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1 Theory of One-Dimensional Scalar Conservation Laws

ug+ f(u)z =0, (1)

where u is a function of z and ¢.

is the integral form of (1).

b
%/a u(x, t)da + f(u(b,t)) = f(ula,t)) =0,

{ u(z,0) =u’(x). )
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Characteristics: Define a function z(t) by

dz(t) _
a = /' (u(z(t),1),
x(0) = xo.
Then
du(x(t), t)
dt
So u(z(t),t) =u(x(0),0) = u%(xy).
All that holds under the assumption that we have a smooth solution. Which we don’t. :(
Consider Burgers’ Equation:
u2
ut ()0 3)

u(z,0) =sin(z).

=u,®'(t) +us=upf (u(z(t),t) + ug=f(u)y +u =0.

Consider the characteristics at 7 /2 and 37 /2.—They intersect and propagate different values, so the above
theory breaks down.=There is no global (in = and ¢) solution to (3). The concept of “weak solution” helps
us out now. Reconsider the integral form:

b

d
i/, u(z,t)dr = f(u(a,t)) — f(u(b,1)) (4)

For C! solutions, (1)<(4). Attempts at defining weak solutions:

o If u satisfies (4) for almost all (a,b) then in u is called a weak solution to (1). (physically meaningful,
correct)

e If for any ¢ € C}(IR?),

T[T wer r@pdzat— [ (@)l 0)dz =0,
L /.

then in u is called a weak solution to (1). (more meaningful mathematically—motivated by multipli-
cation by test function and integration by parts.)

It turns out the two are equivalent. (Not proven here.) Now, assume a solution that has two C! segments
separated by a curve on which no regularity is demanded of u.
Then

b
0 = 5[ ulede+ (b 0) - fula.)
d (1) b
= E{A u(:c,t)d:c—f—/m(t)u(x,t)dw} + f(u(b,t)) — f(u(?t))

z(t)
= u(z(t™),)z'(t) + / ug(z, t)dr — u(x(tT), t)x’(t)—i—/(t)ut(x,t)—|—f(u(b,t))— flu(a,t))

= u(z(t7), t)a'(t) / f(u)adz —u(z(t), t)a'(t) + zt)f( w)edz + f(u(b, 1)) = f(u(a,1))
= u(z(t™), )a'(t) (@(t7), 1)) + f(ula, 1)) — w(z(t™), )a'(t) = fu(b, 1)) = flulz@h), ) + f(ulb,
t)) — f(u(a,t))

= u((t™),)2'(t) = fu(@(t),t) —u(e(th), )a'(t) + f(ulz(th),1).

Now use the shorthand

and write

Now distinguish two cases:

e u~ =ut: This is fine.
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e u~ #ut: We get the Rankine-Hugoniot jump condition:
+ _ —
o) L) = £a)

ut —u~

If u is piecewise C! and is discontinuous only along isoated curves, and if u satisfies the PDE when it is C?,
and the Rankine-Hugoniot (RH) condition along all discontinuous cruves, then u is a weak solution of (1).

Example 1. Consider the following Riemann problem:
u2
U + (—) =0
u@,0)={1, ;55
The IC is just propagated in time to form a weak solution. (a shock)
Example 2. Now flip the initial conditions:
u2
u(@,0)={ 7" 150

The propagated ICs also form a weak solution. But consider

-1 x<—t,
u(z,t)=< z/t —t<z<t,
1 T >t

This is also a weak solution. (a rarefaction wave)

Oops. So, we need a third category of solutions, called entropy solutions, where neither uniqueness nor
existence poses a big problem. Consider adding an artificial viscosity:

ui + f(u)e =eus »
with a very small 0 <e < 1.
Then we would wish to define an entropy solution as

limu®(z,t) =u(z,t)

e—=0

in some norm. In fact, this is the entropy solution.
Pick a function U(u) called the entropy function if U”(u) > 0, i.e. if it is convex. Then multiply the
conservation law with viscosity by U’(u®):

U'(u®)(ui + f(u¥)z) = eU'(u)us o
U(us)e+ F(u)e = e[(U'(u)uz)e —U"(u)(ug)?]
Ui+ F(u), < e(U'(u)uf)s

where

Fu) = / T Fody = Fu) =0 fw).

