
Universität Karlsruhe (TH)
Institut für Angewandte Mathematik II

Γ X M Γ

On the Computation of

Maximally Localized

Wannier Functions

Version 1.1

Diplomarbeit

von

A n d r e a s K l ö c k n e r

Betreut von

Professor Dr. Willy Dörfler

2

Erklärung

Die selbständige und eigenhändige Anfertigung dieser Arbeit versichere ich an Eides statt. Alle verwen-
deten Hilfsmittel und Quellen sind im Anhang angegeben.

Karlsruhe, den 4. Oktober 2004

Andreas Klöckner

Anschrift:
Andreas Klöckner
Im Türmle 11
78224 Singen

e-mail: andreas@tiker.net

Contents

1 Introduction 5

1.1 What and why . 5
1.2 Acknowledgements . 6
1.3 Notation . 6
1.4 Directory of symbols . 7
1.5 Version history . 8

2 Eigenproblems with periodic coefficients 9

2.1 Motivation . 9
2.2 Elementary definitions . 10
2.3 The Floquet transform . 10
2.4 Some consequences . 15
2.5 Bands and gaps . 17
2.6 Smoothness of the dispersion relation . 18

3 Wannier functions 21

3.1 Definition . 21
3.2 Localization of Wannier functions: Basics . 22
3.3 Wannier functions as a basis set . 22
3.4 Localization methods . 23
3.5 The location operator in k-space . 24

4 Localization in k-space 27

4.1 The spread functional . 27
4.2 A mesh in k-space . 29
4.3 Finite difference formulae in k-space . 29
4.4 The discretized spread functional . 30
4.5 A Problem and its Solution . 31
4.6 Decomposition of the new spread functional . 33
4.7 The gradient of the spread functional . 34

4.7.1 A straightforward approach to the gradient . 35
4.7.2 Small changes to Uk . 36
4.7.3 A first gradient of Ω . 39
4.7.4 Marzari and Vanderbilt’s gradient of Ω . 41

4.8 Minimizing the spread . 42
4.8.1 The starting strategy . 43
4.8.2 The initial inner products Mk,b,(0) . 44
4.8.3 Updating the inner product matrices . 45
4.8.4 Other implementation notes . 45

5 Implementation 47

5.1 PyLinear . 48
5.2 PyAngle . 50
5.3 FemPy . 51

5.3.1 The user interface . 51

3

4 CONTENTS

5.3.2 FemPy’s inner workings . 52
5.3.3 Numerical experiments . 54
5.3.4 Further work . 58

5.4 PyWannier . 58
5.4.1 Weak formulation of the eigenproblem . 58
5.4.2 Discretization of the eigenproblem . 59
5.4.3 The way to maximally localized Wannier functions 62
5.4.4 Future work . 63

6 Results 65

6.1 Constant permittivity in one dimension . 65
6.2 The non-constant case in one dimension . 65
6.3 Constant permittivity in two dimensions . 69
6.4 The non-constant case in two dimensions . 71
6.5 Maximally localized Wannier functions . 74

7 Conclusions and Future Work 79

A Auxiliary results 81

Chapter 1

Introduction

1.1 What and why

This thesis is about photonic crystals and some tools used to simulate them. But what exactly are
photonic crystals, and why would you want to spend time learning about them? In a nutshell, many
people believe that photonic crystals could be the “next semiconductors”. When Eli Yablonovitch and
his coworkers at Bell Communications Research in New Jersey drilled their first holes into a block of
dielectric material in 1991, they were trying to do with electromagnetic waves what is commonly being
done with electrons in silicon chips. Photons travel, literally, at the speed of light, while electrons have
a lower rate of signal propagation. So, Yablonovitch and his team hoped to accelerate things by using
light instead of electric current. Light is already being used for transport of information, and photonic
crystals could be the first step to the processing of information (i.e. computation) using light.

But before this can happen, there are many hurdles to overcome. For example, light escapes very
easily. Unlike electrons that can only go where you put a cable, light happily spreads just about anywhere,
even in vacuum. Photonic crystals already solve this problem, as we will see in our simulations. The next
step would be building photonic devices like filters, switches, memories and logic gates—areas where lots
of research is currently being done.

Unfortunately, photonic crystals are devilishly hard to fabricate. The structures need to have roughly
the same scale as the wavelength with which they are going to be used. So, microwave crystals (on the
millimeter scale, such as Yablonovitch’s sample) are relatively easy to make by hand. But for visible light
(around 300-600 nanometers), manufacturing such crystals poses severe problems. As Greg Parker and
Martin Charlton put it in their August 2000 PhysicsWorld feature article, “If the scale was 1000 times
smaller, we could build the structure atom-by-atom using a chemical reaction; and if it was 1000 times
larger, we could build the structure mechanically.”

This is why simulation is so important. If you are going to go through the significant effort of building
a structure, you’d like to know in advance that it will work the way you have planned. But the tried
and true workhorses of electromagnetics simulation, the FDTD (finite difference time domain) method
and the plane wave method, both perform suboptimally for large-scale simulations, because both do not
adapt well to the piecewise continuous permittivity layouts commonly found in photonic crystals. The
finite element method has been used with some success ([AK99], [Dob99]) and fares slightly better, but
it also runs into problems for large supercell simulations. Clearly, it would be advantageous if we could
find a better approxmimation basis than any of the basis sets provided by these methods.

To this end, we can gain insight from the analogy between “real” crystals and photonic crystals.
Maximally localized Wannier functions [MV97] have been used quite successfully by physicists as basis
sets in large-scale ab-initio simulations of crystal structures. Busch and his team [BMGM+03] as well as
Whittaker and Croucher [WC03] were the first to carry this approach over to photonic crystals.

This thesis aims to be a readable and coherent introduction to the theory and the computational
means involved in the construction of maximally localized Wannier functions. While it was my goal to be
as mathematically rigorous as possible, this is not pursued at all costs. For example, a few results which
point deeper into distribution theory are simply stated and not proven. In a similar balance between
readability and complexity, we restrict ourselves to two (instead of the full three) dimensions. Many of
the ideas presented in the text were also tried out computationally, using a custom finite element code

5

6 CHAPTER 1. INTRODUCTION

which was created solely for this purpose. The implementation is described and its results are presented.
Finally, we will evaluate what was achieved and provide directions and pointers for further work.

The cover page shows the dispersion relation of a homogeneous two-dimensional medium. It may be
found within this work, with more annotations, as Figure 6.5a).

1.2 Acknowledgements

I would like to take this opportunity to thank all the people without whom this thesis would have never
happened. First and foremost, that includes my advisor Prof. Dr. Willy Dörfler, who directed my
attention to this exciting topic and spent many days supporting me in my efforts. Especially through the
more difficult parts of this work, his help was invaluable.

My parents also deserve a huge thank you—their encouragement and support all the way through
my studies were what made this possible in the first place. Dirk Wäldin, Christopher Poulton, Christian
Koos, Matthias Schillinger, Sergei Mingaleev and Simon Gemmrich endured my questions and shared
their insights in many enlightening discussions.

Besides the tools mentioned in the implementation chapter, the preparation of this document involved
the programs TEXmacs (which I can only recommend), Grace, Gnuplot, gl2ps, TEX, VTK and MayaVi,
all of which have been released under open-source or Free Software licenses. Without these tools, my life
as a writer would have been significantly harder. I owe their creators a great deal.

Last, but not least, I would like to thank my girlfriend Josie, who took part very intimately in the
highs and lows of my work and put up with my moods when things didn’t go the way they were supposed
to. Without her perseverance and constant encouragement, I would have never left square one. Also, she
proofread the text and fixed my broken English. If despite her efforts any errors remain, they are most
certainly mine.

Thank you all!

1.3 Notation

Vectors are distinguished from scalars by bold type, e.g. b vs. b. The corresponding non-bold character
denotes the Euclidean (i.e. 2-)norm of that vector, so that b = |b|2. Discretized entities are distinguished
from their analytic counterparts by a superscript “4”. For example, a discretized gradient operator
would be written “∇

4”.

Given a matrix A, the symbol AH denotes the complex-hermitian transpose of A, and AT means the
real transpose of A. Given a function, scalar or matrix A, a superscript asterisk A∗ denotes the complex
conjugate of A.

1.4. DIRECTORY OF SYMBOLS 7

1.4 Directory of symbols

Symbol Meaning

∆f(t) The expression f(t+ ∆t)− f(t), where ∆t should be clear from context.
∇2f(r) The Laplace operator ∇ ·∇f(r).
δ(·) The Dirac Delta distribution in 0.
δn,m The Kronecker symbol.

d The dimensionality of the problem. Throughout this thesis, d = 2.
L ⊂ � d The direct lattice.

L̂ ⊂ � d The reciprocal lattice.

B(L′) ⊂ � d A basis of a lattice L′. (mostly L′ ∈ {L, L̂})
r ∈ � d A real space vector.
R ∈ L A direct lattice vector.
k ∈ � d A reciprocal space vector.

K ∈ L̂ A reciprocal lattice vector.
K The Brillouin zone mesh, as in [MP76]. See Section 4.2.
S The stencil of nearest-neigbor vectors in K.

P ⊂ � d A real-space primitive cell of L, for example the Wigner-Seitz cell.
B ⊂ � d The first Brillouin zone of the crystal under consideration.
λ The real-space Lebesgue measure on

� d.
∂P (R) ⊂ ∂P The R-boundary of P . See Section 2.2.

ψn,k(·) The nth Bloch function with crystal momentum k.
un,k(·) A periodic Bloch function un(k, r) := e−ik·rψn(k, r).
wn(·) The nth (generalized) Wannier function at 0.
wn,R(·) The nth (generalized) Wannier function at R, wn,R(x) := wn(x−R).
ε(r) The L-periodic permittivity function.

〈·, ·〉
∇Ω The inner product on the Ω-gradient space. See Section 4.7.

〈u, f(r)v〉
Rd The inner product

∫ �
d u(r)ε(r)f∗(r)v∗(r)dr.

〈u, f(r)v〉P The inner product
∫
P u(r)ε(r)f∗(r)v∗(r)dr.

L2
ε(Ω) See Definition 2.1.
Uf The Floquet transform. See Theorem 2.2.

8 CHAPTER 1. INTRODUCTION

1.5 Version history

Oct 4, 2004 Preliminary version.
Oct 5, 2004 Final version. Changes vs. preliminary in errata.tm.
Oct 18, 2004 Online version.

Added a missing π in Figure 6.1.
Split off big images.
Removed an extraneous “b)” in Figure 6.14.

Oct 20, 2004 Added a few missing indices to the ρi of Section 5.3.3.
Changed a “quantitatively” to “qualitatively” in Section 6.3.

Nov 4, 2004 Changed a leftover P to the correct γ in Section 6.3.
Nov 9, 2004 Removed a leftover empty inner product in Section 4.5.
Nov 18, 2004 Replaced “differentiable operator” by “differential operator” in Sec. 2.3.
Nov 21, 2004 Fixed a bug in a script that made Grace figures locale-dependent.
Dec 16, 2004 Removed an extraneous prime in Section 2.2, added one in Section 2.3.
Mar 7, 2005 Corrected tW → tW in Section 4.7.

May 23, 2005 Fixed the sign of Re tr
[
tW kRk,b

]
in the last few formulae of Section 4.7.

(The end result remains unaffected.)
July 21, 2005 Eliminated references to a “bug” in Marzari’s method. (Chapters 4, ??)

Added more insight on the gradient of Re tr[AB]. (Section 4.7)
Added a clarification with regard to ∇ and ∇2 to Section 2.1.
Reorganized and clarified Section 4.8.
“Version 1.1” to clarify that there have been significant changes.

Chapter 2

Eigenproblems with periodic

coefficients

In this chapter, we will set the mathematical stage for the remainder of this thesis.

2.1 Motivation

At the most basic level, photonic crystals can be understood as infinite three-dimensional media of
periodically varying electric permittivity, and our main concern in this thesis shall be the computation of
the natural electric (E(r, t)) and magnetic (H(r, t)) field modes associated with these crystals. Maxwell’s
Equations are an apt mathematical model of our situation—quantum effects need not be considered
since we are typically working on a macroscopic scale. We will constrain our search for solutions to
Maxwell’s Equations in a few ways: First, we will only be looking for time-harmonic fields. Second, we
restrict the given (relative) permittivity ε(r) to be a scalar and independent of the third space coordinate,
effectively making our material linear and isotropic and our problem two-dimensional. Finally, the
(relative) magnetic permeability µ is assumed to be 1 everywhere.

The first simplification allows us to separate the time variable: E(r, t) = eiωtE(r) and H(r, t) =
eiωtH(r). This leads us to an eigenvalue problem of the form

−∇×E(r) =
iω

c
H(r),

∇×H(r) =
iω

c
ε(r)E(r),

∇ ·E(r) = 0, ∇ ·H(r) = 0.

for r ∈ � 3. A closer look at our second simplification above reveals that for reasons of symmetry we would
also expect E and H to not depend on the third space coordinate either, so we can assume ∂3E = 0 and
∂3H = 0. If we consider the vector (E1, E2, E3, H1, H2, H3), it is easy to see that in our case the system
above decomposes into a direct sum of two simpler ones, namely for (0, 0, ψ := E3, H1, H2, 0), we get

−∇2ψ(r) =
ω2

c2
ε(r)ψ(r) (2.1)

(a form called TM for Transverse Magnetic). Likewise, for (E1, E2, 0, 0, 0, ψ := H3) we get

−∇ ·
(

1

ε(r)
∇ψ(r)

)
=
ω2

c2
ψ(r) (2.2)

(a form called TE for Transverse Electric). In both (2.1) and (2.2), it is understood that ∇2 (and ∇,
respectively) only refer to the first two spatial dimensions, such that

∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 and ∇ = (∂2/∂x2
1, ∂

2/∂x2
2)
T
.

In the setting of photonic crystals, the TE case tends to be slightly harder since the permittivity ε
often has jump discontinuities, requiring the use of distribution theory to properly define the divergence
operator in (2.2). Therefore, we will concentrate on the TM problem (2.1).

9

10 CHAPTER 2. EIGENPROBLEMS WITH PERIODIC COEFFICIENTS

2.2 Elementary definitions

In this section, we will briefly introduce a few basic terms in reference to the three-dimensional theory of
crystalline solids. Since we will be dealing with two-dimensional structures in the remainder, the obvious
reductions of these terms apply.

Given some linearly independent vectors {R1,R2,R3}, we define the associated Bravais Lattice to be

L := {n1R1 + n2R2 + n3R3 : ni ∈ � (i = 1, 2, 3)}

and call B(L) := {R1,R2,R3} its lattice basis . Note that the origin 0 is naturally contained in any
Bravais lattice. A function f is said to be L-periodic if for any R ∈ L and any r ∈ � 3, the identity
f(r) = f(r + R) holds. A primitive unit cell is an open set P ⊂ � 3 such that

⋃

R∈L

{P + R} =
� 3,

where the union is disjoint. Whenever a reference is made to the letter P from now on, it is meant that
the statement is valid for any choice of primitive unit cell. The Wigner-Seitz cell PW is one particular
choice of such a cell:

PW := {r ∈ � 3 : |r| < |r + R| for R ∈ L \ {0}}.
Verbally, the Wigner-Seitz cell is the set of all r ∈ � 3 which are closer to the origin than to any other
lattice point.

The reciprocal lattice L̂ is a theoretical construct that proves to be of great utility in solid state theory.
It naturally arises in many situations, for example when calculating crystal diffraction or studying L-
periodic functions. It is defined as the set of vectors K ∈ � 3 for which eiK·R = 1 (or equivalently
K ·R = 2πn for some n ∈ �), for all R ∈ L. It turns out that the reciprocal lattice is a Bravais lattice
itself, and its basis can be written

B(L̂) = {K1,K2,K3},
with Ki determined by Ki ·Rj = 2πδi,j (i, j ∈ {1, 2, 3}).

The nine equations given by the above condition are sufficient to specify the nine unknown coordinates
of Ki uniquely.

The Wigner-Seitz cell of the reciprocal lattice is called the First Brillouin Zone B (or just Brillouin
Zone). Typically, vectors in the Brillouin zone (or, more generally, in reciprocal space) are named k.

For a unit cell P , the symbol ∂P (R) for R ∈ L, called the R-boundary of the unit cell , is

∂P (R) := {r ∈ ∂P : r + R ∈ ∂P}.

To clarify this notation, we note that, as is apparent from intuition,

⋃

R∈L/{−1,1}

[∂P (R) ∪ (∂P (R) + R)] = ∂P.

The union is over a set of representatives from L such that for a pair {−R,R } , only one is contained
in the set. The union is actually disjoint except for corner points of the primitive unit cell.

Finally, let RP (r) be the R ∈ L such that r − RP (r) ∈ P . Note that this notation is not well-
defined for boundary points unless a provision is made to include one “half” of the boundary in P . This
shortcoming shall not matter to us, because our main use of the symbol RP (r) is within integrals over
r, to which the set ∂P + L of all such boundary points constitutes a zero set.

A lot more detail about many of these definitions, as well as motivation and theoretical background
information can be found in the introductory book [AM76].

2.3 The Floquet transform

Obviously, a problem like Equation (2.1) is computationally and analytically hard to tackle, not just
because it lives on the entire real plane. But since our permittivity function ε is L-periodic, we might

2.3. THE FLOQUET TRANSFORM 11

hope that solving an equation resembling (2.1) on just one primitive unit cell P with appropriate boundary
conditions might be enough, and the solution on all the remaining translations of the primitive unit cell
might just be a copy of this solution, in some sense. We will see that this hope is not for naught.

Most of the theory surrounding the eigenvalue problem (2.1) with periodic coefficients has been known
for decades, Chapter XIII.16 of Reed and Simon’s book [RS78] contains an excellent summary. Large
parts of this section are patterned after their work. However, we need to make a small adaptation to
take into account the fact that the investigation there concentrates on Schrödinger operators of the form
−∇2 + V with a potential V , while our TM operator has the slightly different shape −∇2/ε. First, we
need some notation.

Definition 2.1 Let ε : P → [ε−, ε+] with 0 < ε− 6 ε+ < ∞ be piecewise continuously differentiable.
Then let

〈ϕ, ψ〉
Rd :=

∫
�

d

ϕ(r)ψ∗(r)ε(r −RP (r))dr,

and call the resulting Hilbert space L2
ε(

� d). Define 〈·, ·〉P and L2
ε(P) analogously, but just on the primitive

unit cell P .

Note that the mapping

ΦΩ : L2(Ω) → L2
ε(Ω)

ψ 7→ ΦΩψ := ψ/
√
ε

is a Hilbert space isometry between L2(Ω) and L2
ε(Ω), because

〈ΦΩϕ,ΦΩψ〉L2
ε(Ω) =

〈
ϕ/
√
ε, ψ/

√
ε
〉
L2

ε(Ω)
=

∫

Ω

ϕ(r)√
ε(r)

ε(r)
ψ∗(r)√
ε(r)

dr = 〈ϕ, ψ〉L2(Ω) .

Be mindful that ΦΩ’s definition, and thus the equivalence of the norms, hinges critically on ε being
bounded from below by a positive constant.

By our motivation, we are looking for some map that reduces a function on the whole space down to
one on a primitive unit cell. The Floquet transform, defined below, assumes this role.

Theorem 2.2 Define a transform U on S(
� d) by

(Uf)k(r) :=
∑

R∈L

eik·Rf(r −R).

Then U ’s domain may be extended to all of L2
ε(

� d), and it becomes a unitary operator

U : L2
ε(

� d)→ L2(B × L2
ε(P)),

where L2(B × L2
ε(P)) has the inner product

〈ϕ, ψ〉L2(B×L2
ε(P)) =

1

λ(B)

∫

B

〈ϕk, ψk〉P dk.

Proof Let U be as inTheorem XIII.97 of [RS78]. Then it is clear that U = ΦP ◦U ◦Φ−1
�

d properly defines

U on all of L2
ε(

� d) —where it is understood that the final ΦP must be defined as

ΦP : L2(B × L2(P)) → L2(B × L2
ε(P))

ψ 7→ (ΦPψ), (ΦPψ)k := (ΦP︸︷︷︸
on L2(P)

ψk)k.

Since each of the operators is an isometry, so is their composition U . The form of the inner product is
a consequence of the space’s role as a “constant fiber direct integral” with the measure defined by Reed
and Simon.

Note: S(
� d) is a space of rapidly decreasing functions used mostly in the construction of the Fourier

Transform. See [Rud91], Chapter 6 for a definition. �

12 CHAPTER 2. EIGENPROBLEMS WITH PERIODIC COEFFICIENTS

It is very important to understand the shape of U ’s target space. Each ψ ∈ L2(B × L2
ε(P)) actually

consists of many functions ψk, one for each Brillouin zone vector k ∈ B. Each of these ψk ∈ L2
ε(P) is a

function ψk : P → � for which 〈ψk, ψk〉P <∞ holds. This is almost the same as being square-integrable,
with the small change of the ε(r) inserted into the inner product (cf. Definition 2.1). Each ψ can itself
be understood as a function with values in L2

ε(P). Now we demand that this function ψ : B → L2
ε(P)

be square-integrable itself, in the sense of the inner product defined above. It is probably helpful to note
that this inner product is really nothing more than a Brillouin zone average of the inner products on the
“small spaces” for each k.

Now is a good time to take a short break from developing more theory and to consider our present
situation. Instead of solving the eigenvalue problem (2.1) on L2

ε(
� d), we will transform it by U and solve

it on L2(B×L2
ε(P)). If the eigenproblems on each of the L2

ε(P) turn out to be independent of each other,
then we have just made a big step forward. In that case, we may simply solve many small problems (one
for each k ∈ B) on easily-controlled bounded domains P instead of one big problem on an uncontrollably
huge domain

� d.
So, contrary to the hope uttered above, it will not be enough to solve just one small problem on one

primitve unit cell P and then stamp that solution all over
� d. Instead, we have to deal with infinitely

many small problems, solve each individually, and then we can find the whole-space solution (if it exists)
by U−1. This is not as simple as we had dared to hope, but it is still much easier than our initial problem.

Above, we hinted that the component functions ψk of a Floquet-transformed function ψ may have to
obey special conditions at the boundary of P . These conditions are already determined by the definition
of the Floquet transform. Assume R′ ∈ B(L) and r ∈ ∂P (R′).

(Uf)k(r + R′) =
∑

R∈L

eik·Rf(r + R′ −R)

(let R′′ := R−R′) =
∑

R′′∈L

eik·(R
′′+R

′)f(r −R′′)

= eik·R
′

(Uf)k(r).

This means that the functions ψk ∈ L2
ε(P) have to satisfy the boundary condition ψk(r+R) = eik·Rψk(r).

In fact, these boundary conditions are not yet strong enough. Just like with “regular” periodic boundary
conditions, we will need a similar condition on the first derivative to ensure the self-adjointness of our
differential operator.

If you think about it, these boundary conditions are quite natural. Recall that a plane wave can be
described as eik·r with a wave vector k. The wave vector’s direction gives the propagation direction of the
wave, while its length can be seen as something akin to the wave’s frequency. Our boundary conditions
basically dictate that the eigenfunctions associated with the Brillouin zone vector k behave a little bit
like plane waves with a wave vector k. From this interpretation it may be understandable that k is also
often called the crystal momentum.

Right now, we can also understand why the k remain constrained to the Brillouin zone and don’t
need to go beyond. Given k ∈ B and K ∈ L̂, the boundary conditions given by k + K are exactly the
same as the conditions for k alone. By the defining property of the reciprocal lattice L̂,

ei(k+K)·R = eik·R eiK·R
︸ ︷︷ ︸

=1

= eik·R.

Now, before we use the Floquet transform on our differential operator, we should be clear about what
exactly we are doing. The Floquet transform is defined on L2-like spaces which do not lend themselves
well to the definition of differential operators. However, for example, C∞

0 (
�

) is dense in L2
ε(

�
), and there

are no problems defining differential operators on C∞
0 . (Section 7.8 of [Sch81] proves a slightly stronger

result for just L2(
�

).) Therefore, we will consider all such derivatives defined on a dense subset of L2
ε, or

simply densely defined in L2
ε. For this definition to make sense, the differential operator also needs to be

closable, so that different sequences in the dense subset which converge to the same limit point always
have the same limit under the operator. Here, we will simply assert this for our operators and again refer
to the literature for details.

