive Transformations (II)

[Aho/Ullman/Sethi ‘07]

Primitive Transformations (III)

[Aho/Ullman/Sethi ‘07]

Primitive Transformations (IV)

[Aho/Ullman/Sethi ‘07]

Example: Last Instance

Given:
▶ Dependency relation D

Check whether a transformed schedule S ′ is valid:

i⃗ → j⃗ ∈ D ⇒ S ′(⃗i) ≺ S ′(j⃗)

A peek under the hood: Fourier-Motzkin Elimination

INPUT: A polyhedron S with variables x1, . . . , xn
OUTPUT: x1, . . . , xn−1

▶ Let C be all the constraints in S involving xn.
▶ For every pair of a lower and an upper bound on xm in C :

L ≤ c1xn,

≤ c2xn ≤ U,

create the new constraint c2L ≤ c1U.
▶ Divide by the GCD of c1, c2 if applicable.
▶ If the new constraint is not satisfiable, S was empty.
▶ Let S ′ = S \ C ∪

⋃
L,U{c2L ≤ c1U}.

[Aho/Ullman/Sethi ‘07]
Q: How can this help implement an emptiness check?

	Introduction
	Notes
	Notes (unfilled, with empty boxes)
	Notes (source code on Github)
	About This Class
	Why Bother with Parallel Computers?
	Lowest Accessible Abstraction: Assembly
	Architecture of an Execution Pipeline
	Architecture of a Memory System
	Shared-Memory Multiprocessors

	Machine Abstractions
	C
	OpenCL/CUDA
	Convergence, Differences in Machine Mapping
	Lower-Level Abstractions: SPIR-V, PTX

	Performance: Expectation, Experiment, Observation
	Forming Expectations of Performance
	Timing Experiments and Potential Issues
	Profiling and Observable Quantities
	Practical Tools: perf, toplev, likwid

	Performance-Oriented Languages and Abstractions
	Expression Trees
	Parallel Patterns and Array Languages

	Polyhedral Representation and Transformation
	Polyhedral Model: What?