To support our argument as € — 0, once again take a test function ¢ € CS(IR xRY), ¢>0.

/ / W)+ F(uf)y) g da dt / / W)y il dt
é/ / u®)pr+ F(uf)p, dedt / / uf)ugpda dt
/ / )y, xda dt

N

WV
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DCT allows taking the limit. We get the entropy inequality

/ / w)ps+ F(u)p, dadt > 0.
Homework #1:

e On a domain [0, 27], with periodic BCs, consider

w?

u(ac,O):%—i—sinx

Find the maximum 7* such that u(z,t) € C* for t <T*.

e Write a code to solve for u when ¢t < T*. (Hint: Look for equation implicitly defining u, maybe use
Newton’s method). Test the code for (0.1,0.1), (1,0.08), (m,0.09).

Definition 3. A conservation law is called genuinely nonlinear iff f"(u)#£0. If f"”(u) >0, it is called convex,
if f”(u) <0 it is called concave.

Shocks must appear for genuinely nonlinear conservation laws under periodic or compactly supported
initial conditions.

Consider a box containing the support of a test function ¢ € C°(IR x RT) and let u(z, t) be piecewise
C! with one discontinuity along (¢, z(t)).

o
'
T
I
8

Figure 1.

Then consider

0 / / w)pr+ F(u)p,)dzdt
/ / w)pr+ F(u) oy dxdt—/ / w) s+ F(u) g )dadt
(t)

(U,F)T- Ve
t)
/ / t+F( ) )<pdxdt_/m@(U(u),F(u)).nds—/m@(U(u),F(u)).nds
' (O)U (u” )—F(Uf) s [LEWOU@h) - Fuh)
/Sp NaEo /pw ot
)

'OU ™) =U @) = (Fu”) = F(uh))lds.

A\/l—i—w’(t)Q[x (

We obtain
2'(t)(U(u™) =U(u")) = (F(u™) = F(u")) <0.

If we introduce the notation [f]:= f(u™)— f(u™), then this condition becomes

«'(O)[U] = [F].
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Oleinik entropy condition: For all u between v~ and u™", we need to have

F) = ) |y L) = )

u—u" NI/ u—ut

S

)

where s is the shock speed, known from the Rankine-Hugoniot condition.
Laz’s entropy condition:

f(u™)>s> f'(ub).

Figure 2. Illustration of Lax’s entropy condition. Characteristics are going “into” shocks.

It is easy to see that the Oleinik condition implies Lax’s condition. Unfortunately, the converse does
not hold. Lax’s entropy condition does not guarantee uniqueness—but it is a necessary condition. However,
if f”(u) 2 0 uniformly (i.e. the conservation law is genuinely nonlinear), then Lax’s entropy condition is
sufficient for u to be the entropy solution.

For f’(u) >0, Lax’s condition becomes even simpler. Consider

i)z s =L

and note that f/(u) is monotonically increasing, such that the middle part is automatically satisfied. Thus,
Lax’s condition becomes

f'w=) 2 f(u).
I.e. looking towards the right, we can only jump down.

Theorem 4. The solutions to

us(z,0) =u"(x)

{ w4 f(uf), = eus

are L'-contractive. Le. let v° be the solution of

vf + (%) =205 4,
ve(z,0) =v%(x).
Then

lus () = v (s ) oo < flu® = 00| o

Proof. We need to show
d o0
> — € — v .
025 [ It~ v tlda

— 00
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i-1/2

Figure 3.