The following theorem gives us the Floquet decomposition of the differential operator in Equation
(2.1).

2.3. THE FLOQUET TRANSFORM 13

Theorem 2.3 Let ε be as in Definition 2.1. Then the whole-space TM operator from (2.1) is decomposed
by the Floquet transform into

U
(
−∇

2

ε

)
U−1 =

1

λ(B)

∫ ⊕

B

H(k)dk,

with H(k) := −∇2/ε on L2
ε(P) under the boundary conditions

ϕ(r + R) = eik·Rϕ(r) and ∇ϕ(r + R) · n = eik·R∇ϕ(r) · n (2.3)

for r ∈ ∂P (R) and any R ∈ L and a unit-length vector n normal to ∂P in r.

This is analogous to part (b) of Theorem XIII.97 in [RS78], with U exchanged for U . The boundary
conditions in Equation (2.3) are called Floquet boundary conditions.

This last theorem gives us what we asked for: we can solve the eigenvalue problem for each k inde-
pendently. Next, we would like to find out more about the spectrum and the eigenfunctions of H(k). As
an intermediate result, we need the following Lemma.

Lemma 2.4 The operator H(k) on L2
ε(P) is self-adjoint and has a compact resolvent.

Proof H(k) is Hermitian: For ϕ, ψ ∈ D(H(k)), by Green’s Second Identity

〈
−∇

2ϕ

ε
, ψ

〉

P

= −
∫

P

∇2ϕ(r)

ε(r)
ε(r)ψ∗(r)dr = −

∫

P

∇2ϕ(r)ψ∗(r)dr

=

〈
ϕ,−∇

2ψ

ε

〉

P

+

∫

∂P

[ϕ(r)∇ψ∗(r)−∇ϕ(r)ψ∗(r)] · ndS.

Carrying on with our task, the latter term, which is somewhat in the way, can be eliminated because it
equals zero:

∫

∂P

[ϕ(r)∇ψ∗(r)−∇ϕ(r)ψ∗(r)] · ndS

=
∑

R∈L/{−1,1}

∫

∂P (R)

[ϕ(r)∇ψ∗(r)−∇ϕ(r)ψ∗(r)] · ndS

+
∑

R∈L/{−1,1}

∫

∂P (R)

[ϕ(r + R)∇ψ∗(r + R)−∇ϕ(r + R)ψ∗(r + R)] · (−n)dS

=
∑

R∈L/{−1,1}

∫

∂P (R)

[ϕ(r)∇ψ∗(r)−∇ϕ(r)ψ∗(r)] · ndS

−
∑

R∈L/{−1,1}

∫

∂P (R)

[
eik·Rϕ(r)e−ik·R∇ψ∗(r)− eik·R∇ϕ(r)e−ik·Rψ∗(r)

]
· ndS

= 0.

We assert that the domains of H(k) and its adjoint coincide analogously to the case of the Laplacian on
L2, making H(k) self-adjoint.

To show the second part of the claim, consider the operator H (0)(k) := −∇2 on L2(P) with the above
boundary conditions. We can write down a complete (in D(H (0)(k)) set of eigenfunctions of H (0)(k)
explicitly, namely:

ψ
(0)
n,k(r) := ei(k+2πn(n))·r̂ ∈ L2(P),

where k ∈ B, n : � → � d is an enumeration of all integer tuples and r̂ is the coordinate vector of r in
the basis B(L). Without loss of generality r = r̂. Then the eigenvalues are λn,k := |k + 2πn(n)|2 and
thus λn,k → ∞ as n → ∞. Since H(0)(k) is elliptic and self-adjoint, we can apply Theorem A.3 b) to
see that H(0)(k) has a compact resolvent. When comparing this argument with the discussion in [RS78],
beware that their θ is our k and their k is our n(n).

Now let
M(A, b) := {ψ ∈ D(A) : ‖ψ‖ 6 1, ‖Aψ‖ 6 b}

14 CHAPTER 2. EIGENPROBLEMS WITH PERIODIC COEFFICIENTS

and consider M(H(k), b) ⊂ L2
ε(P) and M(H(0)(k), b) ⊂ L2(P). From our argument above and through

Theorem A.3 c) we know that M(H(0)(k), b) is compact in L2(P) for any b. Since

〈
−∇

2

ε
ψ, ψ

〉

P

=
〈
−∇2ψ, ψ

〉
L2(P)

,

and D(−∇2/ε) = D(−∇2), we are looking at the marginally different sets

A(b) := M(−∇2/ε, b) = {ψ ∈ D(−∇2) : ‖ψ‖L2
ε(P) 6 1, ‖ −∇2ψ‖L2(P) 6 b}

B(b) := M(−∇2, b) = {ψ ∈ D(−∇2) : ‖ψ‖L2(P) 6 1, ‖ −∇2ψ‖L2(P) 6 b}

B(b) is known to be compact for any b. Fix any b. The caseA(b) = ∅ is trivial. Assume A(b) 6= ∅. We want
to show that A(b) is sequentially compact. So, let {xn}n∈ � ⊂ A(b). Without loss of generality ε+ > 1.
Then we have {1/ε+xn}n∈ � ⊂ B(1/ε+b), and we can pick a convergent subsequence 1/ε+xnm

→ 1/ε+x
in B(b). Now xnm

→ x also holds in L2
ε because of norm equivalence. Finally, by the definitions of the

sets, we have x ∈ A(b), so A(b) is sequentially compact as well.
To be able to use Theorem A.3 c) to prove H(k) to have compact resolvent, we note that H(k)

inherits its ellipticity, a.k.a. “bounded-from-below-ness” from H (0)(k) in a straightforward manner since
ε is also bounded from below. �

Using the above Lemma, we obtain the following important and informative result:

Theorem 2.5 Each H(k) has a complete set of eigenfunctions ψn,k(r) with eigenvalues En,k. Extend
ψn,k(r) to all of

� d by using the boundary condition (2.3). For ϕ ∈ S(
� d), let

ϕ̃m(k) := 〈ϕ, ψm,k〉Rd .

Then

a) we have a Parseval-like identity:

∫
�

d

|ϕ(r)|2dr =
∑

n

1

λ(B)

∫

B

|ϕ̃n(k)|2dk,

b) the ϕ̃m(k) are the coefficients of an expansion of ϕ in Bloch functions:

ϕ(r) =
∑

n

1

λ(B)

∫

B

ϕ̃n(k)ψn,k(r)dk,

c) it is possible to extend the domain of “̃·” to L2
ε(

� d) continuously, and −∇2/ε obeys

−
(
∇̃2

ε
ϕ

)

n

(k) = En,kϕ̃n(k)

for all ϕ ∈ D(H(k)),

d) and “̃·” maps L2
ε(

� d) onto
⊕

n L
2(B).

This is analogous to the first part of the proof of Theorem XIII.98 in [RS78], substituting Lemma 2.4
for the first part of its proof.

Altogether, we found out that each H(k) has a purely discrete spectrum and its eigenvectors form a
complete orthonormal basis {ψn,k} of L2

ε(P) with the appropriate boundary conditions. The functions
ψn,k are called Bloch functions or Bloch modes , and apparently they even form something like an or-
thonormal basis in all of L2

ε(
� d), as any function from that space can be expanded into Bloch modes

without loss of information. Compared to our initial situation, we know quite a bit more about our prob-
lem, even enough to begin dealing with it computationally. In the following sections, we will attempt to
cover some finer points of the theory before we move on.

2.4. SOME CONSEQUENCES 15

Let me close this section with some bibliographic remarks. Kuchment’s various works contain large
amounts of information on the subject of this section. His book [Kuc93] is a technically thorough treat-
ment of PDEs with periodic coefficients, while the book chapter [Kuc01] is an effective overview of the
mathematics surrounding photonic crystals. However, for this particular purpose, [RS78] proves to be
the reference with the most useful level of detail. Many introductory physics books (including [AM76])
present justifications of why the whole-space problem may be reduced to one primitive unit cell with
Floquet boundary conditions, often under the name of “Bloch’s Theorem”. Few of these justifications
can be considered proofs in the mathematical sense of the word.

2.4 Some consequences

In this section, we will develop some extensions to the theory of the previous section that shall help us
in later chapters. Let us begin by stating a few Dirac-type relationships for the Floquet transform. For
example, we will freely use the fact that, symbolically,

1

λ(B)

∑

R∈L

eik·R = δ(k). (2.4)

We will not prove this with analytical precision, nor is a reference for this relationship known. It is
however pretty easy to make it seem plausible. From Theorem 2.2 we will use the fact that U is an
isometry. Let supp(ϕ) ⊂ P and consider

〈1, ϕ〉
Rd =

∫

P

1ε(r)ϕ∗(r)dr,

〈U1,Uϕ〉L2(B×L2
ε(P)) =

1

λ(B)

∫

B

∫

P

(U1)k(r)ε(r)(Uϕ)k

∗
(r)drdk

=
1

λ(B)

∫

B

∫

P

∑

R∈L

eik·Rε(r)
∑

R′∈L

e−ik·R
′

ϕ∗(r −R′)drdk

=
1

λ(B)

∫

B

∑

R∈L

eik·Rdk

∫

P

ε(r)ϕ∗(r)dr

⇒ 1

λ(B)

∫

B

∑

R∈L

eik·Rdk = 1.

(This argument is flawed because 1 6∈ L2
ε(

� d) and we did not justify the switching of the sum and the
integral.) By formally using the geometric series expansion, it is easy to show that

∑

R∈L

eik·R = 0 for k 6= 0

if we kindly ignore that the series does not converge at all since |eik·R| = 1. As a result, Equation (2.4)
takes the form of a postulate rather than a proven fact. As a close analog, consider

1

λ(B)

∫

B

eik·Rdk = δR,0, (2.5)

which can be proven exactly. The following theorems are consequences of Equation (2.4):

Theorem 2.6 The Bloch functions ψn,k, extended to all of
� d by means of the boundary conditions

(2.3), are k- and n-orthogonal, i.e.

〈
ψn,k, ψm,k′

〉
Rd = λ(B)δ(k − k′)δn,m.

16 CHAPTER 2. EIGENPROBLEMS WITH PERIODIC COEFFICIENTS

Proof Consider

〈
ψn,k, ψm,k′

〉
Rd =

∫
�

d

ψn,k(r)ψm,k′
∗(r)dr

=
∑

R

∫

P

ψn,k(r −R)ψm,k′
∗(r −R)dr

=
∑

R

∫

P

e−ik·Rψn,k(r)eik
′·Rψm,k′

∗(r)dr

=
∑

R

ei(k
′−k)·R

︸ ︷︷ ︸
=δ(k−k′)λ(B)

〈
ψn,k, ψm,k′

〉
P

= λ(B)δ(k − k′)δn,m,

which establishes the claim. (Lebesgue’s dominated convergence theorem justifies the splitting step.) �

Another, more important theorem gives us an inversion formula for the Floquet transform:

Theorem 2.7 For f ∈ L2
ε(

� d) and its Floquet transform Uf ∈ L2(B × L2
ε(P)), we have

f(r) =
1

λ(B)

∫

B

(Uf)k(r)dk.

Equivalently, for any f ∈ L2(B × L2
ε(P)),

(U−1f)(r) =
1

λ(B)

∫

B

fk(r)dk.

Proof Consider

1

λ(B)

∫

B

(Uf)k(r)dr =
1

λ(B)

∫

B

∑

R∈L

eik·Rf(r −R)dk

=
1

λ(B)

∑

R∈L

f(r −R)

∫

B

eik·Rdk

=
∑

R∈L

f(r −R)δR,0 = f(r),

as claimed. In the current setting, we will forgo justifying the exchange of the sum and the integral and
leave this for a later writeup of a more theoretical scope, where all the distribution-theoretic subtleties
are worked out in full detail. In fact, situations like this one will arise a few times throughout the rest of
this thesis, and we will refer to the explanation given here in each of these cases. �

The Floquet transform decomposes −∇2/ε into a direct integral of identical differential operators on
varying domains (the domains vary because different Floquet boundary conditions are valid on each). It
is also possible and quite easy to achieve the reverse–a decomposition into varying differential operators
on identical domains. Consider the operator P , defined as

P : L2(B × L2
ε(P)) → L2(B × L2

ε(P))

ψ 7→ Pψ, (Pψ)k(r) := e−ik·rψk(r).

P is an isometry:

〈Pϕ,Pψ〉L2(B×L2
ε(P)) =

1

λ(B)

∫

B

〈Pϕ,Pψ〉P dk

=
1

λ(B)

∫

B

∫

P

e−ik·rϕ(r)ε(r)eik·rψ∗(r)dr

= 〈ϕ, ψ〉L2(B×L2
ε(P)) .

2.5. BANDS AND GAPS 17

P transforms the Floquet boundary conditions into periodic ones:

(Pψ)k(r + R) = e−ik·(r+R)ψk(r + R) = e−ik·(r+R)eik·Rψk(r) = e−ik·rψk(r) = (Pψ)k(r)

for any R ∈ L and any r ∈ ∂P (R). Similarly, the condition on the gradient becomes

∇(Pψ)k(r + R) = ∇(e−ik·(r+R)ψk(r + R))

= ψk(r + R)∇e−ik·(r+R) + e−ik(r+R)
∇ψk(r + R)

= eik·Rψk(r)(−ike−ik(r+R)) + e−ik(r+R)eik·R∇ψk(r)

= −ike−ik·rψk(r) + e−ik·r∇ψk(r)

= ∇(Pψ)k(r),

where we left out the inner product with the boundary unit normal for simplicity. The differential
operator H(k) becomes

Hp(k) := PH(k)P−1u = e−ik·r
(
−∇

2

ε

)
eik·ru

= −e−ik·r 1

ε

[
eik·r∇2u+ 2∇eik·r ·∇u+ u∇2eik·r

]

= −1

ε

[
∇2u+ 2ik ·∇u− k2u

]

= −1

ε

[
∇2 + 2ik ·∇− k2

]
u.

Observe how the differential operator now explicitly depends on k, while the boundary conditions are
independent of k. The letter P was chosen for this isometry since it turns the Bloch modes ψn,k into
periodic functions un,k. For the remainder of this thesis, we will maintain the letters ψ and u respectively
for these two kinds of functions, so that

un,k(r) := e−ik·rψn,k(r).

The un,k form orthonormal bases of L2
ε(P) with periodic boundary conditions; this property carries over

from the ψn,k by means of the isometry P .

2.5 Bands and gaps

In this section, we will a take closer look at the joint spectrum of the H(k). Each of the H(k) has been
shown to have a fully discrete spectrum. In Theorem 2.5, we defined a quantity En,k to specify H(k)’s
nth-largest eigenvalue by magnitude. Naturally, we’re curious how En,k behaves if viewed as a function
of k (and n is kept constant). To make this point of view explicit, we will write En(k) instead of En,k
for the rest of this chapter.

First, let us examine the physical meaning and properties of En(k) = ω2
n(k)/c2. The letter E was

chosen for a reason–En(k) is the nth energy level at which an electromagnetic wave can propagate through
our crystal while obyeing the Floquet conditions (2.3) for k. Since there is a merely discrete spectrum
for each k, only light of certain energy levels is allowed to propagate through the crystal. If there is
no energy level corresponding to an incident wave with parameters k and ω, it will not propagate in an
unmodified manner.

The graph {(k, En(k)) : k ∈ B, n = 1, 2, . . .} of En(k) is called the dispersion relation. Since Em(k)
is an observable physical quantity, we strongly expect it to change continously, if not differentiably, in
k. (but cf. the next section) So, we can visualize the dispersion relation as a stack of sheets over the
Brillouin zone. These sheets are called bands . It turns out that the bands behave in most particular
ways even in simple cases, as we will see in Chapter 6. I encourage you to take a look at, for example,
Figures 6.5, 6.6 and 6.10 right now to see some of the phenomena which arise. Sometimes, the bands
touch or penetrate each other. Wherever En(k) = Em(k) for a given k and n 6= m, the two bands (and,
more specifically, the energy levels) are called degenerate. Often, the Em(k) lose their otherwise excellent
smoothness properties in or around these degeneracies. If two bands cross each other or share certain
energy levels, they are called entangled .

18 CHAPTER 2. EIGENPROBLEMS WITH PERIODIC COEFFICIENTS

Sometimes we can even have a situation where there is an interval where no eigenvalue En(k) is found,
for any k. An interval like this is called a band gap. It is exactly the emergence of such gaps that makes
photonic crystals so important. The gap allows the crystal to act as an insulator of light, just like regular
air is an insulator for electric current. Many researchers believe that the presence of a proper insulator
of light is a stepping stone on the way to fully-photonic integrated circuits. This is why photonic crystals
are often called photonic band gap (PBG) materials .

2.6 Smoothness of the dispersion relation

In this section, we will argue that non-degenerate eigenvalues actually depend on k in a continuously
differentiable manner. Suppose En(k0) is a non-degenerate eigenvalue of H(k0).

Define a function

F : L2
ε(P)× � +

0 ×B → L2
ε(P)× � +

0

(u, λ,k) 7→
(
Hp(k)u− λu
‖u‖2 − 1

)

where we chose Hp(k), the explicitly varying differential operator, over H(k) in order to work on a
constant domain. Whenever F (u, λ,k) = 0, (u, λ) is an eigenpair of Hp(k). We are going to sketch the
use of the implicit function theorem A.4 on F in order to find a locally continuously differentiable implicit
function k 7→ (u, λ). Consequently, in our application, Dx differentiates by (u, λ), and Dy differentiates
by k, where Dx and Dy are as defined in Theorem A.4. Now, formally

(DxF (u, λ,k))(v, µ) =

(
Hp(k)v − λv − µu

2 〈v, u〉P

)
.

To apply Theorem A.4, we need D := DxF (un,k0
, En(k0),k0) to be an isomorphism. D clearly is linear.

We will show that D is bijective, and we assert that spaces can be found such that D and D−1 are
continuous; Sobolev spaces are suitable in this regard. To show that D is injective, we have to prove that
it only has the trivial null space, by considering the equations

Hp(k0)v −En(k0)v = µun,k0
,

〈v, un,k0
〉P = 0.

The eigenspace En,k0
of Hp(k0) only consists of the span of un,k0

, since we specifically excluded degenera-
cies. Also, v ∈ E⊥n,k0

, by the second equation. Hp(k0) takes on “diagonal” form w.r.t. its eigenvectors, so
En,k0

is an orthogonally invariant subspace of Hp(k0), and also of Hp(k0)−En(k0) Id, since any subspace
is an orthogonally invariant subspace of the identity. What this means is that if v is orthogonal to un,k0

,
so is Hp(k0)v − En(k0)v. Hence µ = 0 and Hp(k0)v = En(k0)v, and so v ∈ En,k0

∩ E⊥n,k0
= {0}. Thus,

D is injective.
To show that it is surjective, consider Hp(k0)|E⊥

n,k0

. En(k0) ∈ ρ(Hp(k0)|E⊥

n,k0

), so M := [Hp(k0) −
En(k0) Id]E⊥

n,k0

is invertible. Let y ∈ L2
ε(P) and α ∈ �

. We can split

y = 〈y, un,k0
〉P un,k0

+ y⊥.

Then, let v := M−1y⊥ + α/2un,k0
and µ = −〈y, un,k0

〉P .

DxF (un,k0
, En(k0),k0)(v, µ)

=

(
Hp(k0)v −En(k0)v − µun,k0

2 〈v, un,k0
〉P

)

=

(
(Hp(k0)−En(k0) Id)(M−1y⊥ + α/2un,k0

) + 〈y, un,k0
〉P un,k0

2
〈
M−1y⊥ + α/2un,k0

, un,k0

〉
P

)

=

(
(Hp(k0)−En(k0) Id)(M−1y⊥) + (Hp(k0)−En(k0) Id)α/2un,k0

+ 〈y, un,k0
〉P un,k0

α

)

=

(
MM−1y⊥ + α/2(En(k0)un,k0

−En(k0)un,k0
) + 〈y, un,k0

〉P un,k0

α

)

=

(
y⊥ + 〈y, un,k0

〉P un,k0

α

)
=

(
y
α

)
.

2.6. SMOOTHNESS OF THE DISPERSION RELATION 19

Since y and α were picked arbitrarily, we have shown that D is also surjective. Theorem A.4 now grants
us a continuously differentiable function on a neighborhood of k0 that yields an eigenpair of the same
band. So, we can see that speaking of bands as functions as suggested in the previous section is not
entirely unwarranted.

The dispersion relation can also be viewed as the set of zeros of an entire function of order d in � d+1

by Theorem 4.4.2 of [Kuc93].

20 CHAPTER 2. EIGENPROBLEMS WITH PERIODIC COEFFICIENTS

Chapter 3

Wannier functions

3.1 Definition

At this point, we have applied the Floquet transform to our whole-space problem, and we found a number
of eigenfunctions ψn,k ∈ L2

ε(P) which depend on an extra parameter k, since they live in the image space
of the transform. It is natural to ask what we get when we try to use the inverse Floquet transform on
these functions to convert them “back” into functions on the whole space and make them independent
of k. The resulting functions are called Wannier functions and are the subject of this chapter.

Definition 3.1 The nth Wannier function wn,0 centered at 0 is defined as

wn,0(r) := U−1(ψn) ∈ L2
ε(

� d).

More generally, the nth Wannier function wn,R centered at R is defined as

wn,R(r) := wn,0(r −R).

Using Theorem 2.7, the function wn,R can also be defined directly:

wn,R(r) =
1

λ(B)

∫

B

ψn,k(r −R)dk =
1

λ(B)

∫

B

e−ik·Rψn,k(r)dk.

By their direct definition, Wannier functions can be viewed as an “average” electromagnetic field at a
certain position. They find their most common use as a localized basis set for the expansion of wave
functions in periodic systems. We will investigate the use of Wannier functions as basis sets in Section 3.3.
In many ways, the “Wannier” (or “real-space”) view is complementary to the “k-space” (or “reciprocal-
space”) view developed in the previous chapter.

Wannier functions were first introduced by Gregory H. Wannier in 1937. In his work on the large
exciton [Wan37], he found himself in need of localized states to describe the systems he was considering.
The direct definition of Wannier functions also arises almost naturally in conjunction with the LCAO
approximation of entire-crystal wave functions in solid state theory, where these wave functions are
approximated as Linear Combinations of Atomic Orbitals. (see [AM76], Chapter 10)

By their definition, Wannier functions can be expanded in Bloch functions according to Theorem 2.5
as

(̃wn,R)ν = δn,νe
−ik·R. (3.1)

Blount [[Blo62], Section 5] states that Wannier functions can also be defined by variational means. They
are the functions ψ to minimize the integral

I := 〈H(k)ψ, ψ〉
Rd

under the conditions ‖ψ‖ = 1 and 〈TRψ, ψ〉Rd = 0. TR is a translation by a lattice vector R ∈ L.

21

22 CHAPTER 3. WANNIER FUNCTIONS

3.2 Localization of Wannier functions: Basics

Unfortunately, Wannier functions have a serious drawback if computed näıvely by means of Defintion
3.1–their behavior is quite erratic, and they are not well-localized. This stems from the fact that every
Bloch function has its own indeterminate phase factor. The functions eiϕn(k)ψn,k for any ϕn(k) are
equivalent to just ψn,k from the point of view of Section 2.3. This non-uniqueness can be circumvented
to some extent by choosing the phases of ψn,k such that for a given point r

argψn,k(r) = argψn,k′(r) for k,k′ ∈ B. (3.2)

Equation (3.2) works fine as a localizer for Wannier functions as long as the nth band is energetically
separate from all other bands. But it fails for two or more energetically entangled bands even if appro-
riately generalized. Our next best move to achieve localization is to generalize the notion of a Wannier
function. We lift the constraint that the nth Wannier function be computed exclusively from nth band
Bloch modes, a postulate that is ambiguous in the presence of degeneracies anyway. Assume, for sim-
plicity, that the bands 1, . . . , J are entangled. We introduce mixing matrices Uk ∈ � J×J for each k ∈ B
and new “mixed” or “generalized” Bloch modes by

ψn,k,gen :=

J∑

m=1

Uk

n,mψm,k.