Let s; be the sign of u® —v® on I; and consider, using Leibniz’s rule, the following:

i/m (@, £) — v (2, )|z

Tj+1/2

= %ZL |us(z,t) — v°(z, t)|dx
=S sj<t>[u€<xj+1/2<t>,t>—v€<xj+1/2<t>,t>]x;+1/2<t>

~

—si(0)] w41 200, ) —v%wjﬂ/z(t)?t)]wgﬂ/g(t)
0

+ / 0 (@, ) — v (e, £))de

+/$j+1/2sj(t)(u§(w,t) iz, ))da

= EJ: ]/Ijétjizsj(t)(U§($7f) —v§(z,t))dz

> / jf/lfsxw[—f(us(x,t>>m+au;$<z,t) + F(0# (o5} — evf (o, s

- EJ: Sj(t){_f(ug(xjﬂm(t)?t))+f(ua(xj_w(t)’t))+f(UE($j+1/2(t)af))—f(va(wj—l/z(t),t)) +
el —ug(zj_1/2(1), 1) — :v;(xj_l/z(t), t)]}

< 0.

To see why the orange and blue parts together each are >0, just look at what’s happening at the x;11/2. U

The entropy solution has a non-increasing total variation.

TV (u):= szp/
TV(u(-,1)) <TV(u),

u(z+h) —u(x)

5 dx.

because ...7
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2 Numerics

Consider
ne (5=
( 0) = 1 z<0
uT, ) 0 x>0
The entropy solution is
1
1 z<<t,
u(z,t) = 2

Note also that the analytic solution satisfies a mazimum principle, i.e.

minu®(z) < u(€,t) < maxu’(z).
xT T
Remember for u; +au, =0, we wrote down an upwind scheme:

n+l__ n At n n
ui T = a-m(uj—uj,l).

Let’s write a direct generalization, for the (equivalent...?) PDE w; + uu, = 0:

n+l__ n At ni,n n

But for j#0, u?- — u?-,l =0, and for j=0, u?— =0. Altogether,

un+1

— "
i T Uy

Bad.

Definition 5. A scheme to solve conservation laws is called conservative iff it can be written as

n n At 7 7
Uj+1:uj —A—x[fj+1/2— fj71/2]7

where f 18
1. Lipschitz continuous,

2. f(u,-,u)= f(u) (consistency).

Theorem 6. (Lax-Wendroff) If the solution {u}} to a conservative scheme converges (as At, Ax—0)
boundedly a.e. to a function u(x,t), then u is a weak solution of the conservation law.

Proof. Let ¢} = ¢(z;,t") for ¢ € Cj5. Then

nt+l_

_ wit =l fiap—Ficie L,
0 = En Ej ( Al + s w7 ATAL
n n—1 n n
E: E: Pi — Pj n, P~ ¥Pi—-13

DCT,Conservativity oo oo
onsgrvativity / / (pru+ @of (u))dedt =0.
0 —00

Remark 7. Above, we used partial summation:

J2 J2
> aj(bj—bj-1) == (aj11—a;)b; —a;bj1+azb,.

Jj=i J=j1



8 SECTION 2

2.1 Examples of conservative schemes

2.1.1 The Godunov Scheme

The Godunov scheme for the conservation law

{ ug+ f(u):=0,
u(z,0) =u’()

was derived from the fact that the Riemann problem

Ut+ f(u)m:(),
u(x,O) :{ u <0,

ur 20
can be solved exactly. Fzample: (see above) For Burgers’ Equation, we get
{ u x<st,

U, r2=8t,

u(z,t)= {m z <ut,

wy > U,

z/t wt<r <upt, U <Up,
Uy T 2 Upt,

where
flur) = flw) _ %[u% —uf] = l(uz +uy).

S =
Uy — UL Uy — U 2

The same technique would work for all convex (f”(u) > 0) or concave conservation laws. (Also cf. book by
Toro—500 pages of Riemann solutions.) Note that conservation laws have finite propagation speed. Suppose
we choose a scheme where we consider the solution constant in each cell (Conceptually, imagine that this
value #; is the cell average of cell I;~this is also how you arrive at u .) If we choose Az and At such that

max | f/(u)|At < Az,

then in a sequence of cells (A, B,C, D, E), then the solution in cell C' in the next timestep is not influenced
at all by the solution in cells A and E. Thus we only need to solve a Riemann problem at each cell interface
and we’re done. Then
A
tn+1

1 Tjt1/2 ntl 1 Tjt1/2 n 1 ¢nt+1
Az utde — — u dx—l—Ktl f(Uj+1/2)dx_A_x/ fluj_1/2)dz = 0.

Tj-1/2 R TRV "

tnt+1

Tjt+1/2
/ (ue+ f(u)z)dzdt = 0

j—1/2

Now consider that for the Riemann solution u(zx,t) is a function of only one variable £ =z /¢. In fact, the
substitution

= aw,

~+ 8

= at.

leaves the PDE and the Riemann ICs invariant. (This is also called self-similarity.) Thus v is constant along
T =T 41/2, making the last two integrals trivial. The Godunov scheme can then be written as

=1 =0

uj =1y — ﬁ—;(f(ujpﬂ) = fuj—1/2)).

This is a conservative scheme because the flux f (u?, u9+1) depends on the right values (and Lipschitz
continuity holds as well, but is a bit tricky to prove.) The numerical flux of the Godunov scheme can be
written as

f L1)2= minuj<u<uj+1 f(u) Uj <Uji1,
’ maxuj<U<Uj+1 f(u) Uj>uj+1-
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2.1.2 The Lax-Friedrichs Scheme
The numerical flux here is
A 1
Firaya= 5l (wg) + fujen) —alujer —uy),
where oo =max,, | f'(u)].
2.1.3 The local Lax-Friedrichs Scheme
The numerical flux here is
A 1
Firya=5lf (wg) + f(ujr1) = ajaya(ujen —uy)l,
where ajy1/2 = max(y; u,, ) |f'(u)|] (where we note that (uj, u;11) is meant as a non-empty interval no
matter which end of the interval is greater).
2.1.4 Roe Scheme

The numerical flux here is
Footjgm fluz)  aj11/220,
it1/2 flujs1) aji1/2<0,
where
. _ f(uj+1)— f(uj)
J+1/2——uj+1_uj

is the speed of the solution as given by the RHC.
2.1.5 Engquist-Osher Scheme

The numerical flux here is
Fivie= T (ug) + f~(ujv),

where

~

—+
S

~—r
|

/umax (f'(u),0)du+ f(0),
OU
f(w) = /0 min (f/(u), 0)du.

2.1.6 Lax-Wendroff Scheme
Consider
up = —f(u)g
ure = —f(w)e,e=—(f(W)e=—(f(Wur)e=(f"(u) f(t)2)a-
The general idea is:
e Repeatedly replace time by space derivatives by using the PDE,

e Discretize space derivatives by (2nd order central) FD formulae.

Derivation:
2
urtl = u”—i—Atu?—i—ATtu?,t
n ny o, AP,
= " A (et S ) F()2)s
n n uii1) — flul- At? n utiq) — f(uf
uj+1 = uf _ Atf( J+1)2Axf( J 1) + T f/(uj+1/2)f( J+lix f( J) _
n S = fuf )
fl(uj—1/2)T Az,
where
uy +ujy

n
u”? =
Jj+1/2 )
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The numerical flux becomes

Franjo =gl ug) + F oty 1) = Mg 1/2)(F (541) = ()]
where
At

2.1.7 MacCormack Scheme

The idea behind MacCormack is of the “predictor-corrector” sort.
WY = M) - (),
n Ir n | nt1/2 n+1/2 nt1/2
uy ™= 5[“3' +ujt / +)‘[f(ujil/ )= flu)” / )]

The numerical flux is a bit ugly:

A 1

Firay2=5lF (ug) + fuj = A(f (ug) = fuj-1))))-
Homework #2:

1. Code the Godunov and Lax-Friedrichs scheme for solving a Riemann problem of Burgers’ Equation.
Test the code with

a) uy=1, u.=—0.5.
b) w=-0.5, u,=1
using N =160 points equally spaced. Show the solution graphically along with the exact solution.
2. Find the formula for the entropy solution of
ur+ f(u)e =0,
w(e,0)={ 50

where f”(u)>0.
3. Show that the Godunov flux and the Roe flux are both Lipschitz-continuous.

Definition 8. A scheme

. . .
Wi = w = Af(ui—py e tjq) = f(U—p—1, ey Ui q—1))

G(Ujfpfl, ...,Uj+q)

is called a montone scheme if G is a monotonically nondecreasing function G(1,71,...,T) of each argument.