The Wannier functions computed by means of Definition 3.1 from the ψn,k,gen are called generalized
Wannier functions . We require that the Uk are unitary to keep the ψn,k,gen orthonormal. By adjusting
the Uk, it is possible to fix the phases of the Bloch functions sufficiently to make the Wannier functions
localized even in the presence of entanglement. Much of the rest of this thesis is dedicated to developing
a minimization procedure to find the right set of Uk. Marzari and Vanderbilt, authors of the seminal
paper [MV97] from 1997, whose approach we are following here, were the first to compute maximally
localized Wannier functions in this generalized sense. The idea of localizing Wannier functions by means
of choosing Bloch mode phases is older, however. It dates back to at least Blount’s paper [Blo62] from
1962, and was probably mentioned before then.

Marzari and Vanderbilt also make the conjecture that maximally localized Wannier functions should
have no more than a constant overall phase and should be purely real otherwise.

While we have generously used the term before now, what exactly do we mean by “localized”? We
choose it to mean “having minimal second moment”. The second moment of the nth Wannier function
would be

Ωn :=
〈
r2wn,0, wn,0

〉
Rd − | 〈rwn,0, wn,0〉Rd |2. (3.3)

Since our situation involves not just one band, but a set of J bands, our aim is to have

Ω :=

J∑

n=1

Ωn → min .

The vector 〈rwn,0, wn,0〉Rd has a meaning beyond its role in the second moment: it can be understood
as the nth Wannier center .

3.3 Wannier functions as a basis set

The idea to use maximally-localized Wannier functions in the sense of Marzari and Vanderbilt as basis
sets for photonic crystal computations was developed independently in [BMGM+03] and [WC03]. To
successfully compute the inner products involved in a Ritz-Galerkin treatment of such computations, it is
of critical importance that good localization is achieved, because otherwise the spatial integration cutoff
will lead to severe imprecision. Except for this difficulty, Wannier functions have many properties that
make them well-suited for computation, such as being orthonormal:

Theorem 3.2 The Wannier functions are n- and R-orthogonal, i.e.

〈wn,R, wm,R′〉
Rd = δm,nδR,R′ .

3.4. LOCALIZATION METHODS 23

Proof Without loss of generality, assume R′ = 0.

〈wn,R, wm,0〉Rd =
1

λ(B)2

〈∫

B

e−ik·Rψn,k(r)dk,

∫

B

ψm,k′(r)dk′

〉

Rd

=
1

λ(B)2

∫

B

∫

B

e−ik·R
〈
ψn,k, ψn,k′

〉
Rd dkdk

′

=
1

λ(B)2

∫

B

∫

B

e−ik·Rλ(B)δ(k − k′)δn,mdkdk
′

= δm,n
1

λ(B)

∫

B

e−ik·Rdk = δm,nδR,0,

as claimed. �

Theorem 3.3 The Wannier functions form an orthonormal basis of L2
ε(

� d).

Proof Suppose we have an expansion

ϕ(r) =
∑

n

1

λ(B)

∫

B

ϕ̃n(k)ψn,k(r)dk

of a function ϕ ∈ L2
ε(

� d) in Bloch modes according to Theorem 2.5. Next, remember that ϕ̃n is only
defined on B and could be thought of as L̂-periodic. Periodic functions, however, can be conveniently
analyzed using a Fourier series expansion. So, let us consider ϕ̃’s lattice Fourier coefficients

αn,R :=
1

λ(B)

∫

k

eik·Rϕ̃n(k)dk.

Let us now use the αn,R as coefficients in an expansion into Wannier functions and see what happens.

∑

n

∑

R

αn,Rwn,R(r)

=
1

λ(B)2

∑

n

∑

R

∫

B

eik·Rϕ̃n(k)dk

∫

B

e−ik
′·Rψn,k′(r)dk′

(∗)
=

1

λ(B)2

∑

n

∫

B

∫

B

∑

R

ei(k−k
′)·Rϕ̃n(k)ψn,k′(r)dkdk′

=
1

λ(B)2

∑

n

∫

B

∫

B

∑

R

ei(k−k
′)·R

︸ ︷︷ ︸
=δ(k−k′)λ(B)

ϕ̃n(k)ψn,k′(r)dkdk′

=
1

λ(B)

∑

n

∫

B

ϕ̃n(k)ψn,k(r)dk

= ϕ(r)

As in the proof of Theorem 2.7, we will not justify the exchange of the sum and the integral in the step
marked (∗). We will also not worry about the convergence of the Fourier series. So, we have found a way
to expand any function ϕ ∈ L2

ε(
� d) into Wannier functions, as claimed. �

3.4 Localization methods

At present, we are missing the following pieces in order to be able to minimize the spread functional Ω
defined above:

• a computable, discretized term for Ω,

• a gradient of this discretization,

24 CHAPTER 3. WANNIER FUNCTIONS

• and a method to use this information to find a minimum in Ω.

Over the rest of this section and the next chapter, we will develop these tools.

It is quite natural to ask whether we could get by without the gradient information, and thus save
a lot of work. The answer is: not really. Due to the high number of dimensions of the search space, a
gradient-less minimization approach is probably bound to fail (or at least be too expensive to be feasible).
Even for a measly 4 × 4 Brillouin zone mesh with as little as 5 bands per k-point, the resulting search
space has about 42 × 5 = 80 real (not complex) dimensions. (To see this, consider the skew-hermitian
matrices as a local parametrization of the manifold of unitary matrices, as in Section 4.7.) For more
realistic mesh sizes and band counts, any minimization algorithm that does not use gradient information
will likely take too much computational effort, since the information otherwise contained in the gradient
needs to be obtained by regular function evaluations, which is prohibitive in so many dimensions.

Initial attempts made in this work to use line-searches along pseudo-random directions proved futile.
It seems that most directions provide little change at all, and given an already relatively good starting
guess as the one identified in Section 4.8.1, even those directions which do allow change usually only
permit an increase in Wannier function spread.

As a result, we will need to apply a gradient-bound nonlinear minimum search. Two algorithms were
tested: Simple gradient descent with Brent’s method as a line search and a slight modification of the
Polak-Ribière variant of the nonlinear CG minimum search, again with Brent’s method as the line search.
As expected, the CG method provided significant benefits, often cutting the time required to reach a
given threshold more than in half. At the end of the next chapter, we will have developed a variant of
Marzari and Vanderbilt’s method of minimizing Wannier function spread.

Gygi, Fattebert and Schwegler [GFS03] have developed an entirely different approach to minimizing
Wannier function spread: They try to achieve localization not by mixing at the Bloch mode level, but
instead at the Wannier function level. Effectively, their algorithm finds the mixture of all the wn,R such
that the resulting spread is minimal. In their case, the minimum search can be reduced to the problem
of finding a unitary matrix U such that

∑

n

∑

µ,ν:µ6=ν

[UHAnU]2µ,ν → min

for a number of matrices An. This is a generalization of what the Jacobi matrix diagonalization method
is supposed to do, namely the simultaneous diagonalization of all the matrices An. An appropriate
algorithm already exists (see [BGBM93] and the extension in [CS96]) and makes for a somewhat simpler
method than the one developed here. Unfortunately, I was unable to squeeze an implementation and a
thorough analysis of this new method into the schedule of my thesis work.

3.5 The location operator in k-space

In preparation of Chapter 4, we will now find computable expressions for the (otherwise almost incom-
putable) scalar products over all of

� d arising in Equation (3.3). The discussion builds heavily upon
material from [Blo62].

Lemma 3.4 [[Blo62], Appendix A] Let f ∈ L2
ε(

� d) and its expansion in Bloch functions f̃n ∈ L2(B) as
in Theorem 2.5 and also f̃n ∈ C1(B). Further, let the ψn,k be continuously differentiable in k. Then

rf(r) =
1

λ(B)

∫

B

∑

ν

[
ψν,k(r)i∇kf̃ν(k) + ψν,k(r)

∑

ν′

f̃ν′(k) 〈i∇kuν′,k, uν,k〉P

]
dk.

Proof Since the un,k(r) for n ∈ � form an ONB of L2
ε(P) with periodic boundary conditions and

(componentwise) i∇kun,k ∈ L2
ε(P) with periodic BCs, we can expand

i∇kun,k =
∑

n′

un′,k 〈i∇kun,k, un′,k〉P .

3.5. THE LOCATION OPERATOR IN K-SPACE 25

Consider the product gradient

∇k(eik·run,k(r)︸ ︷︷ ︸
=ψn,k(r)

f̃n(k)) = irψn,k(r)f̃n(k) + eik·r
∇k(un,k(r)f̃n(k))

⇔ rψn,k(r)f̃n(k) = −i∇k(ψn(k)f̃n(k)) + ieik·r
∇k(un,k(r)f̃n(k)).

Now, finally, calculate

rf(r) =
1

λ(B)

∫

B

∑

n

rψn,k(r)f̃n(k)dk

=
1

λ(B)

∫

B

∑

n

[−i∇k(eik·run,k(r)f̃n(k)) + eik·ri∇k(un,k(r)f̃n(k))]dk

(∗)
=

1

λ(B)

∫

B

∑

n

eik·r

[
un,k(r)i∇kf̃n(k) + f̃n(k)

∑

n′

un′,k 〈i∇kun,k, un′,k〉P

]
dk

=
1

λ(B)

∫

B

∑

n

[
ψn,k(r)i∇kf̃n(k) + f̃n(k)

∑

n′

ψn′,k 〈i∇kun,k, un′,k〉P

]
dk

=
1

λ(B)

∫

B

∑

n

[
ψn,k(r)i∇kf̃n(k) + ψn,k

∑

n′

f̃n′(k) 〈i∇kun′,k, un,k〉P

]
dk,

where the step marked (∗) uses Corollary A.2 to eliminate the first term, which is possible since ψn,k(r)

is L̂-periodic in k. Also take note of the slightly subtle switching of n↔ n′ in the last step. �

It should be noted that the ψn,k are usually not differentiable in k where several eigenvalues are
degenerate (see Section 6.1 for an elementary example). For our current purposes, we will continue in
the illusion that this is not so. If the extra rigor of taking these discontinuities into account is desired, we
need to reconsider the above proof. All the derivatives may be reinterpreted in the distributional sense
without significantly changing the end result, but the conditions of Corollary A.2 are violated. The usual
approach to this is to temporarily punch holes into the area of integration around these defects in the
integrand and let the radius of these holes go to zero. We assume that there are no sets of discontinuity of
ψn,k with positive Lebesgue measure in B. So if S is a connected set of points where ψn,k is discontinuous,
the surface integral of Theorem A.1 becomes

∫

S

(ψn,k(r)+ − ψn,k(r)−)dS

as the radius of the hole goes to zero, where S is now a “one-sided” surface. In three dimensions, the
surface of integration is still two-dimensional, so if S is a point or locally line-like, then the surface integral
will still be 0. Similarly, point discontinuities cause no worries in two dimensions.

For the final step, we combine Equation (3.1) and Lemma 3.4 to obtain

rwn,0(r) =
1

λ(B)

∫

B

∑

ν

ψν,k(r) 〈i∇kun,k, uν,k〉P dk. (3.4)

Theorem 3.5 [[Blo62], Appendix A] Let ψn,k be continuously differentiable in k. Then

〈rwn,0, wm,R〉Rd =
1

λ(B)

∫

B

eik·R 〈i∇kun,k, um,k〉P dk

and
〈
r2wn,0, wn,0

〉
Rd =

1

λ(B)

∫

B

〈i∇kun,k, i∇kun,k〉P dk.

26 CHAPTER 3. WANNIER FUNCTIONS

Proof All we should have to do now is stick Equation (3.4) into the expectation value calculations. For
the first equality, consider

〈rwn,0, wm,R〉Rd

=
1

λ(B)2

〈∫

B

∑

ν

ψν,k 〈i∇kun,k, uν,k〉P dk,
∫

B

e−ik
′·Rψm,k′dk′

〉

Rd

=
1

λ(B)2

∫

B

∫

B

∑

ν

〈i∇kun,k, uν,k〉P eik
′·R
〈
ψν,k, ψm,k′

〉
Rd dkdk

′

(∗)
=

1

λ(B)

∫

B

∫

B

∑

ν

〈i∇kun,k, uν,k〉P eik
′·Rδν,mδ(k − k′)dkdk′

=
1

λ(B)

∫

B

eik·R 〈i∇kun,k, um,k〉P dk,

where the step marked (∗) uses Theorem 2.6. And for the second one,

〈
r2wn,0, wn,0

〉
Rd

=

〈
1

λ(B)

∫

B

∑

ν

ψν,k 〈i∇kun,k, uν,k〉P dk,
1

λ(B)

∫

B

∑

ν′

ψν′,k′

〈
i∇kun,k′ , uν′,k′

〉
P
dk′

〉

Rd

=
1

λ(B)2

∫

B

∫

B

∑

ν,ν′

〈i∇kun,k, uν,k〉P
〈
uν′,k′ , i∇kun,k′

〉
P

〈
ψν,k, ψν′,k′

〉
Rd dkdk

′

=
1

λ(B)

∫

B

∫

B

∑

ν,ν′

〈i∇kun,k, uν,k〉P
〈
uν′,k′ , i∇kun,k′

〉
P
δν,ν′δ(k − k′)dkdk′

=
1

λ(B)

∫

B

∑

ν

〈i∇kun,k, uν,k〉P 〈uν,k, i∇kun,k〉P dk

=
1

λ(B)

∫

B

〈
∑

ν

〈i∇kun,k, uν,k〉P uν,k, i∇kun,k

〉

P

dk

=
1

λ(B)

∫

B

〈i∇kun,k, i∇kun,k〉P dk,

as claimed. �

Chapter 4

Localization in k-space

In this chapter, we will explore the details of Marzari and Vanderbilt’s approach to maximally localized
Wannier functions. This chapter constitues an attempt to give a readable introduction to the method
presented in [MV97]. A nonlinear CG algorithm for spread minimization is explicitly presented. This
algorithm is likely to be similar to what Marzari and Vanderbilt implement in their code [MVS04].

4.1 The spread functional

We are considering the second-moment functional

Ω :=
∑

n

[〈
r2wn,0, wn,0

〉
Rd − | 〈rwn,0, wn,0〉Rd |2

]

in which we add an extra term to get

Ω = Ω−
∑

n

∑

R,m:[R,m]6=[0,n]

[
| 〈rwm,R, wn,0〉Rd |2 − | 〈rwn,0, wm,R〉Rd |2

]

=
∑

n

〈r2wn,0, wn,0

〉
Rd −

∑

R,m

| 〈rwn,0, wm,R〉Rd |2

+
∑

n

∑

R,m:[R,m]6=[0,n]

| 〈rwn,0, wm,R〉Rd |2.

Following Marzari, we name subterms of this decomposition as follows, splitting the last part into diagonal
“D” and off-diagonal “OD” parts.

ΩI :=
∑

n

〈r2wn,0, wn,0

〉
Rd −

∑

R,m

| 〈rwn,0, wm,R〉Rd |2

 ,

ΩOD :=
∑

n,m:n6=m

∑

R

| 〈rwn,0, wm,R〉Rd |2,

ΩD :=
∑

n

∑

R6=0

| 〈rwn,0, wn,R〉Rd |2.

In all cases, we are considering a number of J bands, so that both m and n run from 1, . . . , J . The “I”
suffix on ΩI indicates that ΩI is invariant under changes of the unitary mixing matrices, as we will see in
the following theorem:

Theorem 4.1 The functional ΩI does not vary under unitary mixing of the Bloch functions: The map-
ping

un,k 7→
J∑

ν=1

[Uk]n,νuν,k

with (potentially k-dependent) unitary matrices Uk ∈ � n×n leaves ΩI unchanged.

27

28 CHAPTER 4. LOCALIZATION IN K-SPACE

Proof [This proof was given by my advisor, Prof. Dörfler.] Since {wm,R}m,R consitutes an ONB of
L2
ε(

� d) (cf. Theorem 3.3), we may write

J∑

n=1

〈
r2wn,0, wn,0

〉
Rd =

J∑

n=1

〈rwm,0, rwn,0〉Rd =
J∑

n=1

‖rwn,0‖2
�

d

=

J∑

n=1

∞∑

m=1

∑

R

| 〈rwn,0, wm,R〉Rd |2

and thus, using Theorem 3.5,

ΩI =
J∑

n=1

[
〈
r2wn,0, wn,0

〉
Rd −

J∑

m=1

∑

R

| 〈rwn,0, wm,R〉Rd |2
]

=

J∑

n=1

∞∑

m=1

∑

R

| 〈rwn,0, wm,R〉Rd |2 −
J∑

n=1

J∑

m=1

∑

R

| 〈rwn,0, wm,R〉Rd |2

=

J∑

n=1

∞∑

m=J+1

∑

R

| 〈rwn,0, wm,R〉Rd |2

=

J∑

n=1

∞∑

m=J+1

∑

R

1

λ(B)2

∫

B

∫

B

ei(k−k
′)·R 〈i∇kun,k, um,k〉P

〈
i∇k′un,k′ , um,k′

〉
P

∗
dkdk′

=

J∑

n=1

∞∑

m=J+1

1

λ(B)2

∫

B

∫

B

∑

R

ei(k−k
′)·R

︸ ︷︷ ︸
=δ(k−k′)λ(B)

〈i∇kun,k, um,k〉P
〈
i∇k′un,k′ , um,k′

〉
P

∗
dkdk′

=
J∑

n=1

∞∑

m=J+1

1

λ(B)

∫

B

〈i∇kun,k, um,k〉P 〈i∇kun,k, um,k〉P
∗dk.

Unitary mixing of the first J bands turns the scalar product into

〈∇un,k, um,k〉P 7→
〈

∇k

[
∑

ν

[Uk]n,νuν,k

]
, um,k

〉

P

=

〈
∑

ν

∇k[Uk]n,νuν,k +
∑

ν

[Uk]n,ν∇kuν,k, um,k

〉

P

=
∑

ν

∇k[Uk]n,ν 〈uν,k, um,k〉P +
∑

ν

[Uk]n,ν 〈∇kuν,k, um,k〉P

= ∇k[Uk]n,m +
∑

ν

[Uk]n,ν 〈∇kuν,k, um,k〉P .

By virtue of Corollary A.2, the first term disappears as soon as it is placed under the Brillouin-zone
integral, and we obtain

ΩI 7→ 1

λ(B)

∞∑

m=J+1

∑

ν,ν′

J∑

n=1

[Uk]n,ν [(U
k)

∗
]n,ν′

︸ ︷︷ ︸
=[Id]ν,ν′=δν,ν′

∫

B

〈∇kuν,k, um,k〉P 〈∇kuν′,k, um,k〉P
∗
dk

=

∞∑

m=J+1

∑

ν

∫

B

〈∇kuν,k, um,k〉P 〈∇kuν′,k, um,k〉P
∗
dk

= ΩI,

as claimed. �

The fact proven in the previous theorem is not essential to our further studies, but it is helpful within
the implementation.

4.2. A MESH IN K-SPACE 29

Figure 4.1. A 6 × 6 Monkhorst-Pack mesh in a simple quadratic Brillouin zone. The mesh consists of the
points marked “×”.

4.2 A mesh in k-space

Our next goal will be to obtain an easily computable expression for Ω. As is already apparent from
Theorem 3.5, integrals over the Brillouin zone will play a big role. Monkhorst and Pack’s [MP76] approach
to computing such integrals is still the most widespread one today. We will only use the grid generation
part of their work to find a regularly spaced set K of points within the Brillouin zone, as illustrated in
Figure 4.1. In order to compute the value of a Brillouin zone integral, we will typically replace

1

λ(B)

∫

B

f(k)dk with
1

N

∑

k∈K

f(k),

where N := #K. To simplify the notation, a sum over k shall always be understood to run over K for
the remainder of this chapter.

4.3 Finite difference formulae in k-space

Let S := {b1, . . . , bn} be the “stencil” of vectors connecting a point in k-space to its nearest neighbors in
the k-space discretization discussed above. To approximate k-gradient expressions by finite differences
on the mesh K, we define a discretized gradient

∇
4f(k) :=

∑

b∈S

wbb[f(k + b)− f(k)],

with weights wb ∈
�

. Note that, for symmetry reasons, these weights only vary with the Euclidean length
of b and should be viewed as “per-shell” weights. In the simple-cubic lattice considered here, a single
shell will always suffice. In general, for the gradient expression to have a consistency order of at least 1,
we need to postulate ∑

b∈S

wbbµbν = δµ,ν ⇔
∑

b∈S

wbb⊗ b = Id,

30 CHAPTER 4. LOCALIZATION IN K-SPACE

which necessitates several shells for more complex three-dimensional meshes. To see the need for the
above condition, consider a linear function f : B → � which maps k 7→ f0 + g · k:

gν
!
= [∇4f(k)]ν =

∑

b∈S

wbbν [f(k + b)− f(k)]

=
∑

b∈S

wbbν [f0 + g · (k + b)− f0 − g · k]

=
∑

b∈S

wbbν [g · b] =
∑

b∈S

wbbν
∑

µ

gµbµ

=
∑

µ

gµ
∑

b∈S

wbbνbµ

︸ ︷︷ ︸
=δµ,ν

= gν .

So, a consistency order of 1 holds if the weights and directions obey the condition above. As a convention
for the rest of this chapter, a sum over b shall always be understood as running over all b ∈ S.

Lemma 4.2 For the weights and directions wb and b ∈ S introduced here and an arbitrary vector a ∈ � d,
we have ∑

b

wb|b · a|2 = a2.

Proof By simple calculation:

∑

b

wb|b · a|2 =
∑

b

wb(b · a)(b · a)∗ = a

(
∑

b

wbb⊗ b

)
a∗ = a2,

which confirms our claim. �

As an easy consequence, consider a discretization of |∇f(k)|2 for the affine f defined above, where
we would expect g2 :

|∇f(k)|4,2 :=
∑

b

wb|f(k + b)− f(k)|2

=
∑

b

wb|b · g|2 = g2.

Despite the tempting looks, in general we have |∇4f(k)|2 6= |∇f(k)|4,2.

|∇4f(k)|2 =

[
∑

b

wbb[f(k + b)− f(k)]

]
·
[
∑

b′

wb′b
′[f(k + b′)− f(k)]

]∗

=
∑

b,b′

wbb[f(k + b)− f(k)] · wb′b′[f(k + b′)− f(k)]
∗

=
∑

b

wb
∑

b′

wb′b · b′︸ ︷︷ ︸
6=δ

b,b′

[f(k + b)− f(k)][f(k + b′)− f(k)]
∗

6=
∑

b

wb|f(k + b)− f(k)|2 = |∇f(k)|4,2.

4.4 The discretized spread functional

Before we delve into the actual discretization procedure, we define

Mk,b
n,m := 〈un,k+b, um,k〉P . (4.1)

4.5. A PROBLEM AND ITS SOLUTION 31

Corollary 4.3 M is L̂-periodic, i.e. Mk+K,b = Mk,b for k ∈ K, K ∈ L̂, b ∈ S.

Proof For K ∈ L̂, we have

un,k+K(r) = e−i(k+K)·rψn,k+K(r) = e−i(k+K)·rψn,k(r) = e−iK·run,k(r).

So,
Mk+K,b
n,m = 〈un,k+K+b, um,k+K〉P =

〈
e−iK·run,k+b, e

−iK·rum,k
〉
P

= Mk,b
n,m,

as claimed. �

Using the results from Section 4.3, the nth Wannier center according to Theorem 3.5

〈rwn,0, wn,0〉Rd =
1

λ(B)

∫

B

〈i∇kun,k, un,k〉P dk

may be approximated as

〈rwn,0, wn,0〉Rd

4

∼
:=

i

N

∑

k

〈
∇

4
k
un,k, un,k

〉
P

=
i

N

∑

k

〈
∑

b

wbb[un,k+b − un,k], un,k

〉

P

=
i

N

∑

k,b

wbb[〈un,k+b, un,k〉P − 〈un,k, un,k〉P]

=
i

N

∑

k,b

wbb[Mk,b
n,n − 1].