In the special case of 3-point schemes

flug ujpn)

the scheme is a monotone if f(1,]) plus a restriction on A:

G(uj—1,uj,ujr1) =uj— A f(ug, ujr1) — fuj—1,u5)]

Clearly, if f(T, 1), then G(1,7,1). To clean up the second argument, consider

oG N N
%:1—)\[f1—f2]>0-
j 5

If A(fi— f2) <1, then G(1,1,7).

Examples: The Lax-Friedrichs flux is monotone:

PP g uie) = 0f(ug) + fluj—1) — alujrr —uy)]  for Oézlﬂflf;\X|f’(7~t)|a

N RN =] —

7= Sl uy) +a] 20,
if = 51f(uj1) +a] 0.
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Theorem 9. Good properties of monotone schemes:
1. uj<wj for all j (“u<v”) implies G(u); < G(v); for all j.
2. Local maximum principle:

min u; <G(u); < max ;.
i€ stencil around j i€ stencil around j

3. Ll-contraction: (this was already obtained for the PDE)
1G(u) = G(v)|| < [Ju—v.
4. This immediately implies the Total Variation Diminishing (TVD) property:

1G(u) By < llullpv-

Proof. 1 is just the definition.
2. Fix j. Take
U,:{ MaXgestencil arond iUk if ¢ € stencil around j,
‘ U; otherwise.

Then clearly u; <w; for all 4, so that

G(u); <Gv);j=v;= max ;.
iE€stencil around j

Other way around runs in an analogous fashion.

3. Define
aVb=max(a,b), aAb=min(a,b), at=aA0, a"=aV0.
Then let
wji=u;Vo;=v;+ (u; —vj) " (%)
We have

by property 1. Then

0 Vi,
60)i-600,2{ Gy pay V)
Thus
G(w); —G(v); = (G(u); - G(U)J)+
Therefore

J

because we are treating a conservation law, meaning
n+1__ n
Z uj —Z uf, (%)
J J

which holds for conservative schemes. (Why?) Also consider

Z G(u); = G(v);] = Y (G(u); = G();)T+ D (Gu); = G(v);)~

J J

< Z (Uj—vj)++z (vj —uy)*
Z luj —vj].

(This is also called the Crandall-Tartar lemma.)
4: Take vj=1u; 11 in 3.

> (G =G)" < Y (Gw); =G, =Y ==Y (- u)*

11
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Theorem 10. Solutions to monotone schemes satisfy all entropy conditions.

Proof. We'll prove a particular case, namely
Uu) =|u—c|
for any c€ R. Then

-1 u<e,
U’(u):{ 1 u>c

and U"(u)=260(x —¢) > 0.

(Recall that entropy conditions were of the form, “pick an entropy function U”(u) > 0, then
U(u)¢+ F(u); =07, where F is the entropy flux

Flu) = / U ) £ (w)du
satisfying F'(u) =U"(u) f'(u).)

Here we let
F(u) =sign(u—c)(f(u) = f(c)).

We claim that the cell entropy inequality is true, i.e.

Uuj™) —U(u}) n Fii1/2—Fj_1)2

<
At Ax <0,

where

F=f(cVu)— f(cAu).

Observe that we’ve abused notation a bit, i.e.

First step: Try to show

uj —c| = AMEjr1/2= Fj-1/2) = GleVu)j—GleAu);.

Now consider:

I G(cVu); = (cVuj)—)\(]f(CVu)j+1/2)—]f
I G(chu); = (cAhuz)=A(flcAu)jrry2) = f

I-II: 0<G(cVu);—Glchu); = |uj—c|—)\(Fj+1/2—Fj).

(cVuj_1/2))
(C/\Ujfl/g))

Next, note that

c = G, ...,c)< G(cVu);,
u}H'l = Gu");<G(cVu);,
éc\/u;”l < G(evul)y,
where the step “+” is true because if the arguments of G are constant, then only the u} term comes into play,
just yielding back the argument.

Also
—eVultt < —Glenu);.
Then
U(U}H_l) = |u?+l_c|gG(C\/un)j—G(c/\u")j
= |uf —c| = A(Fjr12— Fj-1/2)-
——

Theorem 11. (Godunov) Monotone schemes are at most first-order accurate.
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After this depressing result, we will have to look for different classes of schemes. For example, in order
of decreasing strength:

e Monotone: see above.
e TVD: A scheme is TVD if
TV(untt) < TV(um).

e Monotonicity-preserving: A scheme is monotonicity-perserving if
(w1 >V} = {uff > uf T Vi)
Let’s prove that the above is actually in order of decreasing strength, i.e.

Theorem 12. A TVD scheme is monotonicity-preserving.

Proof. Assume uj,; > u} for all j. If there exists a jg such that u”‘”;ll < u?OH

in . Modify u to be constant
outside the stencil used to compute u?jl and u?ojll. But the reversal of the order of these two values means

that the TVD property is violated. O

Later in this class, a theorem by Godunov will show that all the above properties are actually the same,
and thus first-order, and thus useless. :-/

Definition 13. A scheme is called a “linear scheme” if it is linear when applied to a linear PDE:

us+au, =0,

where a 1s a constant.

A linear scheme for

U+ Uy, =0 (5)
can be written as
k
U;—H_l: Z a(MNuj_y,
I=—k

where ¢;()\) are constants which may depend on A= At¢/Az. A linear scheme for (5) is monotone iff
a(N) =0 Wi

This is why they are also called “positive schemes”.
Theorem 14. For linear schemes, monotonicity-preserving=monotone.

Corollary 15. For linear schemes, monotonicity-preserving and TVD schemes are at most first order
accurate.

Proof. (of Theorem 14) If the above linear scheme is monotonicity-perserving, then consider

0 i< —
’U,»L — i ~ a?
1 +>—a.
This is a monotone function. Then

k
I u?ill = Z a(Mulfq
lfkfk
(I uf*t = > aWuj
l=—k
OH-1): Aujtt = a(N)Auf_,

~
Il

|
>



14 SECTION 2

where we note that Aul =1 if m = —«, and zero otherwise.
k
Auftt= Z (N AU =cq(N) 20,
I=—k

due to the requirement of monotonicty-preserving-ness, meaning all ¢,(A) > 0, such that the scheme is
monotone. ]

So, we have
monotonicity-preserving (MP):KmonotoneéT VD=MP
where the implication “+” only holds for linear schemes.
For a scheme to be consistent, 7' =0 if u is a constant solution (where 77 is the local truncation error).

For a scheme to be at least first order accurate, 7;' =0 if u is a linear solution of the PDE.
Consider a linear scheme
u?+1 = Z cu’_y.
1

122 Cy.
l

Plug a constant in there, and we obtain

Plug a linear term in there, and obtain

jAz—(n+1)At = > a((j—1)Az —nAt)
—At = Alxz (Do
dla = A l
l

For a quadratic term, we would get

Z 12, = \2.

l

So, now try to derive a contradiction between any two of the above to refute second-order. To that end, define

a=(va_e b= (ya_.
A2 |a.b|2£<212 12cl)<z cl> —)2

l

and now use Cauchy-Schwarz:

where equality in “¢” holds only if a and b are linearly dependent, i.e.
Iy =ay/a,
where « is just some constant independent of [.

Theorem 16. (Godunov) A linear monotone (TVD) scheme is at most first-order accurate.

2.2 Higher-order TVD Schemes
Consider
Ut + f(u):c - O,

where we will worry about the computation of the spatial derivative now and about the time derivative later.
Then we can use backward differences
fuj) = fuj-1)

Az

flujsr) = fluj—1)
2Ax

for first-order accuracy or
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for second-order accuracy or

SF(ug) =2 f(ug—1) + 5 f(u;-2)
Az

for third-order.

2.2.1 General Framework of a Conservative Finite-Volume Scheme

Consider our conventional notation of I =[x;_1/2,%41/2], where Axj=1x;11/2—2;_1/2. Now integrate the
PDE:

d [Ti+i/2
T udr + f(u(zji1/2)) — f(u(@j-1/2))=0
Denote e
~ 1 Tjy1/2 d
Uj—A—x/mjl/2 uax.
Then

0+ B 2. 0) = fula; 1 2.0).