We will see shortly that this definition still has some problems, so it is marked as “preliminary” by a “∼”
subscript. Following the |∇f(k)|4,2 pattern from Section 4.3, the r2 component of the spread functional
discretizes to

〈
r2wn,0, wn,0

〉
Rd

4

∼
:=

1

N

∑

k

〈∇un,k,∇kun,k〉P
4

=
1

N

∑

k,b

wb 〈un,k+b − un,k, un,k+b − un,k〉P

=
1

N

∑

k,b

wb
[
〈un,k+b, un,k+b〉P − 2 Re 〈un,k+b, un,k〉P + 〈un,k, un,k〉P

]

=
1

N

∑

k,b

wb
[
2− 2 ReMk,b

n,n

]
.

4.5 A Problem and its Solution

These two expressions would be all nice and well if it wasn’t for one small defect. If we translate all
Bloch modes by a constant vector R ∈ L, we would expect the discretized Wannier centers and spreads
to reflect these changes just like their analytic counterparts do, namely:

〈rwn,0, wn,0〉Rd

4 7→ 〈rwn,0, wn,0〉Rd

4
+ R,

〈
r2wn,0, wn,0

〉
Rd

4 7→
〈
r2wn,0, wn,0

〉
Rd

4
+ 2〈rwn,0, wn,0〉Rd

4 ·R +R2.

However, for the discretizations marked with “∼”, this is not the case. Since a translation of the Bloch
modes by R amounts to changing ψn,k(r) 7→ eik·Rψn,k(r) for all k and hence to changing Mk,b

n,n 7→
eib·RMk,b

n,n, we currently get

〈rwn,0, wn,0〉
�

d,trans
4

∼
=

i

N

∑

k,b

wbb[eib·RMk,b
n,n − 1],

32 CHAPTER 4. LOCALIZATION IN K-SPACE

which does not simplify further. We will change around the terms in the series expansion of Mk,b
n,n past the

second and third order for these two expressions to make things work out, while aiming for a logarithmic
term in order to transform a multiplication by e−ib·R into the required addition. In order to do this, we
need to understand the series involved. Suppose

Mk,βb

n,n = 1 + iµ1β +
1

2
µ2β

2 +O(β3).

We will prove µ1 ∈
�

, while µ2 may be an arbitrary complex number. Consider the Taylor expansion

un,k+βb = un,k + βb ·∇kun,k +O(β2)

where the derivative is understood to be evaluated at β = 0 and b is fixed. Then, consider

1 = 〈un,k+βb, un,k+βb〉P
1 = 〈un,k + βb ·∇kun,k, un,k + βb ·∇kun,k〉P +O(β2)

1 = 〈un,k, un,k〉P + 2βRe 〈b ·∇kun,k, un,k〉P +O(β2)

0 = 2βRe 〈b ·∇kun,k, un,k〉P︸ ︷︷ ︸
=iµ1

+O(β2),

which proves Imµ1 = 0. Considering the expressions we obtained for 〈rwn,0, wn,0〉Rd

4
and

〈
r2wn,0, wn,0

〉
Rd

4
,

we have

Mk,βb

n,n − 1 = iµ1β +O(β2),

2− 2 ReMk,βb

n,n = 2− 2[1 +
1

2
Re[µ2]β

2] = −Re[µ2]β
2 +O(β3).

While aiming to maintain the right hand sides of the equations above, we can change the left hand sides
to read

i Im lnMk,βb

n,n = iµ1β +O(β2),

1− |Mk,βb|2 + µ2
1β

2 = 1−
(

1 + iµ1β +
1

2
µ2β

2

)(
1− iµ1β +

1

2
µ2

∗β2

)
+ µ2

1β
2

= 1−
(

1− iµ1β +
1

2
µ2

∗β2 + iµ1β + µ2
1β

2 +
1

2
µ2β

2

)
+ µ2

1β
2 +O(β3)

= −Re[µ2]β
2 +O(β3).

If we modify the two parts of the spread functional to their final forms

〈rwn,0, wn,0〉Rd

4
:=

i

N

∑

k,b

wbb[i argMk,b
n,n] = − 1

N

∑

k,b

wbb argMk,b
n,n,

〈
r2wn,0, wn,0

〉
Rd

4
:=

1

N

∑

k,b

wb

[
1− |Mk,b

n,n|2 +
[
argMk,b

n,n

]2]
,

we can see that

〈rwn,0, wn,0〉
�

d,trans
4

=
1

N

∑

k,b

wbb[b ·R − argMk,b
n,n]

= 〈wn,0, rwn,0〉Rd

4
+ R,

and, using Lemma 4.2,

〈
r2wn,0, wn,0

〉 �
d,trans

4
=

1

N

∑

k,b

wb

[
1− |Mk,b

n,n|2 +
[
argMk,b

n,n − b ·R
]2]

=
〈
r2wn,0, wn,0

〉
Rd

4
+

1

N

∑

k,b

wb
[
−2b ·R argMk,b

n,n + (b ·R)2
]

=
〈
r2wn,0, wn,0

〉
Rd

4
+ 2〈rwn,0, wn,0〉Rd

4 ·R +
1

N

∑

k,b

wb(b ·R)2

=
〈
r2wn,0, wn,0

〉
Rd

4
+ 2〈rwn,0, wn,0〉Rd

4 ·R +R2,

4.6. DECOMPOSITION OF THE NEW SPREAD FUNCTIONAL 33

so these new expressions fulfill the above requirements.

4.6 Decomposition of the new spread functional

To be able to attack the expressions for ΩI and ΩOD, we will need an expression for

∑

R

| 〈rwn,0, wm,R〉Rd |2 =
∑

R

〈rwn,0, wm,R〉Rd 〈rwn,0, wm,R〉Rd

∗

=
∑

R

1

λ(B)

∫

B

eik·R 〈i∇kun,k, um,k〉P
[

1

λ(B)

∫

B

eik
′·R
〈
i∇kun,k′ , um,k′

〉
P

]∗
dk′dk

=
∑

R

1

λ(B)

∫

B

eik·R 〈i∇kun,k, um,k〉P
[

1

λ(B)

∫

B

e−ik
′·R
〈
i∇k′un,k′ , um,k′

〉
P

∗
]
dk′dk

=
1

λ(B)2

∫

B

〈i∇kun,k, um,k〉P
∫

B

〈
i∇k′un,k′ , um,k′

〉
P

∗∑

R

ei(k−k
′)·R

︸ ︷︷ ︸
=δ(k−k′)λ(B)

dk′dk

=
1

λ(B)

∫

B

| 〈i∇kun,k, um,k〉P |2dk,

which we discretize by the |∇ · |4,2 scheme from Section 4.3:

∑

R

| 〈rwn,0, wm,R〉Rd |4,2∼
:=

1

N

∑

k

| 〈∇kun,k, um,k〉P |
4,2

=
1

N

∑

k

∑

b

wb|Mk,b
n,m − δm,n|2.

In order to match the corrections from Section 4.5, we need to make some changes:

∑

R

| 〈rwm,R, w0,n〉Rd |4,2 :=

{ 1
N

∑
k,b wb[argMk,b

n,n]2 m = n,
1
N

∑
k,b wb|Mk,b

m,n|2 m 6= n.

This enables us to derive formulae for Ω4
I and Ω4

OD:

Ω4
I :=

∑

n

〈r2wn,0, wn,0

〉
Rd

4 −
∑

R,m

| 〈rwn,0, wm,R〉Rd |4,2

=
1

N

∑

n

∑

k,b

wb

1− |Mk,b

n,n|2 +
[
argMk,b

n,n

]2 −
∑

m,n:m6=n

|Mk,b
n,m|2 − [argMk,b

n,n]2

=
1

N

∑

k,b

wb

[
J −

∑

m,n

|Mk,b
n,m|2

]
,

Ω4
OD :=

∑

m,n:m6=n

∑

R

| 〈rwn,0, wm,R〉Rd |4,2 =
1

N

∑

m,n:m6=n

∑

k,b

wb|Mk,b
n,m|2.

Adding the above two expressions gives a particularly simple result:

Ω4
I,OD := Ω4

I + Ω4
OD =

1

N

∑

k,b

wb

J −

∑

m,n

|Mk,b
n,m|2 +

∑

m6=n

|Mk,b
n,m|2

=
1

N

∑

k,b

wb
∑

n

[
1− |Mk,b

n,n|2
]
.

34 CHAPTER 4. LOCALIZATION IN K-SPACE

As preparation for the calculations leading up to our expression for Ω4
D , we prove the equality (that again

uses Lemma 4.2)

1

N

∑

k,b

wb

[
argMk,b

n,nb · 〈rwn,0, wn,0〉Rd + (b · 〈rwn,0, wn,0〉Rd

4
)2
]

= 〈rwn,0, wn,0〉Rd

4 · 1

N

∑

k,b

wbb argMk,b
n,n +

1

N

∑

k,b

(b · 〈rwn,0, wn,0〉Rd

4
)2

= 〈rwn,0, wn,0〉Rd

4 · 1

N

∑

k,b

wbb argMk,b
n,n +

∑

b

(b · 〈rwn,0, wn,0〉Rd

4)2

= 〈rwn,0, wn,0〉Rd

4 ·
(
−〈rwn,0, wn,0〉Rd

4
)

+ |〈rwn,0, wn,0〉Rd

4|2

= 0.

Recall that

ΩD :=
∑

n

∑

R6=0

| 〈rwn,0, wn,R〉Rd |2.

In order to make use of the expression derived at the beginning of this section, we rewrite this slightly
and define

Ω4
D :=

∑

n

[
∑

R

| 〈rw0,n, wm,R〉Rd |4,2 − |〈rwn,0, wn,0〉Rd

4|2
]

=
∑

n

1

N

∑

k,b

wb[argMk,b
n,n]2 − 1

N2

∣∣∣∣∣∣

∑

k′,b′

wb′b
′ argMk

′,b′

n,n

∣∣∣∣∣∣

2

=
1

N

∑

n

∑

k,b

wb[argMk,b
n,n]2 − 1

N

∑

k,b

wbb argMk,b
n,n ·

∑

k′,b′

wb′b
′ argMk

′,b′

n,n

=
1

N

∑

n

∑

k,b

wb argMk,b
n,n

argMk,b

n,n − b · 1

N

∑

k′,b′

wb′b
′ argMk

′,b′

n,n

=
1

N

∑

n

∑

k,b

wb

[
[argMk,b

n,n]2 + argMk,b
n,nb · 〈wn,0, rwn,0〉Rd

4
]

=
1

N

∑

n

∑

k,b

wb

[
[argMk,b

n,n]2 + 2 argMk,b
n,nb · 〈wn,0, rwn,0〉Rd

4 + (b · 〈wn,0, rwn,0〉Rd

4)2
]

=
1

N

∑

n

∑

k,b

wb

[
argMk,b

n,n + b · 〈wn,0, rwn,0〉Rd

4
]2
.

4.7 The gradient of the spread functional

We are dealing with a function Ω : (� J×J)K → �
whose value we are asked to minimize. We choose to

do so by means of a gradient descent. But what is a gradient in this situation? Just the fact that Ω4
I,OD

uses the absolute value of a complex number (and thus a complex conjugation) is a hint at the fact that
Ω is not differentiable in the holomorphic sense. Fortunately, it is only real-valued. So, the best thing
we can hope for in this case is to have partial derivatives like ∂Ω/∂Re[Uk

m,n] and ∂Ω/∂ Im[Uk
m,n]. Any

“holomorphic” derivative of Ω is likely ill-defined.

In what follows, we will examine two approaches of dealing with this problem. Both will consist of
giving an expression that will predict a “small change” dΩ of the spread functional resulting from a small
change in the mixing matrices dUk. In regular real analysis in

� n, you can take an inner product ∇f ·x
of a gradient ∇f and a vector x to predict how a scalar function’s value might change when moving in
the direction of x. In this case, the gradient is defined through partial derivatives. Here, we will go the

4.7. THE GRADIENT OF THE SPREAD FUNCTIONAL 35

opposite route. We will define the gradient vector by the condition that

∇f(x0) · x !
= lim
t→0

f(x0 + tx)− f(x0)

t
,

for any x, and not by partial derivatives at all. Since our “points” and “directions” are really k-dependent
complex-valued matrices, it is not at all clear how this inner product “·” should be defined. In fact, two
completely different approaches exist, yielding different algorithms with wildly different performance
characteristics. We will present each in turn, beginning with an approach that is closer to the classical
view of partial derivatives.

4.7.1 A straightforward approach to the gradient

When differentiating a function Ω : � → �
, we might be led to write the two partial derivatives

∂Ω(x)/∂Rex and ∂Ω(x)/∂ Imx as a single complex number ∂Ω(x)/∂Rex + i∂Ω(x)/∂ Imx). But note
the subtlety here. This derivative looks just like a complex number and is temptingly easy to confuse
with a complex derivative, but in fact it is a gradient vector in

� 2 that just happens to use complex
notation You should especially observe that this kind of derivative is not � -linear.

As mentioned above, the defining demand that we place on a gradient vector is that computing
an inner product of the gradient and an arbitrarily chosen unit simple vector in (� J×J)K will yield the
directional derivative of Ω in the given direction. The analogy with

� 2 helps and leads us to the definition

〈·, ·〉
∇Ω : (� J×J)K × (� J×J)K → �

〈A,B〉
∇Ω :=

1

λ(B)

∫

B

∑

m,n

Ak

m,n ∗Bk

m,ndk ≈
1

N

∑

k

∑

m,n

Ak

m,n ∗Bk

m,n

where (a+ ib) ∗ (c+ id) := ac+ bd. A few trivial properties:

Proposition 4.4 For A,B,C ∈ (� J×J)K,

a) 〈A+B,C〉
∇Ω = 〈A,C〉

∇Ω + 〈B,C〉
∇Ω,

b) For α ∈ �
, 〈αA,B〉

∇Ω = α 〈A,B〉
∇Ω,

c) 〈A,B〉
∇Ω = 〈B,A〉

∇Ω,

d) 〈A,A〉
∇Ω > 0 and 〈A,A〉

∇Ω = 0⇔ A = 0.

For A,B,C,D ∈ (
� J×J)K, 〈A+ iB,C + iD〉

∇Ω = 〈A,C〉
∇Ω + 〈B,D〉

∇Ω.

In other words, 〈·, ·〉
∇Ω is an

�
-linear inner product on a � -valued space.

Lemma 4.5

a) For A,B ∈ (
� J×J)K with Ak = −(Ak)

T
and Bk = (Bk)

T
for k ∈ K,

〈A,B〉
∇Ω = 0.

b) For A,B ∈ (� J×J)K with Ak = −(Ak)
H

and Bk = (Bk)
H

for k ∈ K,

〈A,B〉
∇Ω = 0.

Proof All this is straightforward calculation:

a) For a, b ∈ �
, a ∗ b = ab.

〈A,B〉
∇Ω =

1

λ(B)

∫

B

∑

[m,n]:m<n

A

k

m,nB
k

m,n + Ak

n,m︸ ︷︷ ︸
=−Ak

m,n

Bk

n,m︸ ︷︷ ︸
=Bk

m,n

+

∑

m

Ak

m,m︸ ︷︷ ︸
=0

Bk

m,m

 dk = 0.

36 CHAPTER 4. LOCALIZATION IN K-SPACE

b) Let A = AR + iAI and B = BR + iBI with AR, AI , BR, BI ∈ (
� J×J)K. Then AR = −(AR)

T
,

AI = (AI)
T
, BR = (BR)

T
, BI = −(BI)

T
.

〈A,B〉
∇Ω =

〈
AR + iAI , BR + iBI

〉
∇Ω

=
〈
AR, BR

〉
∇Ω

+
〈
AI , BI

〉
∇Ω

= 0. (using a))

�

We will forge ahead with this definition for now, and consider the alternative definition afterwards.

4.7.2 Small changes to U
k

Right now, our goal is to find out what happens to Ω if we apply a small change to our mixing matrix U ,
in the hopes of finding changes that minimize it. Strictly speaking, U has to be unitary, so any change
we make to it had better not destroy this property. If we are going to perform a gradient descent, we
need to find a way to stay within this set. A common local parametrization of the set of unitary matrices
uses matrix exponentials of skew-hermitian matrices. This is easily verified; given a skew-hermitian W :

exp(W)H expW = exp(WH) expW = exp(−W) expW = Id .

(and likewise for exp(tW) exp(tW)
H

) Our ultimate goal is to find a gradient matrix G such that

〈W,G〉
∇Ω = lim

t→0

Ω(exp(tW)U)− Ω(U)

t
,

for a given notion of a scalar product 〈·, ·〉
∇Ω. Since we’re dividing by t, we can pretty safely disregard

any components of the numerator of second or higher order in t. For ease of calculation, we will in fact
“only” attempt to calculate G for

〈W,G〉
∇Ω ≈ lim

t→0

Ω((Id +tW)U))− Ω(U)

t
, (4.2)

which is identical with the previous equation to the first order in t. Even this matrix is “roughly” unitary:

(Id +tW)
H

(Id +tW) = Id +(tW)H + tW +O(t2) = Id +O(t2).

This subsection shall be devoted to calculating the expression in the numerator of Equation (4.2), and we
will worry about the final step involving the scalar product later. At the most basic level, Ω is affected
by changes in the mixing matrix U through changes to the periodic Bloch modes. If we let un,k be
the periodic Bloch modes as obtained by mixing throughout the current U , a multiplication by Id+tW
manifests itself as

un,k(r) 7→ un,k(r) +
∑

m

tW k

n,mun,k(r). (4.3)

It is probably useful to note that this definition of tW is the transpose of the matrix dW discussed in
[MV97] —in this way, the above equation retains the conventional index order of matrix multiplication.
We will now estimate the effect of W on Mk,b.

Mk,b
n,m 7→

〈
un,k+b +

∑

ν

tW k+b

n,ν uν,k+b, um,k +
∑

µ

tW k

m,µuµ,k

〉

P

= Mk,b
n,m +

∑

ν

tW k+b

n,ν 〈uν,k+b, um,k〉P +
∑

µ

t[W k

m,µ]
∗ 〈un,k+b, uµ,k〉P +O(t2)

= Mk,b
n,m +

∑

ν

tW k+b

n,ν Mk,b
ν,m +

∑

µ

t[W k

m,µ]
∗
Mk,b
n,µ +O(t2)

= Mk,b
n,m +

∑

ν

tW k+b

n,ν Mk,b
ν,m +

∑

µ

tMk,b
n,µ[(W k)

H
]µ,m +O(t2)

= Mk,b
n,m + [tW k+bMk,b]n,m + [Mk,b(tW k)

H
]n,m +O(t2)

4.7. THE GRADIENT OF THE SPREAD FUNCTIONAL 37

So,

∆Mk,b
n,n = [tW k+bMk,b]n,n + [Mk,b(tW k)

H
]n,n.

This is consistent with formula (44) in [MV97] since (let
M∗ denote ∗ in the convention of [MV97])

• by comparing definition (4.3) and Equation (38) in [MV97],
M

(tW k) = (tW k)
T

and

• by comparing definition (4.1) and Equation (25) in [MV97],
M

(Mk,b) = (Mk,b)
T
.

So, using the skew-hermiticity of tW k in the first equality,

∆Mk,b
n,n = −[

M

(Mk,b)

T M

(tW k)

T

]n,n + [
M

(tW k+b)

T M

(Mk,b)

T

]n,n

= −[
M

(tW k)
M

(Mk,b)]n,n + [
M

(Mk,b)
M

(tW k+b)]n,n =
M

∆Mk,b
n,n.

It is easy to verify that Mk,b = (Mk+b,−b)
H

. In the sequel, we will use

∆Mk,b
n,n = [tW k+b(Mk+b,−b)

H
]n,n + [Mk,b(tW k)

H
]n,n

= [tW k+b(Mk+b,−b)
H

]n,n + [((Mk,b)
H

)
H

(tW k)
H

]n,n

= [tW k+b(Mk+b,−b)
H

]n,n + [tW k(Mk,b)
H

]n,n
∗

.

This is useful since we can substitute k + b 7→ k in a sum over all k ∈ K without changing anything, as
we saw in Corollary 4.3 —the past-boundary terms can be understood to “wrap around” to the other
side, so that we always sum over the same set of k. Likewise, −b 7→ b does not change the terms we sum
over, since b ∈ S implies −b ∈ S. Now, let us consider

∆Ω4
I,OD

= − 1

N

∑

k,b

wb
∑

n

∆
[
|Mk,b

n,n|2
]

= − 1

N

∑

k,b

wb
∑

n

[
|Mk,b

n,n + ∆Mk,b
n,n|2 − |Mk,b

n,n|2
]

= − 2

N

∑

k,b

wb
∑

n

Re[∆Mk,b
n,n[Mk,b

n,n]∗] +O(t2)

≈ − 2

N

∑

k,b

wb
∑

n

Re
[
[tW k+b(Mk+b,−b)

H
]n,n[M

k,b
n,n]∗ + [tW k(Mk,b)

H
]n,n

∗

[Mk,b
n,n]∗

]

= − 2

N

∑

k,b

wb
∑

n

Re
[
[tW k+b(Mk+b,−b)

H
]n,nM

k+b,−b

n,n

]

− 2

N

∑

k,b

wb
∑

n

Re
[
[tW k(Mk,b)

H
]n,n

∗

[Mk,b
n,n]∗

]

= − 2

N

∑

k,b

w|−b|

∑

n

Re
[
[tW k(Mk,b)

H
]n,nM

k,b
n,n

]
− 2

N

∑

k,b

wb
∑

n

Re
[
[tW k(Mk,b)

H
]n,nM

k,b
n,n

]∗

= − 4

N

∑

k,b

wb
∑

n

Re
[
[tW k(Mk,b)

H
]n,nM

k,b
n,n

]

= − 4

N

∑

k,b

wb
∑

n

Re

∑

ν

tW k

n,ν [(Mk,b)
H

]ν,nM
k,b
n,n︸ ︷︷ ︸

Rk,b
ν,n:=

= − 4

N

∑

k,b

wb Re tr
[
tW kRk,b

]
.

38 CHAPTER 4. LOCALIZATION IN K-SPACE

Before we attack ∆ΩD, we will consider this auxiliary calculation, using the same tricks as before:

∆ argMk,b
n,n = Im ∆ lnMk,b

n,n = Im
[
ln(Mk,b

n,n + ∆Mk,b
n,n)− lnMk,b

n,n

]

= Im ln

(
1 +

∆Mk,b
n,n

Mk,b
n,n

)
= Im

∆Mk,b
n,n

Mk,b
n,n

+O(t2)

≈ Im
[tW k+b(Mk+b,−b)

H
]n,n + [tW k(Mk,b)

H
]n,n

∗

Mk,b
n,n

= Im

[
[tW k+b(Mk+b,−b)

H
]n,n

Mk,b
n,n

+
[tW k(Mk,b)

H
]n,n

∗

[[Mk,b
n,n]

∗
]
∗

]

= Im

[
[tW k+b(Mk+b,−b)

H
]n,n

[Mk+b,−b
n,n]

∗

]
− Im

[
tW k(Mk,b)

H

[Mk,b
n,n]

∗

]

= Im

[
∑

ν

tW k+b

n,ν

[(Mk+b,−b)
H

]ν,n

[Mk+b,−b
n,n]

∗

]
− Im

∑

ν

tW k

n,ν

[(Mk,b)
H

]ν,n

[Mk,b
n,n]

∗

︸ ︷︷ ︸
eR

k,b

ν,n:=

= Im[tW k+bR̃k+b,−b]n,n − Im[tW kR̃k,b]n,n.

We can of course simplify

R̃k,b
ν,n =

[(Mk,b)
H

]ν,n

[Mk,b
n,n]

∗ =

[
Mk,b
n,ν

Mk,b
n,n

]∗
.