A finite volume scheme is of the form

d _ 1 ¢4 -
auj+A_':Cj[fj+l/2_ fjfl/Q}v

where fj +1/2 is the numerical flux. We want
fj+1/2 ~ f(u(xjt1/2:1))-

For the time being, let’s assume f’(u) >0 and fj+1/2 = f(a;), which is the numerical flux for Godunov, Roe,
Engquist-Osher. See below for the case of unknown sign.

fit12=f(t5,0541),
where f(T, 1). So, we can try to compute ;4,2 using the information {u;,u;1} as

1) 1

Ujiip = g(ﬁj"‘ﬂjﬂ)a
(2) 3 1
Yjt1/2 = Ui —3%i-1

so that
A 1, _ _
fg('i)l/z = f(ug'lqzl/z)—f<§(uj+uj+l)>v
22 2 1,
fj('+)1/2 = f(uﬁll/z)=f<§(3uj—ug'—1)>-

The above fluxes are 2nd order accurate, and are called the 2nd order central and upwind flux, respectively.
(u(l) is gained from the line connecting the cell centers at the cell averages of I; and I, 1. u? is the same
for Ij and ijl-)

The step from {a;} — {u;jy1/2} is called reconstruction.

2(1 _ 1, _
f](-+)1/2 = f Uj+§(uj+1—uj) ;

)
Uy

~(2 _ 1, _ _
f§31/2 =f uj+§(uj—uj—1)
T

Uy
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() measures the distance from the cell average i ; to uglll /2 Now define

u;
a la]<|bl,ab>0,
minmod(a,b):=¢ b [b|<|a|,ab>0,
0 ab<gO
and set

Uji= minmod(ﬁgl), 115—2)).

Then consider
(3 ~ _
£ o= Flag +ay).

Lemma 17. (Harten) If a scheme can be written as
Ujp1 =15+ MCjr1/28405 — Dj_q /08 1)

with Cj 417220, Djy1/220, 1 =XNCjt1/2+Djyi/2) 20 and A=At/ Ax, then it is TVD. As a matter of
notation, we have

A+Uj = Uj41— Uy,

A_Uj = U; —Uj—1-
Proof. Write

At = AL+ AN(CjgapeDytir — Djp1 oA — CprpAiu + Dj_1jpA_ulh)

= [1 - )\(Oj+1/2 + Dj+1/2)]A+’UJ? + /\Cj+3/2A+ﬂ?+1 + ADjfl/QA,’UJ?.

Thus
|A+ﬂ?_l| § [1 _ A(Cj+1/2 + DJ+1/2)]|A+’(E?| + )\CJ+3/2|A + ﬂ?+1| + )\DJ71/2|A,’I]?|
Ciry1yalAqal] Dyl Ayl
Yo 1Aa T < Y = ACiry2+ Djryz) + AC 112+ ADj 2l | A |
J J
TV(@*Y) < TV,
which proves the claim. O

Next, prove that the scheme we designed above is TVD using Harten’s Lemma. Rewrite

attt = = A[f(u+ ;) — f(uj_1+dj-1)] =u; — A[=Dj_1/2A_uy),

with
j+ ;) — f(uj—1+d;— Uj —Uj—1+ 0y —Uj—
Dj_1j9 = f(ay J)_ f(_J 1 J 1):f/(§)J 1T Jj—1
U; —Uj—1 Uj —Uj—1
= f [1+ L B U b W BN
G R e
\qfl_/ \Wl_/
0<-<5 0<-<2
Thus our scheme is TVD. O

We also get a condition for the CFL number.

D;_1/2<3/2f1(6) < Smax| £1(6)],

which comes from

1= AD; 172> 1 - A max| f/(€)] > 0| Amax| £/(€)| <

wl o

If we use a 2nd order Runge-Kutta method like

ad =

(ﬂ’n)7

L
gt = %(a” + L(aM)),
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then

TV(aM)
TV(Q”+1)

V(an)
TV (am) + %TV(L(@U)))

NN

/N
| RN RN~

(@
TV (a™) + %TV(ﬂ(l))
(a") + %TV(@”)

N

vV
TV (a).