Homing in on our target, we call

qk,b
n := argMk,b

n,n + b · 〈wn,0, rwn,0〉Rd

4 ∈ �
,

note in passing that

qk+b,−b

n = argMk+b,−b

n,n − b · 〈wn,0, rwn,0〉Rd

4

= arg
[
[Mk,b

n,n]∗
]
− b · 〈wn,0, rwn,0〉Rd

4

= −qk,b
n

as well as, again using Lemma 4.2,

1

N

∑

k,b

wbbq
k,b
n =

∑

k,b

wbb
[
argMk,b

n,n + b · 〈wn,0, rwn,0〉Rd

4
]

=
1

N

∑

k,b

wbb argMk,b
n,n +

∑

b

wbbb · 〈wn,0, rwn,0〉Rd

4

=
1

N

∑

k,b

wbb argMk,b
n,n + 〈wn,0, rwn,0〉Rd

4 = 0

4.7. THE GRADIENT OF THE SPREAD FUNCTIONAL 39

and write

∆Ω4
D

=
1

N

∑

n

∑

k,b

wb∆
[
qk,b
n

]2
=

1

N

∑

n

∑

k,b

wb

[[
qk,b
n + ∆qk,b

n

]2 −
[
qk,b
n

]2]

=
2

N

∑

n

∑

k,b

wbq
k,b
n ∆qk,b

n +O(t2)

≈ 2

N

∑

k,b

wb
∑

n

qk,b
n

[
Im[tW k+bR̃k+b,−b]n,n − Im[tW kR̃k,b]n,n + b ·∆〈wn,0, rwn,0〉Rd

4
]

=
2

N

∑

k,b

wb
∑

n

qk,b
n

[
− Im[tW kR̃k,b]n,n + b ·∆〈wn,0, rwn,0〉Rd

4
]

− 2

N

∑

k,b

wb
∑

n

qk+b,−b

n Im[tW k+bR̃k+b,−b]n,n

=
2

N

∑

k,b

wb
∑

n

qk,b
n

[
− Im[tW kR̃k,b]n,n + b ·∆〈wn,0, rwn,0〉Rd

4
]

− 2

N

∑

k,b

wb
∑

n

qk,b
n Im[tW kR̃k,b]n,n

= − 4

N

∑

k,b

wb
∑

n

qk,b
n Im[tW kR̃k,b]n,n +

∑

n

2

N

∑

k,b

wbq
k,b
n b

︸ ︷︷ ︸
=0

·∆〈wn,0, rwn,0〉Rd

4

= − 4

N

∑

k,b

wb
∑

n

Im

∑

ν

tW k

n,ν q
k,b
n R̃k,b

ν,n︸ ︷︷ ︸
Tk,b

ν,n :=

= − 4

N

∑

k,b

wb Im tr[tWk T k,b]

4.7.3 A first gradient of Ω

We can easily regard any (constant) matrix as k-dependent and use it with the inner product defined
earlier. Since we defined it in a k-averaging way, it simply degrades to

〈A,B〉
∇Ω =

∑

µ,ν

Aµ,ν ∗Bµ,ν .

Let’s start with some notation:

Sym(A) :=
A+AT

2
for real matrices A,

Skew(A) :=
A−AT

2
for real matrices A,

Herm(A) := Sym(Re[A]) + i Skew(Im[A]) for complex matrices A,

with their straightforward extensions to k-dependent matrices. Sym(A) is called the symmetric part of
A, Skew(A) is the skew-symmetric part of A, and Herm(A) is the hermitian part of A. It is easy to see
that these names are appropriate, i.e. that the symmetric part of A really is symmetric and so on.

As a first step towards our desired G, we derive the gradient of a subexpression. Let W := WR+ iW I

40 CHAPTER 4. LOCALIZATION IN K-SPACE

and B := BR + iBI , with WR,W I , BR, BI ∈ � J×J and t ∈ �
. We are trying to find a G such that

〈W,G〉
∇Ω = lim

t→0

Re tr[(W0 + tW)B]−Re tr[WB]

t
= lim
t→0

Re tr[tWB]

t

= Re tr[WB] =
∑

µ

Re[WB]µ,µ

=
∑

µ,ν

Re[Wµ,νBν,µ] =
∑

µ,ν

[
WR
µ,νB

R
ν,µ −W I

µ,νB
I
ν,µ

]

⇒
∑

µ,ν

Wµ,ν ∗Gµ,ν =
∑

µ,ν

[
WR
µ,νB

R
ν,µ −W I

µ,νB
I
ν,µ

]

⇒ G = [BR]
T − i[BI]T = BH .

The last implication stems from the fact that in the fully general case we can choose any W we like,
especially eµ⊗eν and ieµ⊗eν , and thus identify the real and imaginary parts of each entry of the matrix
G one by one. (eµ is the µth unit vector.)

However there’s a hitch: our G needs to be skew-hermitian to fit the bill for our gradient search in a
subsequent step of our gradient descent. We will want to use the matrix−G as the new search directionW .
But for arbitrary matrices B, the hermitian transpose BH is not necessarily skew-hermitian. Fortunately,
the fact that W is skew-hermitian gives us the chance to change G a little so that, thanks to Lemma 4.5,

〈W,G−Herm(G)〉
∇Ω = 〈W,G〉

∇Ω ,

G−Herm(G) = (BR)
T − i(BI)T − Sym((BR)

T
)− i Skew(−(BI)

T
)

= (BR)
T − i(BI)T − (BR)

T
+BR

2
+ i

(BI)
T −BI
2

= Skew((BR)
T
)− i Sym(BI),

which is clearly skew-hermitian as planned. Compared to Equation (41) in [MV97], I believe that this
constitutes an essential difference. Similar to the above deduction,

〈W,G〉
∇Ω = lim

t→0

Re tr[(W0 + tW)B]−Re tr[WB]

t
= lim

t→0

Im tr[tWB]

t

= Im tr[WB] =
∑

µ

Im[WB]µ,µ

=
∑

µ,ν

Im[Wµ,νBν,µ] =
∑

µ,ν

[
WR
µ,νB

I
ν,µ +W I

µ,νB
R
ν,µ

]

⇒
∑

µ,ν

Wµ,ν ∗Gµ,ν =
∑

µ,ν

[
WR
µ,νB

I
ν,µ +W I

µ,νB
R
ν,µ

]

⇒ G = [BI]
T

+ i[BR]
T

= iBH .

Next, we need to fix G′s non-skew-hermiticity:

〈
W,G−Herm((BI)

T
+ iBR)

〉
∇Ω

= 〈W,G〉
∇Ω ,

G−Herm((BI)
T − iBR)) = (BI)

T
+ i(BR)

T − Sym((BI)
T
) + i Skew(BR)

= (BI)
T

+ i(BR)
T − (BI)

T
+BI

2
+ i

BR − (BR)
T

2

= Skew((BI)
T
) + i Sym(BR).

4.7. THE GRADIENT OF THE SPREAD FUNCTIONAL 41

We’re finally able to find a G with

〈W,G〉
∇Ω = lim

t→0

∆Ω

t
= lim
t→0

∆ΩI,OD + ∆ΩD

t

=
4

N

∑

k,b

wb lim
t→0

−Re tr
[
tW kRk,b

]
− Im tr[tW kT k,b]

t

1

N

∑

k

〈
W k, Gk

〉
∇Ω

=
4

N

∑

k,b

wb lim
t→0

−Re tr
[
tW kRk,b

]
− Im tr[tW kT k,b]

t
.

Since this equation needs to hold for any W k, we are free to choose W k in such a way that it is non-zero
for only one k at a time. Thus we can identify the Gk for each k individually. Our problem now takes
the easily solvable form:

〈
W k, Gk

〉
∇Ω

= 4
∑

b

wb lim
t→0

−Re tr
[
tW kRk,b

]
− Im tr[tW kT k,b]

t
.

So,

Gk = 4
∑

b

wb

[
− Skew((ReRk,b)

T
) + i Sym(ImRk,b)− Skew(Im (T k,b)

T
)− i Sym(ReT k,b)

]
.

This result is stands by itself as one possible notion of a “gradient” to be used for minimization. However,
besides common ancestry, it has no relationship whatsoever with the one derived in [MV97]. In practice,
it turns out that the above expression can be used to minimize Ω, but frequently only leads to local
minima. In order to fix this, we will have to consider a different, less obvious inner-product-like expression,
introduced next.

4.7.4 Marzari and Vanderbilt’s gradient of Ω

The fact that the above derivation necessitated a corrective term to make up for the lack of skew-
hermiticity in the gradient is a reason enough to ask whether there is a more “natural” approach that
automatically leads to a skew-hermitian gradient. It turns out that there is, even though I am unaware
of the reason why this might be so.

The key is to define the expression taking the role of the inner product in the following, different
manner:

〈·, ·〉MV
∇Ω : (� J×J)K × (� J×J)K → � ,

〈A,B〉MV
∇Ω :=

1

λ(B)

∫

B

tr[AkBk]dk ≈ 1

N

∑

k

tr[AkBk].

A few things come to mind immediately:

• Definiteness, or rather, lack thereof. 〈A,A〉MV
∇Ω = tr[AA] > 0 is not necessarily true. To see this,

consider A ∈ � 1×1 with A =
(
i
)
, for which 〈A,A〉MV

∇Ω = −1.

• Symmetry. Obviously, 〈A,B〉MV
∇Ω = 〈B,A〉MV

∇Ω.

• � -Linearity. 〈·, ·〉MV
∇Ω is � -linear in both arguments.

• The change that we are trying to predict by means of 〈·, ·〉MV
∇Ω is real-valued. There is no immediate

reason that the value of 〈·, ·〉MV
∇Ω should not also have an imaginary part.

As such, this definition is somewhat unusual, and, by the letter of the mathematical definition, it does
not yield an inner product on (� J×J)K.

Still, we will see that predicting a change in Ω using this construction actually works. For clarity, we
will forgo the k-dependency of the matrices involved, applying our demand that G be chosen such that
for any skew-hermitian W ∈ � J×J and a given B ∈ � J×J

〈W,G〉MV
∇Ω = lim

t→0

Re tr[(W0 + tW)B]−Re tr[WB]

t
= lim
t→0

Re tr[tWB]

t

42 CHAPTER 4. LOCALIZATION IN K-SPACE

yields

〈
W k, GRe

〉MV

∇Ω

!
= lim

t→0

Re tr[tWB]

t
= Re tr[WB]

=
1

2
{tr[WB] + tr[WB]∗}

=
1

2

∑

µ,ν

{
Wµ,νBν,µ +W ∗

µ,νB
∗
ν,µ

}

=
1

2

∑

µ,ν

{
Wµ,νBν,µ −Wν,µB

∗
ν,µ

}

=
1

2

∑

µ,ν

{
Wµ,νBν,µ −Wµ,νB

∗
µ,ν

}

= tr

[
dW

1

2

(
B −BH

)]
=

〈
W,

1

2
(B −BH)

〉MV

∇Ω

.

Of course, choosing GRe := 1/2(B − BH) is an obvious choice, but it is not quite clear that this is the
unique choice. However, I have evidence from the 2× 2 case that this is the only choice that will work
across all W .

Likewise, we compute, once again for any skew-hermitian W ∈ � J×J and a given B ∈ � J×J

〈W,GIm〉MV
∇Ω

!
= lim

t→0

Im tr[tWB]

t
= Re tr[WB]

=
1

2i
{tr[WB]− tr[WB]∗}

=
1

2i

∑

µ,ν

{
Wµ,νBν,µ −W ∗

µ,νB
∗
ν,µ

}

=
1

2i

∑

µ,ν

{
Wµ,νBν,µ +Wν,µB

∗
ν,µ

}

=
1

2i

∑

µ,ν

{
Wµ,νBν,µ +Wµ,νB

∗
µ,ν

}

= tr

[
dW

1

2i

(
B +BH

)]
=

〈
W,

1

2i
(B +BH)

〉MV

∇Ω

,

making GIm := 1/(2i)(B + BH) the obvious choice. Putting these two together, and considering the
k-dependency, the complete equation

〈
W k, Gk

〉
∇Ω

= 4
∑

b

wb lim
t→0

−Re tr
[
tW kRk,b

]
− Im tr[tW kT k,b]

t
for all k ∈ K

gives us

Gk = −4
∑

b

wb

[
Rk,b − (Rk,b)

H

2
+
T k,b + (T k,b)

H

2i

]

= 2
∑

b

wb

[
i(T k,b + (T k,b)

H
)−Rk,b + (Rk,b)

H
]

4.8 Minimizing the spread

In this section, we will put all the puzzle pieces together and describe the whole algorithm used to
minimize the Wannier function spread. Here is a rough outline of the procedure, which we will describe
in more detail later on:

1. Choose an initial (k-dependent) mixing matrix U .

4.8. MINIMIZING THE SPREAD 43

2. Compute the initial inner product matrices Mk,b,(0), set Mk,b ←Mk,b,(0).

3. Set Rlast, D ← −G(U). [begin CG minimization]

4. Repeat the steps i. to vii. until Ω4(U) fails to become smaller in every step by at least some constant
ε for 3 consecutive steps:

i. Compute the gradient G(U) of Ω4,

ii. Perform a line search for the α that minimizes

Ω(exp(α/(4
∑

b

wb)D)U),

using α = 1/2 as a starting guess. Using Brent’s method (chapter 5 of [Bre73]) after finding a
bracket on a minimum works well here,

iii. Update the mixing matrix U ← exp(α/(4
∑

b
wb)D)U and the inner product matrix M ,

iv. R← −G(U),

v. β ← max
(
0,

〈R,R−Rlast〉∇Ω

〈Rlast,Rlast〉∇Ω

)
, [Polak-Ribière formula]

vi. D ← R + βD,

vii. Rlast ← R.

[end CG minimization]

5. Compute the Wannier functions according to

wn,0(r) =
1

N

∑

k

∑

m

Uk

n,mψm,k(r).

6. Verify that wn,0 has a constant overall phase, as conjectured in [MV97], and can be made real-valued
by multiplication by a complex number of absolute value 1. When checking the phase, it may be useful
to disregard elements close to 0.

The nonlinear CG used here was patterned after introductory material in [She94]. Let us elaborate on
some of these steps in more detail.

4.8.1 The starting strategy

To begin our search for maximally-localized Wannier functions, we need a starting guess for our unitary
mixing matrices Uk. In a straightforward manner, we could initialize the Uk as identity matrices (which
are trivially unitary). However, this turns out to be a bad idea.

Consider that the functional Ω is built on finite differences between values associated with the same
band number at adjacent k-vectors. These differences are certainly very sensitive to the band number
assignment at each k-point: If the number assignment at one k-point does not match its neighbor’s
assignment, their difference will not reflect a proper derivative, since the difference will not approach
0 as we let b → 0. The number assignment, however, is part of the minimization problem: At each
k-point, we are free to choose a permutation matrix as a part of Uk. In the face of degeneracies and
general erratic band behavior, this numbering is notoriously hard to guess, especially if the Brillouin
Zone discretization is fairly coarse. To make matters worse, CG is built for differentiable optimization,
but picking a permutation matrix at each k-point is not even a continuous optimization problem! As a
result, it would be foolish to expect the CG minimization step to be of any help in this matter. Without
a good starting guess for the Uk, the minimization problem of Ω4 is bound to fail or get stuck in a local
minimum.

So, what should we choose? Intuitively, Gaussian bell curves are nicely localized functions which
at least partly resemble the functions we are looking for. So, let us go with those. Since we need a
few different Gaussians, we will randomly pick µm ∈ [−0.9, 0.9]d (in coordinates relative to B(L)) as
the center of the Gaussian and σm,n ∈ [0.1,min(µm,n, 1 − µm,n)] as the second moment (for the band
number m = 1, . . . , J and the coordinate n = 1, . . . , d). Note that we do not even need to bother to

44 CHAPTER 4. LOCALIZATION IN K-SPACE

use randomized principal axes, so the “covariance matrix” [Σm]µ,ν := δµ,νσm,µ of the Gaussian remains
diagonal. Our random Gaussians are

gm(r) := exp(−|Σ−1
m (r − µm)|2).

Since we are only free to choose a mixture in the subspace of Bloch functions, we project the Gaussians
into the span of the Bloch modes at each k-point:

gm,k :=

J∑

n=1

〈gm, ψn,k〉P ψn,k.

But this will still not provide the unitary mixing matrix we desire: an orthonormization step is necessary.
Letting Sk

µ,ν := 〈gµ,k, gν,k〉P , the definition

g̃m,k :=

J∑

n=1

[S−1/2]m,ngn,k

as recommended in [MV97] provides the desired orthonormal functions g̃m,k. Their mixing matrix rep-
resentations are

[Uk]µ,ν :=

J∑

n=1

[S−1/2]µ,n 〈gn, ψν,k〉P ,

which is what will serve as our starting guess.
A good measure of how well the starting strategy worked are the absolute values and arguments of

the diagonal of Mk,b after the initially-guessed mixing matrix is first applied. For b → 0, it would be
natural to expect

|Mk,b
n,n|2 → 1,

argMk,b
n,n → 0.

Values close to these indicate that the starting strategy worked. Note that it is quite natural to have
slightly different values along the Brillouin zone boundary.

Subsequently, minimization of the Ω4
OD part of the spread functional boils down to codiagonalizing

a set of given matrices. The use of a specialized algorithm (such as [BGBM93] with [CS96]) for this
purpose as an extension of the given starting strategy did unfortunately not yield measurable benefits.

4.8.2 The initial inner products M
k,b,(0)

In step 2 above, obtaining the initial inner product matrices through the relation

Mk,b,(0)
m,n :=

〈
u

(0)
m,k, u

(0)
n,k+b

〉
P

is largely straightforward, except for the cases where k+b 6∈ K. Since the u
(0)
m,k obey no easily exploitable

symmetry (except for

u
(0)
n,k = u

(0)
n,−k

∗
(4.4)

in inversion-symmetric crystals) and no translational periodicity like the one the Bloch modes ψn,k obey,

it is necessary to calculate u
(0)
n,k for k-points outside the Brillouin zone to be able to calculate the Mk,b

for all pairs k, b. Note that the k-inversion symmetry of Equation (4.4) does not continue to hold for

mixtures of the u
(0)
n,k since the mixing matrices Uk are not guaranteed to have any such symmetry. In

contrast to that, the symmetry

Mk,b = [Mk+b,−b]
H

continues to hold always and can be used here as well as for the updated inner product matrices of Section
4.8.3 to cut the cost of computing the Mk,b in half.

4.8. MINIMIZING THE SPREAD 45

4.8.3 Updating the inner product matrices

In step 4 iii) above, given a new unitary mixing matrix Uk ∈ � n,n that mixes the initial periodic Bloch
modes according to

u
(0)
n,k(r) 7→

∑

m

Uk

n,mu
(0)
n,k(r),

we would like to find out how this affects Mk,b. Again, this is the transpose of the Uk used in [MV97].
We find

Mk,b
n,m 7→

〈
∑

ν

Uk+b

n,ν u
(0)
ν,k+b

,
∑

µ

Uk

m,µu
(0)
µ,k

〉

P

=
∑

ν,µ

Uk+b

n,ν U
k

m,µ

∗
Mk,b
ν,µ = [Uk+bMk,b(Uk,b)

H
]n,m.

to be the appropriate update formula. The matrix exponential of W contained in the update formula for
Uk itself can be easily computed through an eigendecomposition since (iW)

H
= iW is hermitian.

4.8.4 Other implementation notes

To avoid problems with the floating-point nature of a computer implementation of this algorithm, it may
be wise to change the summation order in many of the terms involved in Ω4 and its gradient, such that

∑

k

∑

b

· · · becomes
∑

b

∑

k

· · · .

More often than not, terms for opposing b have opposite signs. In order to avoid cancellation and/or
roundoff error, accumulating all the terms for each b and then having one cancellation-prone addition
per b is usually preferable to the näıve way of calculating these sums.

46 CHAPTER 4. LOCALIZATION IN K-SPACE

Chapter 5

Implementation

This chapter describes the numerical software that I created for the purposes of this thesis. With a little
more than 14,000 lines, the implementation has many aspects worthy of discussion. We will go through
the software from the bottom up, meaning that we will take a look at the most basic layers first and then
move up to higher levels of abstraction.

One of my fundamental beliefs with respect to scientific computation is that simplicity and correctness
always wins over raw speed. While a pure C++ solution would probably have provided the fastest end
result, the implementational burdens of C++, such as permanent type annotation or explicit memory
management, would have eaten up resources that could be put to better use in a proof-of-concept imple-
mentation. So, I decided to write only the bottom layers in C++ and control the C++ core by means of
a scripting language called Python. Python distinguishes itself by

• being fundamentally high-level,

• supporting a wide range of programming paradigms from object-oriented to functional,

• its excellent documentation,

• having implicit memory management,

• supporting and encouraging exact and convenient error reporting,

• having powerful built-in data structures such as sets, dictionaries and lists,

• and being easy to interface with C/C++.

Compared to a compiled language, Python runs more slowly by at least an order of magnitude. Many
people confirm that the increase in programming speed more than outweighs the runtime performance. I
expect this to become much less of a problem over time, given the success of projects like Jim Hugunin’s
IronPython, Greg Ewing’s Pyrex, or Armin Rigo’s Psyco. Also, given the ease of executing C++ code
from Python, moving an expensive inner loop into compiled code is usually easy. I could go on and on
about Python’s beauty and utility for quite a while. Rather than do that, I would recommend that you
read Tim Peters’ “The Zen of Python” [Pet]. It captures Python’s spirit in a few lines of prose.

The software written for this thesis consists of four parts, each of which we will describe in turn:

• PyLinear. This package provides sparse and dense matrices along with a range of algorithms on
them.

• PyAngle provides a 2D mesh generator.

• FemPy is a finite element package.

• PyWannier puts all the above components to use to compute Bloch modes and maximally localized
Wannier functions.

47

48 CHAPTER 5. IMPLEMENTATION

The first three packages are developed in a manner that allows them to be used easily outside of the
scope of this thesis.

Before we begin our description, I would also like to mention “C++ Boost”, another project whose
results were instrumental in the creation of the software used for this thesis. It goes back to the initiative
of several members of the ISO C++ standards committee who were dissatisfied with the meager class
library that is currently part of the C++ language standard. In an effort to change this, they created a
process of peer review, testing and regular releases of new prospective parts of the standard library. From
their large collection, the libraries Boost.Python and Boost.UBlas were used in this work. Boost.Python
is a “wrapper creation library” that makes accessing C++ code from Python very easy. Boost.UBlas
aims to be a more generic replacement of the Fortran BLAS. It includes code for various types of sparse
matrices.

In order to make the results of my work more accessible, I tried to avoid tools which are not available
under Free Software or open-source licenses. Due to the wealth of open software on the Internet today,
achieving this goal was not terribly difficult. Fittingly, the results of my work will be released under an
open-source license once this thesis is completed.

5.1 PyLinear

PyLinear is hardly the first linear algebra package ever written for Python. The most successful of such
packages today are Numerical Python [ADHO01] and its successor, numarray. They are fast and mature,
but they only offer dense matrices. Geus’s PySparse [Geu02] and its as yet unpublished successor code
fix this deficiency by providing sparse matrices on top of NumPy. Initial versions of PySparse did not
provide complex arithmetic, but I was able to integrate support during the first few weeks of this thesis.
While I was still adding to PySparse, I came across the libraries Boost.UBlas and Boost.Python, both
mentioned above. I realized that combining the two had the potential to yield a much more mature and
comprehensive matrix package than I would have been able to write on the basis of Geus’s code. So, I
changed my plan and in about a week’s time, I had a working prototype. Since then, PyLinear has grown
quite a bit and more than fulfilled the expectations that I had of it.

For a better understanding of some of my design decisions, let me elaborate on using C++ to do
linear algebra. Within the scientific computation community, C++ has so far failed to gain widespread
acceptance, as it is commonly seen as complicated, slow and bloated. The reasons for the perceived
slowness of C++ in matrix applications are many.

Imagine computing an expression like D ← αA + βB + γC for matrices A,B,C. In a näıve matrix
package, this requires the creation and destruction of five (invisible) temporary variables of matrix type,
with a total of 5n2 unnecessary load-store cycles. It would be much faster and, theoretically, very easy
to evaluate the expression in a componentwise fashion. Todd Veldhuizen pioneered a technique known as
expression templates that allows for componentwise evaluation with no overhead in end-user notation. A
template-type-based tree representation of the expression is created at compile time, and upon conversion
or assignment to a matrix storage type, the actual computation is performed. At this point, the whole
expression is already known, so that simplifications such as componentwise evaluation can be applied.
Another source of slowness is the misguided use of runtime polymorphism. It is desirable to write matrix
algorithms, e.g. LU decomposition, polymorphically, so that one function works for all matrix types.
But if the implementor chooses to do this by having a matrix base class with virtual methods for things
like element access, her code will likely be too slow for most practical purposes. Virtual method calls by
themselves are already slower than static method calls since virtual method calls involve a vtable lookup.
But this is not the main problem. Virtual method calls also cannot be inlined by the compiler, which
is a major problem for inner-loop matters like element access. A more useful way to achieve the goal of
writing most code just once is through the use of templates (a.k.a. compile-time polymorphism) and,
more specifically, by the Barton-and-Nackman trick . This trick involves a declaration like the following:

class my_matrix : public matrix_base<my_matrix> { ... };

Note that the class is inheriting from a base class whose template parameter is the class that we are
only just defining. Surprisingly, this is legal in C++, and it allows methods of the base class to resolve
calls into the superclass at compile time, making them eligible for inlining. Veldhuizen’s article [Vel00]
provides much more insight and many more suggestions on linear algebra in C++. Boost.UBlas uses
both expression templates and the Barton-and-Nackman trick.

5.1. PYLINEAR 49

N Numeric [s−1] PyLinear [s−1] UBlas [s−1] Peak MFlops [106s−1]
2 59050.645 23206.191 571426.200 4.571
4 53284.607 22565.564 330008.000 21.121
8 38481.501 19550.263 120976.800 61.940
16 17036.477 11792.990 25107.400 102.838
32 3586.073 3251.958 3861.200 126.523
64 524.826 449.573 499.000 137.579
100 156.300 137.100 140.000 156.300
200 6.921 6.582 6.800 55.368
300 1.956 1.837 1.682 52.812
400 0.722 0.704 0.642 46.208

Table 5.1. Some performance measurements of PyLinear vs. other codes. Each entry in the first three
columns shows the number of matrices of size N × N multiplied per second. All matrices were dense and
filled with random numbers. The last column extrapolates an MFlops value from the largest entry in the
first three columns. These numbers were obtained on an Intel Pentium III running at 800 MHz clock speed.

Furthermore, C++ allows abstraction, such as using one code base for any scalar type, or any type
of matrix. With a little bit of consideration, it can be made to run just as fast as Fortran. Tem-
plate metaprogramming makes C++ a fully staged language, i.e. a language where a Turing-complete
environment is available at compile time to “write programs that write programs”. Finally, it is a mod-
ern, general-purpose language that has just about penetrated every field except scientific computation.
Despite some problems, C++ proved a useful tool in the implementation.

When designing PyLinear, I felt that out of the multitude of matrix types offered by UBlas, I should
offer at least three: a dense one, one for fast sparse assembly and one for fast sparse computation. Geus’s
package sported the same choice. The sparse “assembly” type is represented as a list of [i, j, ai,j], where
insertion takes an amortized O(1), and the sparse “computation” type is a conventional compressed row
storage type. Each of these three types is provided in double precision real and double precision complex.

Unfortunately, while I was writing Python wrappers for these types, several difficulties arose. First,
each of these is its own class, with no common base class, thanks to the Barton-and-Nackman trick. This
means that an entire copy of the wrapper code needs to exist once per wrapped matrix type, increasing
memory use quite a bit. Another consequence of this is that, even though offering all the matrix types
in single precision as well as double is desirable, the price would be doubling both the code size and
compilation time. Second, while two different data types are usable on opposite sides of many of the
operators (e.g. “+”) in C++ thanks to clever expression template code (which implicitly performs the
necessary type conversions without any copying), the same is not necessarily true in Python: Each type
for which compatibility is desired must be explicitly mentioned in the wrapper code, again adding to the
code size, and detracting from its readability. Some of this can be circumvented with an extra Python
layer around the core to make up for the missing type conversions, but this yet again increases run time.
Also, when called from Python, many of the advantages gained by the use of expression templates are
lost again, since a new matrix is created and filled for each intermediate computation.

However, one clear adavantage of PyLinear’s approach is that the same capable matrix types are
available at both the C++ and Python levels, which allows the simple porting of slow loops. Overall
performance of PyLinear can be characterized as acceptable, as illustrated by Table 5.1.

A few things can be said about these performance numbers:

• Numerical Python loses about half as much time in the transition to C as PyLinear. This is expected
to improve with future versions of Boost.Python. Increased use of Python’s native method tables
(such as PyNumberMethods) will probably bring PyLinear closer to NumPy’s speed.

• As soon as processor arithmetic (and not scripting overhead) becomes the limiting factor, C++
and both Python libraries perform comparably. (N > 32)

• Past this point, we can observe the system exhaust the 64 KB level 1 cache and become bound
to the level 2 cache interface bandwidth. Another (steeper) drop begins at N > 400 where the 1
MB of L2 cache is also exhausted, and memory bandwidth finally becomes the defining factor. At

50 CHAPTER 5. IMPLEMENTATION

this point, cache-adapted tiling as practiced in modern implementations of the Fortran BLAS could
greatly improve the speed.

• Unfortunately, I have no explanation why pure UBlas performs worse than the UBlas-based PyLin-
ear for large matrices—the same library versions, the same compiler and the same compiler options
were used for both.

On top of this basic linear algebra layer, PyLinear provides a fairly comprehensive set of more advanced
matrix algorithms. The following things are available:

• Many LAPACK functions, such as SVD, eigenvalues of dense matrices and linear system solvers for
various matrix types,

• UMFPACK for solving large sparse systems,

• ARPACK for large sparse eigenvalue problems,

• Preconditioned CG, Preconditioned BiCGSTAB, LU, Cholesky, Jacobi eigendecomposition and the
Bunse-Gerstner codiagonalization algorithm ([BGBM93], [CS96]),

• and an assortment of other tools such as random matrix generation or condition estimation.

In order to avoid instantiating these algorithms for all matrix types, I reused Geus’s idea of an abstract
“matrix operator”, basically an interface that reduces any matrix to its matrix-vector multiplication
capability. Implementing this interface is then all that is required to run CG or the ARPACK eigensolver.
This is a partial solution to the mentioned problem of code growth by multiple instantiation, as it
allows to have one polymorphic piece of compiled code for any kind of linear map, even those where an
explicit matrix is not even present. This abstraction includes every matrix type offered by PyLinear,
preconditioners, sums, and compositions of other matrix operators. Even the iterative solvers and the
UMFPACK wrapper implement this interface, effectively providing the capability to invert any matrix
operator if numerically feasible.

Some of the bindings were very easy to write thanks to Kresimir Fresl’s numerical bindings library.
This library allows easy access from within the UBlas framework to many of the more well-known linear
algebra libraries. However, some libraries, such as ARPACK and a few LAPACK functions, had to be
wrapped individually for PyLinear. Part of this work has already been submitted to Boost and accepted
back into the framework, while other parts will be submitted after the completion of this thesis.

Since PyLinear was written as the foundation of an extensive software system, verifiable correctness
was of utmost importance. A large number of automated unit tests ensures that every part of PyLinear
works as expected. At this point in time, documentation is somewhere between sparse and non-existent.
Since I mimicked the Numerical Python API for the most part, the lack of documentation may be less
apparent. But in any case, writing documentation is a top priority of mine.

There are many directions in which the package could be extended and areas where further work
and research could be done. Armin Rigo’s Psyco could be adapted to handle Pylinear as a special case,
promising large speed benefits. Cache tiling or Geus’s idea of software prefetch could be implemented in
UBlas, each probably yielding a substantial boost in speed. Symmetric matrices in UBlas clearly need
some work before they can be recommended for practical use. And finally, lazy evaluation could be
implemented as a Python equivalent to expression templates.

5.2 PyAngle

The next component in our implementation stack is the mesh generator. It is a thin wrapper around
Jonathan R. Shewchuk’s C code Triangle [She96], which won the 2003 J. H. Wilkinson prize for numerical
software. Triangle bills itself as a high-quality mesh generator and refiner, with certain guaranteed mesh
properties that allow for well-conditioned finite element discretization. Unlike previous wrapping efforts,
such as John C. Mollis’s and Alexander Pletzer’s Ellipt2D (which can be found on Sourceforge), PyAngle
carries Triangle’s full feature set over to the Python level. A convenience layer in Python makes the code
easy to use. Just like for PyLinear, a two-tiered approach was used. Triangle was first wrapped in a layer
of C++, which was then exported to the scripting level using Boost.Python.

5.3. FEMPY 51

Figure 5.1. Representation of a tShapeSection in FemPy.

5.3 FemPy

FemPy is a one- and two-dimensional finite element package capable of solving the Poisson equation
as well as the Laplace eigenvalue problem. It has sophisticated mesh generation capabilities and an
easy-to-use interface.

5.3.1 The user interface

First, let us explore what FemPy looks like from the user’s perspective, in the form of step-by-step
instructions for its use.

1. The user generates a number of tShapeSections, each of which is a description of a closed curve. A
shape section is represented as a list of points and tShapeGuides. Let’s take a look at the example
domain in Figure 5.1. Our shape section is represented as a list of six elements, as numbered in
the Figure. Indices 0, 4 and 5 are simple PyLinear vectors, containing point coordinates for the
corresponding vertices. At indices 1 to 3, we have tShapeGuide objects. A shape guide represents
a piece of a curve that can be described as either y = f(x) or x = f(y). So, for example, for the
shape guide at index 1

y = cy +
√
r2 − (x − cx)2 =: f(x),

where cx and cy are the coordinates of the center of the full circle and r is its radius. It is usually
a good idea to split shape guides at points where f ′ � 1; this is why we have segmented the
half-circle. More precisely, to initialize a tShapeGuide object, you need:

• The deformation coordinate; this is the number of the dependent coordinate. Integer, 0 for x
and 1 for y.

• An interval in the independent coordinate. A tuple of float values. For the shape guide labelled
1 in the figure, for example, this would be the x-coordinates of its adjacent vertices.

• The expression of the guiding function f . The indepent coordinate needs to be a variable
named t. (More on expressions can be found later in this section.)

• Two flags: whether to render the final point and whether to use exact elements to approximate
the boundary.

Note that the vertices with non-filled dots in the figure are automatically generated by the shape
guides and should not be part of the representing list. To avoid duplication of the end points of
shape guide 1 and 2, their render final point flag should be set to False.

2. This list of shape sections is fed to a tTwoDimensionalMesh object in order to generate a triangular
mesh. The shape sections may freely intersect. The meshed area will always be the union of

52 CHAPTER 5. IMPLEMENTATION

their interiors, and the boundaries of the shape sections are guaranteed to be maintained as inner
boundaries in the generated mesh. An optional list of hole starting points allows you to have the
mesh generator “eat” holes into the mesh. It will eat up every triangle that is not separated from
the hole starting point by a shape section. At this point, you may also specify the desired element
order (linear or quadratic, i.e. 1 or 2), and a refinement function that controls the fineness of the
discretization locally.

3. The tTwoDimensionalMesh as an implementation of the abstract tMesh interface gives you access
to a tDOFManager (a.k.a. “Degree Of Freedom Manager”, much like a glorified list of of tNodes) and
a list of tFiniteElements. When generating the tShapeSections, you are free to choose something
called a tracking identifier, and after the mesh is generated, you may use this tracking identifier to
query the tDOFManager for all nodes that are associated with a shape section with this identifier.
For example, you may set the identifer “dirichlet” on certain shape sections, and later find the
nodes on all shape sections marked thus, for example to enforce Dirichlet boundary conditions on
them.

4. Next, the user constructs a constraint map. A constraint map is a Python dictionary whose keys
are nodes and whose values are of the structure

offset, [(coefficient_1, node_1), ..., (coefficient_n, node_n)]

i.e. a tuple which contains a scalar and a list of scalar-and-tNode tuples. If we let f(node) be the
value of the solution at node, then this constraint expresses

f(node)
!
= offset+

n∑

j=1

coefficientif(nodei).

5. This constraint map together with the mesh from step 3 is finally fed to a solver (such as solvePoisson()
or tLaplacianEigenproblemSolver), which will yield its result in the form of tMeshFunctions,
essentially “functions defined on the mesh”. Instances of this class can be called like regular func-
tions for pointwise evaluation, they support vector space operations and they can compute their
own gradient if asked to as well.

6. Finally, the computed solution can be visualized using the fempy.visualizationmodule. VTK (for
use with programs like Paraview or MayaVi), Matlab and Gnuplot are supported as visualization
targets.

This completes our walkthrough of a typical use of FemPy. While FemPy is generally at the proof-
of-concept stage of development, I feel that its design is already quite mature. To provide maximum
flexibility to its users, FemPy was written to provide “mechanisms, not policies”. I strived to provide a
set of clean, modularly-separate single-purpose functional blocks that the user can employ in whatever
fashion she likes, without being obliged to use all the other parts of the package. This is substantially
different from a framework , where all the parts are interwoven and mutually dependent.

Next, let us take a look at what is happening behind the scenes.

5.3.2 FemPy’s inner workings

FemPy’s internals are also built in several interdependent layers. Like on the large scale, let us explore
them from the bottom up.

• At the core, there is a small symbolic computation module called fempy.expression that can
perform symbolic differentiation, substitution and elementary term simplification tasks. Whenever
the term “expression” is mentioned in this section, this means the data type used by this module.
This data type is loosely patterned after LISP and consists of nested tuples. For example,

(eo.POWER,(eo.PLUS,(eo.POWER,(eo.VARIABLE,’x’),2),

(eo.POWER,(eo.VARIABLE,’y’),2)),

0.5)

5.3. FEMPY 53

Figure 5.2. How exact boundaries work in FemPy. Starting from the unit triangle (1.), a linear transform
is applied (2.) to line up the vertices, and finally the interior is stretched (3.) to match the curved edge.

embodies the expression
√
x2 + y2 if the module fempy.expression operators has been im-

ported as “eo”. Thanks to Python’s dynamic nature, these expressions can be compiled into native
Python functions at runtime, yielding usable evaluation speed.

• Next are tFormFunctionKits. A form function kit contains FEM ansatz functions for an elementary
shape, such as a triangle. These form functions are represented as expressions. FemPy provides
linear and quadratic functions on triangles and linear functions on lines.

• As mentioned in the usage description, a full FEM discretization (represented as a tMesh) con-
sists of tFiniteElements which store the geometric details of each triangle in the mesh. A
tFormFunctionKit then plugs into each tFiniteElement to provide the FEM ansatz functions
on this geometry. As long as the untransformed shapes of the finite element and the form function
kit match (i.e. unit triangle or unit interval, respectively), any form function kit can be used with
any type of element. FemPy provides lines (1D), triangles and deformed triangles as geometric
shapes. It could be said that the ansatz function code is orthogonal in features to the geometric
deformation code.

Deformed triangles are FemPy’s way to produce an exact discretization of curved boundaries. Let
us explore how they work, using Figure 5.2 as a guide. We begin with the unit triangle in step 1.
Next, we calculate a linear transform to line up the vertices, but do not yet worry about the curved
boundary. Now consider the shape control function ϕ. ϕ is defined on the unit triangle as

ϕ(x, y) :=
−4xy

(x− y)2 − 1
.

A graph of ϕ is shown in Figure 5.3. Observe that on two of the triangle edges ϕ(x) = 0, while on
the third one ϕ(x) = 1, with differentiable transitions between those values. ϕ (understandably)
has a singularity in two of the triangle’s vertices. As the last step (3.), the necessary amount
of deformation along the boundary is calculated and propagated throughout the triangle in the
direction of deformation given by the relevant shape section. This amount of deformation is then
scaled by the value of ϕ in the corresponding point of the unit triangle, yielding the final transform.

The same deformation procedure could easily be applied in an analogous fashion to more than one
edge of the triangle, but this is currently unimplemented.

• FemPy does not use precalculated element matrices; nearly everything is derived from first principles
within the source code. For example, integrals are computed by means of a 7-point Gaussian
quadrature on the unit triangle.

Note that to simply use FemPy as described above, no knowledge about these internals is necessary.

54 CHAPTER 5. IMPLEMENTATION

a)

 0

 0.2

 0.4

 0.6

 0.8

 1 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

b)

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.3. Two views of the shape control function ϕ.

5.3.3 Numerical experiments

In order to inspire some confidence in FemPy’s methods, we will explore a few problems with known
solutions and see how FemPy fares solving them. We will be considering a well-known boundary value
problem and an eigenvalue problem with piecewise-constant coefficents, providing some insight in the
analytical solution and detailed convergence data for each.

The Laplace equation on an annulus

Consider the boundary value problem

−∇2u(r) = 0,

u(r) = α1 for r = ρ1,

u(r) = α2 for r = ρ2

on an open annulus-shaped domain Ω with inner and outer radii ρ1 < ρ2. The solution to this problem
is unique, explicitly known and easily verified:

u(r) =
α2 − α1

log(ρ2/ρ1)
log(r/ρ1) + α1.

Solving this problem in FemPy using second-order elements, adaptive mesh generation and exact bound-
ary approximation, we obtain an empirical order of convergence of around 2 in the energy norm and of
around 3.2 in the L2 norm. We refer to Figure 5.4 for details.

An eigenvalue problem with piecewise constant coefficients

As our next test for FemPy’s numerics, consider the eigenvalue problem

−∇2u(r) = λα(r)u(r),

u(r) = 0 for r = 1

on the circle with Dirichlet boundary conditions. Our function α(r) shall be piecewise-constant:

α(r) :=

{
α1 for 0 6 r < 1/2,
α2 for 1/2 6 r 6 1.

This problem arises, for example, in the solution of the wave equation on a circular, inhomogeneous
drumhead. We present it here as an indicator of FemPy’s performance in solving eigenvalue problems
with piecewise constant coefficients, such as the TM problem as covered in Section 6.4. The above problem
was designed to be analytically solvable while bearing enough semblance to our final target equation, for
which no analytic solutions are known.

5.3. FEMPY 55

a)
10.6 13.8 17.9 23.3 30.3 39.4 51.2

h=n
1/d

; n is the number of elements

0.1

1

||∇
u h-∇

u ex
ac

t|| L
2

Energy norm error
Energy norm error straight-line fit (slope = -2.012)

Convergence behavior
Energy-norm errors for the Laplace equation on an annulus

b)
10.6 13.8 17.9 23.3 30.3 39.4 51.2

h=n
1/d

; n is the number of elements

0.001

0.01

0.1

||u
h-u

ex
ac

t|| L
2

0.001

0.01

0.1 L
2
 error

L
2
 error straight line fit (slope = -3.106)

Convergence behavior
L

2
 errors for the Laplace equation on an annulus

Figure 5.4. Convergence data for the solution of the Laplace equation a) in the energy norm, and b) in the
L2 norm. While it may not be immediately apparent, the X axis in both plots is actually logarithmic.

56 CHAPTER 5. IMPLEMENTATION

First, we will briefly present an approach to the analytic solution. Separating the variables in polar
coordinates such that u(r) = R(r)Θ(θ), we obtain

−λα(r) =
R′′(r)

R(r)
+
R′(r)

rR(r)
− Θ′′(θ)

r2Θ(θ)
.

Obviously, Θ′′(θ)/Θ(θ) =: −n2 must be a constant, and considering Θ(θ + 2π) = Θ(θ), we have

Θ(θ) = An cos(nθ) +Bn sin(nθ),

and we know that n ∈ � 0. Moving on, we obtain an ordinary differential equation for R:

0 = R′′(r) +
R′(r)

r
+

(
λα(r) − n2

r2

)
R(r).

We will solve this equation separately on Ω1 := [0, 1/2) and Ω2 := [1/2, 1]. Under the change of scale
ρi :=

√
λαir on Ωi for i = 1, 2, R becomes R̄i(ρi) := R(ρi/

√
λαi) = R(r), and our differential equation

becomes the Bessel differential equation on both domains:

0 = R̄′′
i (ρi) +

1

ρi
R̄′
i(ρi) +

(
1− n2

ρi

)
R̄i(ρi).

We get the following boundary conditions:

R̄1(0) finite,

R̄1(
√
λα1/2) = R̄2(

√
λα2/2),

R̄′
1(
√
λα1/2)

√
λα1 = R̄′

2(
√
λα2/2)

√
λα2

R̄2(
√
λα2) = 0.

The Bessel equation of order n is solved by the nth-order Bessel functions Jn(·) and Yn(·). Therefore, we
consider the ansatz

R̄1(ρ) := c1,1Jn(ρ1) + c1,2Yn(ρ1),

R̄2(ρ2) := c2,1Jn(ρ2) + c2,2Yn(ρ2).

The finiteness condition at 0 dictates c1,2 = 0. Otherwise, we are left with a nonlinear system of equations,
which we will solve numerically. Note that there are three equations and three unknowns (µ := c2,1/c1,1,
ν := c2,1/c1,1 and λ) because the Bessel equation is linear. Dividing by c1,1 is fine if we exclude the trivial
solution R̄i = 0. Many hints in writing this discussion were taken from the introductory book [Str92].

Let us turn to FemPy’s performance in this instance. As above, we use second-order elements and
exact domain representation. As an extra twist, the jump discontinuity in α is traced by the mesh
exactly. The computation yields a empirical order of convergence for the eigenvalues of 3.53, and the
L2 error in the eigenfunctions exhibits an EOC of about 2.778. Both values are roughly in the expected
range. Figure 5.5 has the details. For simplicity, we limited our convergence studies to the lowest-energy
eigenpair where always Θ(θ) = 1. The computation of the analytic solutions and the solution of the
nonlinear system of equations was based on the excellent SciPy package by Travis Oliphant, Konrad
Hinsen et al.

This is also an excellent opportunity to back up the claim that FemPy is easy to use, even for problems
of moderate difficulty. Including mesh generation and visualization, the solution code for our problem
spans a mere 31 easily-readable lines:

import pylinear.matrix_tools as mtools

import fempy.mesh

import fempy.geometry as geometry

import fempy.solver as solver

import fempy.visualization as visualization

def needsRefinement(vert_origin, vert_destination, vert_apex, area):

5.3. FEMPY 57

a)
8.16 10.6 13.8 17.9 23.3

h=n
1/d

; where n is the number of elements

1e-05

0.0001

|λ
h−λ

ex
ac

t|

Eigenvalue error
Eigenvalue error straight line fit (slope = -3.53)

Convergence behavior
Eigenvalue error of the inhomogeneous drum problem, α1=40, α2=1

b)
8.16 10.6 13.8 17.9 23.3

h=n
1/d

; where n is the number of elements

0.0001

0.001

||u
h-u

ex
ac

t|| L
2

L
2
 error

L
2
 error straight line fit (slope = -2.778)

Convergence behavior
Eigenfunction error of the inhomogeneous drum problem, α1=40, α2=1

Figure 5.5. Convergence data for the solution of the Laplace eigenvalue problem a) for the lowest eigenvalue,
and b) for the lowest eigenfunction in the L2 norm. While it may not be immediately apparent, the X axis
in both plots is actually logarithmic.

58 CHAPTER 5. IMPLEMENTATION

return area >= 3e-2

alpha_1 = 40; alpha_2 = 1

def alpha(x):

if mtools.norm2(x) < 0.5:

return alpha_1

else:

return alpha_2

mesh = fempy.mesh.tTwoDimensionalMesh(

[fempy.mesh.tShapeSection(fempy.geometry.getCircle(1), "dirichlet"),

fempy.mesh.tShapeSection(fempy.geometry.getCircle(0.5), "unconstrained")],

refinement_func = needsRefinement)

constraints = solver.getDirichletConstraints(mesh, u_d = lambda x: 0)

eigensolver = solver.tLaplacianEigenproblemSolver(

mesh, constrained_nodes = constraints, g = alpha)

eigensolver.setupConstraints(constraints)

solutions = eigensolver.solve(0, tolerance = 1e-10, number_of_eigenvalues = 20)

for evalue, emode in solutions:

visualization.visualize("vtk", (",,result.vtk", ",,result_grid.vtk"), emode.real)

if raw_input("[enter for next, q for quit]") == "q":

break

This program is included in the FemPy source package as example/bessel piecewise.py.

5.3.4 Further work

There are several areas where FemPy could greatly benefit from additional work. Probably the most
urgent need is better documentation. Adaptivity has already been taken into account in FemPy’s design,
however, these routines currently lack a usable error estimator, short of comparing to a known solution.
It would not be hard at all to allow the package to deal with more general elliptic PDEs. Given the
infrastructure, adding initial support for 3D elements would also not take too long. Finally, major
speedups could be achieved by moving common element kernels into C++.

5.4 PyWannier

This last package of our software stack is the application of all the generic modules described before to
the specific problem of this thesis. It is responsible for all the functionality that cannot be generalized
enough to warrant its inclusion in FemPy.

5.4.1 Weak formulation of the eigenproblem

As a first step, PyWannier needs to solve the eigenvalue problem

−∇2ψ(r) =
ω2

c2
ε(r)ψ(r) (5.1)

on the domain P with Floquet boundary conditions

ψ(r + R) = eik·Rψ(r), ∇ψ(r + R) · n = eik·R∇ψ(r) · n

for r ∈ ∂P and R ∈ L and a unit-length vector n normal to ∂P in r. Projected onto a trial function
ϕ ∈ L2

ε(P), the above eigenproblem becomes

−
∫

P

∇2ψ(r)ϕ∗(r)dr =
ω2

c2

∫

P

ε(r)ψ(r)ϕ∗(r)dr,

5.4. PYWANNIER 59

Figure 5.6. A common rod-type permittivity layout for a 2D photonic crystal. White is air or vacuum
(ε = 1), shaded is some dielectric medium with ε > 1, for example glass.

or equivalently, by Green’s First Identity

∫

P

∇ψ(r) ·∇ϕ∗(r)dr −
∫

∂P

∇ψ(r) · nϕ∗(r)dS =
ω2

c2

∫

P

ε(r)ψ(r)ϕ∗(r)dr. (5.2)

The center term is
∫

∂P

∂ψ(r)

∂n
ϕ∗(r)dS =

∑

R∈L/{−1,1}

∫

∂P (R)

∇ψ(r) · nϕ∗(r) + ∇ψ(r + R) · (−n)ϕ∗(r + R)dS

=
∑

R∈L/{−1,1}

∫

∂P (R)

∇ψ(r) · nϕ∗(r)− eik·R∇ψ(r) · ne−ik·Rϕ∗(r)dS

= 0.

So, we have rewritten our eigenvalue problem in the weak (or variational) form

∫

P

∇ψ(r) ·∇ϕ∗(r)dr =
ω2

c2

∫

P

ε(r)ψ(r)ϕ∗(r)dr (5.3)

There is one slightly subtle point worth noting here: If we solve Equation (5.3) instead of Equation (5.1),
we only need to enforce the first (non-derivative) part of the Floquet boundary conditions. The second
(derivative) part follows automatically, since the center term of Equation (5.2) is forced to zero.

5.4.2 Discretization of the eigenproblem

Using FemPy, we create an appropriate finite element mesh, taking care to adapt the mesh to the
characteristic appearance of the given permittivity function ε. For a common “rod-type” layout as
illustrated in Figure 5.6, the following requirements should be placed on a good photonic unit cell mesh:

• For many photonic crystals, ε has jump discontinuities. Those discontinuities should be traced by
element boundaries as accurately as possible to avoid loss of precision. Exact elements are a good
way to achieve this.

• Element size should vary with location. While a very fine mesh can easily cause a prohibitive amount
of computation, a coarse one may not yield accurate results. Thus, it is advisable to vary mesh

60 CHAPTER 5. IMPLEMENTATION

a)
-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Unit Cell Mesh

b)
 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Unit Cell mesh

Figure 5.7. a) shows the mesh generated by FemPy for one unit cell of the photonic crystal shown in Figure
5.6. b) is a magnified detail of a), illustrating the use of exact elements.

density over the unit cell. Since high-permittivity regions act as centers of excitation, especially
fine meshes are required within and around them.

• The use of higher order elements is highly advisable.

FemPy performs well on each of these points, as can be seen from the resulting example meshes of Figure
5.7. Actually, provisions for mesh adaptivity are already made in the code, but not fully used for lack of
time to implement an appropriate error estimator.

As a result of mesh generation, we have a number of finite elemente node functions which make up
our (naturally k-dependent) finite element space Vh,k := {ϕν,k(r) : ν = 1, . . . , N}. Each ϕν,k ∈ Vh,k
must satisfy the first Floquet condition

ϕν,k(r + R) = eik·Rϕν,k(r)

for r ∈ ∂P (R) and R ∈ L/{−1, 1}. Naturally, this condition does not affect node functions which are
zero along the boundary, or, rather, it only affects functions for which ∂P ∩supp(ϕν,k) 6= ∅. Now, suppose
we expand

ψk(r) ≈
N∑

µ=1

cµ,kϕµ,k(r).

We obtain (ν = 1, . . . , N)

N∑

µ=1

cµ,k

∫

P

∇ϕµ,k(r) ·∇ϕν,k
∗(r)dr =

ω2

c2

N∑

µ=1

cµ,k

∫

P

ε(r)ϕµ,k(r)ϕν,k
∗(r)dr.

5.4. PYWANNIER 61

Further, using

Sk

µ,ν :=

∫

P

∇ϕµ,k(r) ·∇ϕν,k
∗(r)dr,

Mk

µ,ν :=

∫

P

ε(r)ϕµ,k(r)ϕν,k
∗(r)dr,

and ck :=
[
cµ,k]Nµ=1 , the eigenvalue problem becomes

ck
TSk =

ω2

c2
ck
TMk ⇔ Skck

∗ =
ω2

c2
Mkck

∗.

Let us now take a moment to understand how the Floquet conditions are enforced. We know that our
trial functions ϕν,k need to satisfy ϕν,k(r + R) = eik·Rϕν,k(r). However, when generating the mesh,
FemPy knows nothing about this requirement. We obtain a mesh with independent coefficients for both
halves of what is later to become a “coupled node”. Let this mesh be called M = {nµ}Mµ=1, its node

functions be ϕ̄µ and let a corresponding coefficient vector be known as c̄ = [c̄µ]
M
µ=1 ∈ � M .

For each lattice basis vector R ∈ L/{−1, 1} and each boundary node nν ∈ ∂P (R), we find another
node in the finite element mesh M such that no(ν,R) = nν + R. We obtain a set of nodes whose values

c̄o(ν,R) are determined by the equation c̄ν = eik·Rc̄o(ν,R) for a given k. Let’s call these the “dependent
nodes” and the remainder the “independent nodes” and make sure that the independent nodes are
numbered 1, . . . , N , while the dependent ones are numbered N + 1, . . . ,M , by renumbering if necessary.
Then for each nν ∈ ∂P (R) we set

ϕν,k := ϕ̄ν + eik·Rϕ̄o(ν,R).

If we consider the formal vectors ϕk := [ϕν,k]Nν=1 and ϕ̄ := [ϕ̄µ,k]Mµ=1, then we can see them connected by

a matrix A ∈ � N×M as

ϕ =

1 ∗ · · · ∗
. . .

...
...

1 ∗ · · · ∗

︸ ︷︷ ︸
=A

ϕ̄,

where [Ak]ν,o(ν,R) = eik·R for nν ∈ ∂P (R). In general, there are no more than four entries per row in
A, so it remains sparse despite the impression to the contrary given by the formula above. Given the
matrices

S̄µ,ν :=

∫

P

∇ϕ̄µ(r) ·∇ϕ̄∗
ν(r)dr,

M̄µ,ν :=

∫

P

ε(r)ϕ̄µ(r)ϕ̄∗
ν(r)dr,

(which are supplied by FemPy) it is a matter of simple calculation to see that

[Mk]µ,ν = 〈ϕµ,k, ϕν,k〉P =

〈
∑

µ′

[Ak]µ,µ′ ϕ̄µ′ ,
∑

ν′

[Ak]ν,ν′ ϕ̄ν′

〉

P

=
∑

µ′,ν′

[Ak]µ,µ′ [M̄]µ′,ν′ [Ak]ν,ν′

∗
= [AkM̄ [Ak]

H
]µ,ν

and analogously Sk = AkS̄[Ak]
H

. Using the matrices Sk and Mk, the above eigenproblem is solved by
ARPACK [LSY97] applied as part of a shift-invert strategy, using a plain-vanilla, unpreconditioned CG

for the “invert” part. Given an eigenpair (λ, ck), we may expand ck to c̄ by c̄ = [Ak]
T
ck. As a side note,

the näıve expectation that (λ, c̄) is an eigenvalue of the ‘full’ problem S̄c̄∗ = M̄ c̄∗ is unfounded, because
for ν > N + 1

N∑

µ=1

cµ

∫

P

∇ϕµ(r) ·∇ϕν
∗(r)dr =

ω2

c2

N∑

µ=1

cµ 〈ϕµ, ϕν〉P

62 CHAPTER 5. IMPLEMENTATION

does not imply both

N∑

µ=1

cµ

∫

P

∇ϕµ(r) ·∇ϕ̄∗
ν(r)dr =

ω2

c2

N∑

µ=1

cµ 〈ϕµ, ϕ̄ν〉P ,

N∑

µ=1

cµ

∫

P

∇ϕµ(r) ·∇ϕ̄∗
o(ν,R)(r)dr =

ω2

c2

N∑

µ=1

cµ
〈
ϕµ, ϕ̄o(ν,R)

〉
P
.

Sometimes, however, especially in cases where the finite element mesh generation cannot be tightly
controlled, finding a proper node that satisfies no(ν,R) = nν + R to a desired precision may turn out to
be difficult. As a last-ditch recovery possibility for this case, the present code will try to find two adjacent
nodes such that α(ν,R)no1(ν,R) + (1 − α(ν,R))no2(ν,R) = nν + R, i.e. the desired location is a convex

combination of two real nodes. The corresponding constraint equation is c̄ν = eik·R[α(ν,R)c̄o1(ν,R) +
(1 − α(ν,R))c̄o1(ν,R)]. Note that in constructing the previous equation you have the freedom to choose
whether to interpolate first and then apply the Floquet condition (as done here) or the other way around;
ostensibly, none of the two alternatives is better than the other. For our case, the conditions for assembly
of Ak are [Ak]ν,o1(ν,R) = α(ν,R)eik·R and [Ak]ν,o2(ν,R) = (1 − α(ν,R))eik·R. The implementation also
allows higher-order approximations and cases where nν+R cannot be expressed as a convex combination
of two nodes; this functionality was included at the last minute. However, it seems that the use of
interpolation has an adverse effect on convergence, as noted in Section 6.3.

Axmann and Kuchment [AK99] suggest a different finite element scheme for the computation of Bloch
modes. Yet another one was suggested by Dobson [Dob99].

5.4.3 The way to maximally localized Wannier functions

After computing between 10 and 20 eigenpairs for each k ∈ K, the Bloch modes and their corresponding
eigenvalues are are written out to disk using Python’s “pickle” serialization facility. It is notable that
pickle manages to serialize (i.e. convert to a stream of octets) complex data structures like tMesh

and tMeshFunction along with all the data they refer to almost without help, which makes storing a
fairly complex finite element discretization very straightforward. The driver code that does everything
described up to this point can be found in the PyWannier source tree as src/compute eigenmodes.py.

A few postprocessing steps for the Bloch modes are collected in the script file src/postprocess

eigenmodes.py. This program computes the periodic Bloch modes un,k from the calculated Bloch modes
ψn,k. After that, all eigenfunctions of each type (periodic and not) are multiplied by a factor so that
their imaginary part at a specific point is forced to zero. This point is chosen for the functions to have
maximum possible summed absolute value at this point over all the n and k. Next, we make sure that
all

〈un,k, un,k〉P = 1 = 〈ψn,k, ψn,k〉P for all n,k.

As a final step, bands are separated and degeneracies are found. Band separation consists of the task
of looking at a fairly coarse sampling of the dispersion relation and deciding, at each k ∈ K, which
eigenvalues of this and of a neighboring k-point are considered to be in the same band. Given the
coarse sampling of the dispersion relation and the posibillity for band crossings and degeneracies, this
job is surprisingly nontrivial. It is a fairly complex two-dimensional “path” following problem that would
warrant some research in its own right. (The term “sheet following” seems more appropriate.) Since this
was not the main focus of this thesis, we were satisfied with a more simplistic approach.

While far from perfect, the following method has proven to yield consistently acceptable results: We
start by ordering the eigenvalues by magnitude at each k. As a preliminary guess, all the eigenvalues
with the index 0 are considered to be in the first band, all with index 1 in the second, and so on. Given
this starting guess, a refinement procedure is run. For each band index and each k ∈ K, we linearly
extrapolate a guess of the current eigenvalue from two neighbors in each direction. The eigenvalue that
lies closest to these guesses in a least-squares sense is chosen as a member of the band. One could wish for
a band finding scheme which considers a more global view of the dispersion relation than ours. However,
as illustrated in Section 4.8.1, this choice of bands fortunately does not influence the performance of the
Wannier localization. Its main importance lies in allowing proper band-wise visualization and generating
the opportunity for a few plausibility checks.

5.4. PYWANNIER 63

After the results of postprocessing are once again written to disk, the script file src/localize

wanniers.py takes over and controls the last step of the process. It is a fairly literal implementation
of the method described in Chapter 4. A number of visualization and utility scripts complement the
software.

5.4.4 Future work

As we shall see in Section 6.5, the Wannier functions obtained through this software still have a few
flaws. Fixing this is probably the most urgent need at this point. Of course, it would be a worthwhile
extension to actually use the Wannier functions for the eigenmode calculations that are their original
purpose. Generalizing the software to treat more shapes of primitve unit cell than just simple cubic
should also prove to be not too hard. The extension to three-dimensional structures is probably not as
straightforward, but it would more than likely give an opportunity to pursue a set of interesting research
questions.

64 CHAPTER 5. IMPLEMENTATION

Chapter 6

Results

In this chapter, we will examine a compilation of results obtained both analytically and numerically
using the methods described in this thesis. We will also discuss issues surrounding convergence speed
and numerical stability where appropriate. Before we begin, let us note that TM-type equations do not
have a preference for a certain scale: Any solution may be scaled isotropically (along with the PDE’s
coefficient function ε) and is still a solution afterwards. So, without loss of generality, we will study the
unit interval and unit square as primitive unit cells in one and two dimensions, repsectively. Similarly,
we will demand that, for simplicity, the speed of light c = 1/

√
ε0µ0 is 1; the only way in which we would

notice a different value is by a constant factor in ω, which is clearly insignificant.

6.1 Constant permittivity in one dimension

The simplest possible case of our general problem can be found in one dimension with constant relative
permittivity ε. Without loss of generality, we will assume ε to be 1. Then the eigenvalue problem
simplifies to

−ψ′′
n,k(r) = ω2ψn,k(r),

ψn,k(1) = eikψn,k(0),

ψ′
n,k(1) = eikψ′

n,k(0).

An complete set of solutions can be found analytically: the functions ψn,k(r) := ei(k+2πν(n))r solve
the system, where k ∈ [0, 2π), r ∈ [0, 1] and ν(n) : � 0 → � is a bijective map. The eigenvalues are
(k+2πν(n))2. Figure 6.1 shows the dispersion relation and a few eigenfunctions for this simple problem.
Note that in the figure we chose the line style of the bands according to their ν(n) index, to show their
correspondence to a given function ψn,k. In contrast to that, bands are usually numbered from the bottom
up in order of increasing magnitude. So, the “bottom” band, which we will assign the number 0, consists
of the left half of the line labelled “ν = 0” and the right half of the line labelled “ν = 1”. Consequently,
we have a degeneracy at k = π. More generally, there are degeneracies at each k = πm for m ∈ {0, 1, 2}.

Our main interest in this elementary case lies in the differences which arise when switching to a more
general ε, which is what we will be doing next.

6.2 The non-constant case in one dimension

Generalizing the results of Section 6.1, we now allow an r-dependent relative permittivity ε. As an
example, we will use the piecewise constant function

εα(r) :=

1 for 0 6 r < 0.4,
α for 0.4 6 r < 0.6,
1 for 0.6 6 r 6 1

65

66 CHAPTER 6. RESULTS

a)
0π 0.5π 1π 1.5π 2π

Crystal momentum k over the Brillouin zone

0

1

2

3

ω
/2

π

Dispersion relation in one dimension
Eigenvalues of the 1D TM problem with ε=1

ν = 0

ν=−1

ν=1

ν=−2

ν=2

ν=−3

ν=3

b)
0 0.2 0.4 0.6 0.8 1

Real space coordinate r within the primitive unit cell

-1

-0.5

0

0.5

1

R
e[

ψ
ν,

k(r
)]

ν=0 (n=0)
ν=1 (n=1)
ν=−1 (n=2)
ν=2 (n=4)

Bloch modes
Real parts of the eigenfunctions of the 1D TM problem with ε=1 at k=0.5π

Figure 6.1. Eigenvalues and eigenfunctions of the 1D problem with ε = 1. The annotations “(n = ·)” in
b) reflect the number of the band in the dispersion relation ordered by magnitude. They establish a link to
Figure 6.2b).

6.2. THE NON-CONSTANT CASE IN ONE DIMENSION 67

a)
0π 0.5π 1π 1.5π 2π

Crystal momentum k over the Brillouin zone

0

0.5

1

1.5

2

2.5

ω
/2

π

Dispersion relation in one dimension
Eigenvalues of the 1D TM problem with ε(r)=ε

5
(r)

b)
0 0.2 0.4 0.6 0.8 1

Real space coordinate r over the primitive cell

-1

-0.5

0

0.5

1

1.5

R
e[

ψ
ν,

k(r
)]

ε=5

ε=5

n=0
n=1
n=2
n=4

Bloch modes
Real parts of the eigenfunctions of the 1D TM problem with ε=1 at k=0.5π

Figure 6.2. Eigenvalues and eigenfunctions of the 1D problem with piecewise-constant permittivity ε(r).
The highlighted area in b) shows where a higher permittivity was applied.

for values of α > 0. For completeness’ sake, the eigenproblem is now

−ψ′′
n,k(r) = ω2εα(r)ψn,k(r),

ψn,k(1) = eikψn,k(0),

ψ′
n,k(1) = eikψ′

n,k(0).

In this case, finding an analytic solution would be quite tedious, if not impossible. Numerical results are
fairly easy to obtain, however. Ours were generated by FemPy using linear one-dimensional elements.

Comparing Figures 6.1 and 6.2, we observe the following:

• Even for the smallest perturbation of ε, the degeneracies at k = nπ split. This seems to happen as
the bands try to “smooth themselves out” and fix the non-differentiability at the points k = nπ.
Consequently, a band gap opens where each pair of crossed-over bands has split its degeneracy.

• The fact that the title “lowest-energy band” changes hands halfway through the Brillouin zone at
k = π can also be observed at the eigenfunction level. Figure 6.3 shows a plot of u0,k(r) over
k and r for two values of α. For the α near 1, there is still a massive discontinuity at k = π,
almost a “switch” between the two different eigenfunctions, as the harsh transition in Figure 6.1a)

68 CHAPTER 6. RESULTS

a) Image u-development-sharp.eps is excluded here for size reasons.

b) Image u-development-smooth.eps is excluded here for size reasons.

Figure 6.3. The development of u0,k over k ∈ B and r for a) α = 1.1 and b) α = 5. Note the smoothing of
the discontinuity at k = π as α increases.

0π 0.5π 1π 1.5π 2π
Crystal momentum k over the Brillouin zone

100

1000

10000

1e+05

1e+06

1e+07

1e+08

1e+09

C
on

di
tio

n
nu

m
be

r
κ 2(S

k)
of

 th
e

st
if

fn
es

s
m

at
ri

x
at

 k

λ
n
/λ

1
 (total condition number)

λ
n
/λ

2
 (effective condition number)

Numerical stability
Condition numbers for the TM problem in 1D, n=100 degrees of freedom

Figure 6.4. An impression of FEM conditioning over the Brillouin zone.

suggests. As the band smoothes out (Figure 6.2a)), so does the development of the eigenfunction,
as can be seen in Figure 6.3b). Be aware that picking u0,k over ψ0,k for this visualization makes
the effect seem more severe than it really is: The transition of the ψ0,k is continuous, but still not
differentiable.

• For α > 1, the dispersion relation is “compressed”, all bands move down towards lower energy
levels. For α > 1, the reverse happens.

• Consider the speed of propagation in a medium, elmentarily expressed as cmed = 1/
√
εµ = λf with

wavelength λ and frequency f . As ε increases, the wavelength must decrease. This is exactly what
we observe in Figure 6.2b) in the section where ε is higher.

• The bands assume an uneven spacing, which seems to reverse itself for α 7→ 1/α. The origin of this
phenomenon is as yet unclear to me.

Empirically, these observations hold for any value of α > 0 in a qualitative manner. As α → 0 or
α→∞, the upper bands flatten out more and more.

Numerically, the one-dimensional problem is just as unfriendly as the two-dimensional one, as we will
see. For k = nπ, the system’s stiffness matrix becomes exactly singular, and even in neighborhoods of
these points the finite element matrices are fairly ill-conditioned. Figure 6.4 shows the condition number
of the stiffness matrix as a function of k. In two dimesions, these problems are somewhat less grave, but
still not negligible.

Many of the phenomena observed in the one-dimensional case carry over analogously to two dimen-
sions, even though they are often harder to detect and visualize. For example, instructive graphs like
Figure 6.3 become either impossible or very cumbersome to make. As such, the problem in one dimension
is a good indicator of what to expect in two.

6.3. CONSTANT PERMITTIVITY IN TWO DIMENSIONS 69

6.3 Constant permittivity in two dimensions

As in one dimension, we will begin by examining a constant-ε version of the eigenproblem:

−∇2ψn,k(r) = ω2ψn,k(r),

ψn,k(r + R) = eik·Rψn,k(r),

∇ψn,k(r + R) · n = eik·R∇ψn,k(r) · n

for r ∈ ∂P (R) for any R ∈ L and a unit-length vector n normal to ∂P in r.

Formally, the notable differences between this and the simpler one-dimensional case are that k and
r are now vector-valued, that the second derivative is replaced by the Laplace operator, and that the
boundary conditions now take slightly more effort to write down. Fortunately, finding analytic solutions
of this problem is just as easy as in one dimension: The functions ψn,k(r) := ei(k+2πν(n))·r form a
complete set of solutions for r ∈ P , k ∈ B and ν : � 0 → � 2 an enumeration of all two-integer tuples.
The eigenvalue corresponding to ψn,k is |k + 2πν(n)|2. Figure 6.5, which you might recognize from the
title page, illustrates the resulting dispersion relation. But wait, you may say, the dispersion relation of a
two-dimensional structure should be three-dimensional! Since three-dimensional visualizations are often a
bit unwieldy and tend to obscure more than they show, we have resorted to simply fixing a path around a
patch of the Brillouin zone (shown in Figure 6.5b)) and plotting the eigenvalues over its parametrization.
Note that the chosen patch is irreducible by symmetry, i.e. no smaller patch can be mapped to all of the
Brillouin zone solely by rotations and inversions. This simplification is common in solid state literature
and is based on the assumption that observing values on the boundary of the patch is sufficient to be
able to guess/interpolate the eigenvalues in its interior. In order to give you a feeling for what is really
happening, we have included a true three-dimensional view of the a few bands, cf. Figure 6.6.

Turning to the actual subjects of these images, we can see that the band structure is highly degenerate,
much more so than in one dimension. In fact, in Figure 6.6 I could only show 3 out of the bottom seven
bands without cluttering the image too much.

The data up to this point were fairly easy to obtain: every eigenpair is explicitly known. This
gives us the opportunity to assess the quality of our numerics, by comparing computed results to their
exact counterparts. What kinds of imprecision do we have to expect? How much deviation from the
true solution do we experience, both in eigenvalues and eigenfunctions? What is the empirical order of
convergence of the eigenvalues and the eigenfunctions? Let us answer these questions.

First, let us study the deviations in the dispersion relation qualitatively. Figure 6.7 shows both the
computed and the exact version overlaid. Generally, the approximation is quite good. Especially in the
numerically troublesome high-symmetry points Γ, M and X, a worse approximation was to be expected.
In these points, as in the analogous points in one dimension, the bands “try to” smooth themselves out.
This can be observed, for example, in a slight upwards tendency of the lowest band at Γ. Also, it seems
that some degeneracies are numerically extremely unstable; they seem to split very easily.

On a more quantitative note, a numerical study of approximation behavior yielded an empirical order
of convergence for the eigenvalues of 3.8, for the eigenfunctions in the L2 norm of 3.24, and for the
eigenfunctions in the energy norm of 1.97. These values are well within the expected range for exact-
boundary, second-order FEM approximations. Figure 6.8 shows the complete convergence history for
these three measures. Let us understand how these numbers were computed. Basically, the values shown
in the figure represent the quantity √√√√ 1

(#γ)N

∑

k∈γ

N∑

n=1

Xn,k

for each (quadratic) error measure Xn,k. N is the number of bands considered in the computation, five
in our case. γ is a tighter variant of the path shown in Figure 6.5b), slightly scaled away from the
troublesome points Γ, X and M, with 5 points on each leg. For degenerate eigenvalues, the eigenvalue
errors are calculated as usual, but the eigenfunction errors are omitted for simplicity (in this case, the
count #γN is adjusted accordingly). These numerical results were generated using FemPy as described
in Section 5.4.2.

Besides the above quantities which can only be computed if the real solution is explicitly known, there
is another measure of numerical quality that can be computed even without a reference solution. It relies

70 CHAPTER 6. RESULTS

a)
Γ X M Γ

Path through the high-symmetry points of the Brillouin zone

0

1

2

ω
/2

π

Dispersion relation in two dimensions
Eigenvalues of the 2D TM problem with ε=1

b)
-1π -0.5π 0π 0.5π 1π

k
1

-1π

-0.5π

0π

0.5π

1π

k 2

Brillouin Zone Path
Used for quasi-1D visualizations of the 2D Dispersion Relation

Γ
X

M

Figure 6.5. a) shows the dispersion relation of homogeneous (ε ≡ 1) space sampled along the Brillouin
zone path shown in b).

Image e1-dispersion-relation-3d.eps is excluded here for size reasons.

Figure 6.6. A true 3D view of the dispersion relation of homogeneous (ε ≡ 1) space. Specifically, bands 0,
2 and 6 are shown. The label “w/2pi” should read “ω/2π”, which could not be produced in the visualizer.

6.4. THE NON-CONSTANT CASE IN TWO DIMENSIONS 71

Γ X M Γ
Path through the high-symmetry points of the Brillouin zone

0

1

ω
/2

π

exact
computed

Assessment of numerical quality
Comparison of the exact and computed dispersion relation of the 2D TM problem with ε=1

Figure 6.7. A comparison of the exact and the computed version of Figure 6.5.

on the fact that the derivative part of the Floquet boundary conditions is automatically enforced by the
variational formulation of the eigenvalue problem, as outlined in Section 5.4.1. The error term

B :=
1

(#K)N

∑

k∈K

N∑

n=1

∫

∂P (R)

|(∇ψn,k(r + R)− eik·R∇ψn,k(r)) · n|2dr,

which we will call the boundary derivative error , should also obey a certain order of convergence, around
two for second-order elements. The vector n in the definition of B represents a unit-length boundary
normal vector of P in r. Figure 6.9 has some convergence data for B in the constant-permittivity case.
It seems that the use of boundary approximations as described in Section 5.4.2 more or less destroys any
convergence of B, for as yet unkown reasons. This drawback is not captured in Figure 6.9.

Fortunately, the fact that B does not require a fixed solution to compare to means that it can just as
well be applied in the case of non-constant permittivity, which we will be considering next.

6.4 The non-constant case in two dimensions

First, let us define a permittivity function analog to the one above, as

ερ,α(r) :=

{
1 for r > ρ
α for r 6 ρ

.

Figure 5.6 illustrates the meaning of ρ, and in that figure, α would be the permittivity of the shaded
areas. For completeness, the eigenvalue problem for this section is

−∇2ψn,k(r) = ω2ερ,α(r)ψn,k(r),

ψn,k(r + R) = eik·Rψn,k(r),

∇ψn,k(r + R) · n = eik·R∇ψn,k(r) · n
for r ∈ ∂P (R) for any R ∈ L and a unit-length vector n normal to ∂P in r.

Unfortunately, just like in one dimension, finding any eigenvalues or eigenfunctions explicitly is prob-
ably a hopeless endeavor for α 6= 1, so we will concentrate on numerical calculations, which are quite
feasible. A numerically-calculated dispersion relation of a crystal of the type described here is shown
in Figure 6.10. Since we do not have authoritative sources for comparison, there is not much that we
can say in the way of hard evidence about the quality of our finite-element approximations of the Bloch
functions in this case. Fortunately, we can appeal to a number of “softer” arguments which make it seem
reasonable that our results reflect the truth as much as possible:

72 CHAPTER 6. RESULTS

a)
3.71 4.83 6.27 8.16 10.6 13.8 17.9 23.3 30.3

h = n
1/d

; where n is the number of elements

0.0001

0.001

0.01

0.1
|λ

h-λ
ex

ac
t|

Eigenvalue error
Eigenvalue error straight line fit (slope = -3.800575)

Convergence behavior
Eigenvalue errors of the TM eigenvalue problem for ε=1 vs. mesh size

b)
3.71 4.83 6.27 8.16 10.6 13.8 17.9 23.3 30.3

h = n
1/d

; where n is the number of elements

1e-05

0.0001

0.001

0.01

||u
h-u

ex
ac

t|| L
2

L
2
 error

L
2
 error straight line fit (slope = -3.239)

Convergence behavior
Eigenfunction errors in the L

2
 norm of the TM eigenvalue problem for ε=1 vs. mesh size

c)
3.71 4.83 6.27 8.16 10.6 13.8 17.9 23.3 30.3

h = n
1/d

; where n is the number of elements

0.01

0.1

||∇
u h-∇

u ex
ac

t|| L
2

Energy-norm error
Energy-norm error straight line fit (slope = -1.9781)

Convergence behavior
Eigenfunction error in the energy norm of the TM eigenvalue problem for ε=1 vs. mesh size

Figure 6.8. A detailed convergence study of the 2D FEM approximation to the dispersion relation and
the Bloch functions in the case ε ≡ 1. While it may not be immediately apparent, the X axis in all plots is
actually logarithmic.

6.4. THE NON-CONSTANT CASE IN TWO DIMENSIONS 73

8.16 10.6 13.8 17.9 23.3 30.3

h=n
1/d

; where n is the number of elements

0.01

0.1

B

Boundary error B
Boundary error B straight line fit (slope = - 2.5423)

Boundary convergence
Convergence data for the quantity B for the TM problem with constant permittivity

Figure 6.9. Convergence data for the boundary derivative error B in the case of constant permittivity.

Γ X M Γ
Path through the high-symmetry points of the Brillouin zone

0

0.25

0.5

0.75

1

ω
/2

π

First-order band gap

Dispersion relation in two dimensions
Eigenvalues of the 2D TM problem with ε(r)=ερ,α(r), ρ=0.18, α=11.56

Second-order band gap

Figure 6.10. A dispersion relation of a crystal with a nontrivial, location-dependent permittivity ε. The
same Brillouin zone patch and parametrization is used as in Figure 6.5.

• First, the exhaustive study conducted in the last section suggests that our FEM code deals well
with eigenvalue problems under Floquet boundary conditions.

• Second, the only addition with respect to the last section are the piecewise-constant coefficients.
The discussion of a similar problem with such coefficients in Section 5.3.3, where we could actually
demonstrate convergence to the true solution, also bodes well for this case.

• Third, the article [BMGM+03] by Busch et al. contains imagery depicting the dispersion relation
of the same crystal as the one of Figure 6.10. Within reasonable limits, the two graphs look very
similar.

• And finally, we can see from Figure 6.11 that B converges almost as quickly as in the constant-
coefficient case. This also suggests good numerical behavior.

These arguments should suffice to give you at least a certain amount of confidence in the solutions
obtained, and thus we can turn to the application of the computed Bloch functions in the Wannier
localization process.

74 CHAPTER 6. RESULTS

8.16 10.6 13.8 17.9 23.3 30.3

h=n
1/d

; where n is the number of elements

0.01

0.1

B

Boundary error B
Boundary error B straight line fit (slope = - 2.2944)

Boundary convergence
Convergence data for the quantity B for the TM problem with piecewise-constant permittivity

Figure 6.11. Convergence data for the boundary derivative error B in the case of piecewise constant
permittivity ε(r) = ερ,α(r), with α = 11.56 and ρ = 0.18.

Image raw-wannier.eps is excluded here for size reasons.

Figure 6.12. A “raw” Wannier function centered at 0 for the crystal of Figure 6.10. This function was
computed from unprocessed Bloch functions.

6.5 Maximally localized Wannier functions

In concluding this chapter, we examine the results of our implementation of Marzari and Vanderbilt’s
method, as described in Chapter 4. Before we begin, let us confirm the necessity of localization by
reviewing an example Wannier function computed without localization. Figure 6.12 shows such a function
and makes it fairly clear that these functions are far too irregular to be used as they are.

After applying the localization procedure, we obtain functions like the ones pictured in Figure 6.13ff.
While definitely more usable than the “raw” functions, they have a number of shortcomings, some plainly
visible, some not:

• Looking at the outer regions of the functions visualized in Figure 6.13ff., a few “humps” can be
seen. While it is not clear that these can be eliminated by the minimization procedure, they at
least have a decidedly suspicious look to them.

• As mentioned in Chapter 4, Marzari and Vanderbilt conjectured from their experience that maximally-
localized Wannier functions have inherently constant phase, and thus can be made real by multi-
plying with a complex number of absolute value 1. Our functions do not satisfy this criterion. On
the other hand, the criterion itself is is not yet proven.

The single biggest problem we are facing right now is: While the computed functions doubtlessly are
Wannier functions, how do we decide whether they are really maximally localized? Short of Marzari’s and
Vanderbilt’s conjectured criterion, how do we reliably detect that we have fallen into a local minimum of
the spread functional? To the best of my knowledge, there is no easily-decidable answer to this question.

Finally, let us shed some light on the internal performance characteristics of the Wannier spread
minimization algorithm. Figure 6.16a) shows the value of the spread functional Ω for each step, Figure
6.16b) shows the step size in gradient units. The iteration is halted when it is decided that significant
progress is no longer being made, indicated by the fact that the last 3 minimziation steps each yielded
less than 10−5 in progress.

From the convergence rate of the CG algorithm, it seems reasonable to believe that by our method we
do find at least a local minimum of the spread functional. This is confirmed by Figure 6.17. This figure

6.5. MAXIMALLY LOCALIZED WANNIER FUNCTIONS 75

Image maxloc-wannier-1.eps is excluded here for size reasons.

Figure 6.13. The maximally localized Wannier functions number 1, 2 (Fig. 6.14) and 3 (Fig. 6.15) centered
at 0 for the crystal of Figure 6.10. Recall that we start numbering bands at 0. These Wannier functions
were computed from bands 1, 2 and 3 of the underlying crystal–which make up the entangled block of bands
between the first- and second-order band gap. All Wannier functions are drawn over a grid of 3 × 3 unit
cells. Continued in Figure 6.14.

Image maxloc-wannier-2.eps is excluded here for size reasons.

Figure 6.14. The maximally localized Wannier function number 2. Continued from Figure 6.13. Continued
in Figure 6.15.

depicts one step in the line minimization performed in each step of the CG algorithm described in Section
4.8. Along the search line, the value of Ω and its line derivative computed by centered differences are
shown. To verify our previous results, the derivative of Ω as computed in Chapter 4 is also shown. The
two derivatives agree fairly well if we ignore the substantial noise in the finite difference approximation
for larger values of |α|. This suggests that the gradient expression given at the end of Section 4.7 has
some truth to it. The mistake in Marzari and Vanderbilt’s paper [MV97] was found by disagreements in
this kind of graph.

Image maxloc-wannier-3.eps is excluded here for size reasons.

Figure 6.15. The maximally localized Wannier function number 3. Continued from Figure 6.14.

76 CHAPTER 6. RESULTS

a)
0 5 10 15 20 25

Step number n

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Ω
−Ω

m
in

CG spread minimization
Convergence behavior for the crystal with piecewise-constant permittivity, α=11.56, ρ=0.18

b)
0 5 10 15 20 25

Step number n

0

0.05

0.1

0.15

0.2

St
ep

 w
id

th
 α

 in
 g

ra
di

en
t u

ni
ts

CG spread minimization
Step sizes for the crystal with piecewise-constant permittivity, α=11.56, ρ=0.18

Figure 6.16. A characterization of the progress of the CG minimization algorithm applied to the crystal
of Figure 6.10. a) shows the absolute values of Ω at each step, b) shows the step width used in each step in
gradient units. Since the gradient vector’s length decreases as we approach a minimum, it makes sense that
the algorithm makes fairly constant-size steps.

6.5. MAXIMALLY LOCALIZED WANNIER FUNCTIONS 77

-0.2 -0.1 Starting point (0) 0.1 0.2
Step width α

-50

0

50

100

150

200

Ω

-50

0

50

100

150

200

Ω ×10 (for exposition)
Ω’ by centered differences
Ω’ as per Chapter 4

Minimum search along a line
Agreement between analytic and empirical gradient of Ω

Positive gradient direction

zero of Ω’,
minimum of Ω

Figure 6.17. A line minimization step in the algorithm of Section 4.8.

78 CHAPTER 6. RESULTS

Chapter 7

Conclusions and Future Work

After a fast-paced trip through many exciting areas of research, we are finally coming to the end of
this thesis. What have we seen? From the bird’s eye view, we have explored the foundations of the
computation of maximally localized Wannier functions.

We started from Maxwell’s equations with periodic coefficients and were able to represent them in a
solvable way, summarizing the necessary results from functional analysis as we went along. We barely
touched upon the distribution theory that would be used in a more in-depth treatment of the Dirac
relations of Section 2.4, because this was beyond the scope of this work. Next, we spent some time
examining the problem and its eigensolutions analytically. We obtained enough information to justify
the construction of the Wannier functions and found ourself deeply within the realm of solid state physics,
which is rooted in the quantum theory. After obtaining a clearer view of the Wannier functions’ role,
we built some tools which were needed in following and justifying Marzari and Vanderbilt’s method.
The subsequent, detailed examination enabled some deeper insights into the gradient calculations, made
possible by an inner-product view of directional derivative evaluation, as inspired by Prof. Dörfler. In
concluding that section, we built up a complete description of a relatively fast and practical algorithm for
obtaining maximally-localized Wannier functions. From there, we described an actual implementation of
these ideas.

Foraying into applied computer science, a complete set of computational tools, ranging from matrix
computations to a finite element toolkit, was built up from freely available bases. To the best of my
knowledge, PyLinear is the first toolkit which allows the use of the same comprehensive set of powerful
matrix primitives on both sides of a language barrier. While it has probably been done before in this
way, the scheme with which FemPy attains exact boundary approximation was created by me without
help from the literature. Also, FemPy’s internal design and powerful interface were designed without
substantial influence from other finite element packages. We concluded by presenting the results of the
conducted computer experiments and providing a thorough numerical analysis of their validity. The
knowledge contained in this thesis was unfortunately not all to be found in one place, many points only
became clear as I scavenged through a diverse array of literature ranging from solid state physics journals
from the 1960s, over classical mathematical volumes, to recent articles in numerical analysis. It was my
goal to provide an accessible treatment that accurately reflects what I have learned over the last half
year.

At the end of a sizable project such as this one, there are always things left unfinished, areas that
could use some more attention and corners that seem worthy of being explored. In Chapter 5, we outlined
opportunities for fruitful future work in each section. Of course, the theory can always be generalized
and treated in more depth. In my opinion, it would be especially rewarding to keep studying the Wannier
functions, which have so far not received much attention from within the mathematical community as far
as I can tell. Neither Reed and Simon’s treatment in [RS78], nor Kuchment’s monograph [Kuc93] make
any mention of the topic. They provide an alternative and interesting view, and I am confident that they
will enable many exciting discoveries, both in functional and numerical analysis.

79

80 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Appendix A

Auxiliary results

Theorem A.1 Let U ⊂ � d be open, d ∈ {2, 3}, f ∈ C1(U,
�

), Ω ⊂ U admissible for Gauss’ integral
theorem. Then ∫

Ω

∇f(r)dr =

∫

∂Ω

f(r)ndS.

Proof Let gi(r) := f(r)ei, where ei is the ith unit vector. Then ∇ · f(r) =
∑
i div gi(r). For linearity

reasons, it suffices to show the claimed equality for just one gi, or equivalently, for just one component
of the vector, say the ith:

[∫

Ω

∇f(r)dr

]

i

=

∫

Ω

div gi(r)dr

=

∫

∂Ω

gi(r) · ndS

=

∫

∂Ω

f(r)nidS,

which establishes the claim. �

Corollary A.2 Let Ω be a primitve cell to a lattice L, f just like in Theorem A.1 and also let f be
L-periodic. Then ∫

Ω

∇f(r)dr = 0.

Theorem A.3 (Characterization of operators with compact resolvent, Theorem XIII.64 in [RS78]) Let
A be a self-adjoint operator bounded from below. Then the following are equivalent:

a) A has compact resolvent, i.e. (A− µ Id)−1 is compact for all µ ∈ ρ(A).

b) There exists a complete orthonormal basis {ϕn}∞n=1 in D(A) so that Aϕn = µnϕn with µ1 6 µ2 6 · · ·
and µn →∞ as n→∞.

c) {ψ ∈ D(A) : ‖ψ‖ 6 1, ‖Aψ‖ 6 b} is compact for all b.

Theorem A.4 (An implicit function theorem, Theorem 4.3 in [Sch02]) Let

f : X × Y ⊃ U → Z

be continuous in a neighborhood U of a solution (x0, y0) of f(x, y) = 0. Let the derivative Dxf exist and
be continuous on U . If

Dxf(x0, y0) : X → Z

is an isomorphism, then the equation f(x, y) = 0 can be solved for x uniquely in a neighborhood of y0:

81

82 APPENDIX A. AUXILIARY RESULTS

a) There exists an r > 0 such that for exactly one function u : Y ⊃ Br(y0)→ X the equalities

f(u(y), y) = 0 and u(y0) = x0

hold for all y ∈ Br(0).

b) f ∈ C1 implies u ∈ C1(Br(y0),X) and we have

Dyu(y) = −[Dxf(u(y), y)]−1Dyf(u(y), y).

Bibliography

[ADHO01] David Ascher, Paul F. Dubois, Jim Hugunin, and Travis Oliphant. Numerical Python.
Lawrence Livermore National Laboratory, Livermore, CA, 2001.

[AK99] Waldemar Axmann and Peter Kuchment. An efficient Finite Element Method for Com-
puting Spectra of Photonic and Acoustic Band Gap Materials, I. Scalar Case. Journal of
Computational Physics, 150:468–481, 1999.

[AM76] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Saunders College Publishing,
1976.

[BGBM93] Angelika Bunse-Gerstner, Ralph Byers, and Volker Mehrmann. Numerical Methods for Si-
multaneous Diagonalization. SIAM Journal of Matrix Analysis and Applications, 14(4):927–
949, 1993.

[Blo62] E. I. Blount. Formalisms of Band Theory. Solid State Physics, 13:305–373, 1962.

[BMGM+03] Kurt Busch, Sergei F. Mingaleev, Antonio Garcia-Martin, Matthias Schillinger, and Daniel
Hermann. The Wannier function approach to Photonic Crystal Circuits. J. Phys. Cond.
Mat., 15, 2003.

[Bre73] Richard P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Engle-
wood Cliffs, NJ, 1973.

[CS96] Jean-Francois Cardoso and Antoine Souloumiac. Jacobi Angles for Simultaneous Diago-
nalization. SIAM Journal of Matrix Analysis and Applications, 17:161, 1996.

[Dob99] David C. Dobson. An efficient method for band structure calculations in 2D photonic
crystals. Journal of Computational Physics, 149:363–376, 1999.

[Geu02] Roman Geus. The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue
problems with application to the design of accelerator cavities. PhD thesis, Eidgenössische
Technische Hochschule, Zürich, 2002.

[GFS03] Fran cois Gygi, Jean-Luc Fattebert, and Eric Schwegler. Computation of Maximally Lo-
calized Wannier Functions using a simultaneous diagonalization algorithm. Comput. Phys.
Comm., 155(1):1–6, 2003.

[Kuc93] Peter Kuchment. Floquet Theory for Partial Differential Equations. Birkhäuser Verlag,
Basel, 1993.

[Kuc01] Peter Kuchment. The Mathematics of Photonic Crystals. In Gang Bao, Lawrence Cowsar,
and Wen Masters, editors, Mathematical Modelling in Optical Science, volume 22 of Fron-
tiers in Applied Mathematics, chapter 7, pages 207–272. SIAM, 2001.

[LSY97] R. B. Lehoucq, D. C. Sorensen, and C. Yang. The ARPACK Users’ Guide. Department of
Computational and Applied Mathematics, Rice University, Houston, TX, 1997.

[MP76] Hendrik J. Monkhorst and James D. Pack. Special points for Brillouin-zone integrations.
Physical Review B, 13:5188–5192, 1976.

83

84 BIBLIOGRAPHY

[MV97] Nicola Marzari and David Vanderbilt. Maximally-localized generalized Wannier functions
for composite energy bands. Physical Review B, 56:12847, 1997.

[MVS04] Nicola Marzari, David Vanderbilt, and Ivo Souza. wannier.f. Available from
http://www.wannier.org/, 2004.

[Pet] Tim Peters. The Zen of Python. Available from any Python interpreter by typing import

this.

[RS78] Michael Reed and Barry Simon. Analysis of operators, volume 4 of Methods of modern
mathematical physics. Academic Press, Inc., New York, 1978.

[Rud91] Walter Rudin. Functional Analysis. McGraw-Hill, Singapore, second international edition,
1991.

[Sch81] Martin Schechter. Operator Methods in Quantum Mechanics. Elsevier/North Holland, New
York, 1981.

[Sch02] Ben Schweizer. Nichtlineare Funktionalanalysis. Lecture in the Winter Term
of 2001/02 at Universität Heidelberg. Available from http://www.iwr.uni-
heidelberg.de/groups/amj/People/Ben.Schweizer/skripte.html, 2002.

[She94] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain. http://www-2.cs.cmu.edu/ jrs/jrspapers.html, Aug 1994.

[She96] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and De-
launay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational
Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203–222. Springer-Verlag, May 1996. From the First ACM Workshop on
Applied Computational Geometry.

[Str92] Walter A. Strauss. Partial Differential Equations–An Introduction. John Wiley and Sons,
Inc., 1992.

[Vel00] Todd Veldhuizen. Techniques for Scientific C++. Technical Report 542, Indiana University
Computer Science Department, 2000.

[Wan37] Gregory H. Wannier. The Structure of Electronic Excitation Levels in Insulating Crystals.
Physical Review, 52:191–197, 1937.

[WC03] D. M. Whittaker and M. P. Croucher. Maximally localized Wannier functions for photonic
lattices. Physical Review B, 67:085204, 2003.

	Introduction
	What and why
	Acknowledgements
	Notation
	Directory of symbols
	Version history

	Eigenproblems with periodic coefficients
	Motivation
	Elementary definitions
	The Floquet transform
	Some consequences
	Bands and gaps
	Smoothness of the dispersion relation

	Wannier functions
	Definition
	Localization of Wannier functions: Basics
	Wannier functions as a basis set
	Localization methods
	The location operator in bold0mu mumu kkRawkkkk-space

	Localization in bold0mu mumu kkRawkkkk-space
	The spread functional
	A mesh in k-space
	Finite difference formulae in bold0mu mumu kkRawkkkk-space
	The discretized spread functional
	A Problem and its Solution
	Decomposition of the new spread functional
	The gradient of the spread functional
	A straightforward approach to the gradient
	Small changes to Ubold0mu mumu kkRawkkkk
	A first gradient of
	Marzari and Vanderbilt's gradient of

	Minimizing the spread
	The starting strategy
	The initial inner products Mbold0mu mumu kkRawkkkk,bold0mu mumu bbRawbbbb, (0)
	Updating the inner product matrices
	Other implementation notes

	Implementation
	PyLinear
	PyAngle
	FemPy
	The user interface
	FemPy's inner workings
	Numerical experiments
	Further work

	PyWannier
	Weak formulation of the eigenproblem
	Discretization of the eigenproblem
	The way to maximally localized Wannier functions
	Future work

	Results
	Constant permittivity in one dimension
	The non-constant case in one dimension
	Constant permittivity in two dimensions
	The non-constant case in two dimensions
	Maximally localized Wannier functions

	Conclusions and Future Work
	Auxiliary results