The scheme treated here is called MUSCL (“monotone upstream scheme for conservation laws”).
Homework #3:

1. Prove: Conservative montone schemes are at most first order accurate.

2. Prove: For every convex entropy
U(u) >0

and a conservative monotone scheme, there exists a consistent (F(u, ..., u) = F(u)) entropy flux F' i+1/2
such that the following cell entropy inequality holds

U(U?H)—U(U?)+Fj+1/2—ﬁj—1/z<0
At Az =

where

Wy A2 Fyo2) = HO )
T T

(We proved this for U(u) =|u—c|.)
3. Code:
U+ (%2 )I =0
u(z,0)=1+ %sin(:r)
on 0<x <27 to (i) t=1.0 and (ii) t=3.0. Use a uniform grid with N = 20, 40, 80, 160, 320. Use
i. First order Godunov (upwinding)
ii. 2nd order central (a(!)
iii. 2nd order upwind (a?)
iv. MUSCL (minmod)
For (i): tables of L! errors and orders. For (ii): Figures for N = 40.

2.2.2 Generalized MUSCL Scheme
We are still considering

ur+ f(u)e =0,
with a scheme of the form

Q?H =uj — )‘[f(uj'_+1/27 Uj+1/2) - f(uj_fl/% u;'ll/Q)]?

where f (1,]) is a monotone flux. Before we can seriously start considering the above scheme, we need to
specify the reconstruction step, which achieves the mapping

{u;}— {ﬂjiqu/Q}'

Procedure:
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From {a;}, we obtain the reconstructed functions P;(x) defined on I = (x;_1/2,2;41/2) and
then take uj_+1/2:Pj(acj+1/2), “j+1/2: Pj11(x;j41/2). Conditions on P;j:

° Az f] CLCC - u]’
N Asz]H i(z)da = w4 for some set of 1 #0. (accuracy)

3rd order reconstruction formulas:

1 1_ 7_ 11
“§'+)1/2 = glj—2= glj—1+ 5Uj,
e 1 5 1_
Ujtrja = —gli-1T gl —3Uj+1
3 1_ 5_ 1_
§+)1/2 = gl gt = glive

We could then choose
us —u® ut C)
j+1/2 j+1/2 j+1/2 j+1/2
and once more obtain a linear scheme, which is third order accurate and, by Godunov’s theorem, should be
oscillatory. Now define

Uj = Ujyy/p— Uy,
Ujy1 = WSy p+ijen,
or equivalently
uj_+1/2 = U;+uy,
Ujprp = Ujpl— U

Then, remember our previous modification of the reconstruction and do something analogous:

~mod __ : ~ g T m
Uj = mlnmod(uj,uj+1—uj,uj—uj_l),
gmod Al s Gl — T
;%% = minmod(d;, Uj41—Uj, Uj —Uj—1)

and with that

—,mod

uj+1/2 _ +umod
+mod - “mod
Ujp1/2 = Uj —Uj+l-

To show that this modification does not destroy much accuracy and is in fact TVD, consider

el - F(y—mod , +amody _ fr —mod  +mody | 4. —mod , fmody _ fr —mod  +mod
u}H— =u}—A[f(u 34:111(/)2a JJ:I1172)_f(uj+n11(/)2aujfni72)+f(uj+n11(/)2aujfni72)_f( 7?727 jj[;(;Q)]?

3 &6}

where these terms correspond to the marked terms in the assumption of Harten’s lemma:

Ujp1=1U;+ )\<Cj+1/2A+uj - Dj—l/zﬁ—ug)'

(2) (1)
Now consider

) mod +4,mod 7/ —,mod ~+,mod
flu J+1/27uj71/2) - f(uj71/27u3;1/2)

Dj 1y =
Jj—1/2 T —
Uj —Uj—1
- ~mod = ~mod
3 +,mod uj+uj —Uj—1—U; ]
= fl(gauj71/2> -
Uy Uj—1
R N a4 [ ,amod ~mo(% -I
— ,mo J J—
= f1(§ﬂ@-1/2)'1+—__—_ O — 0. ’
[ U Uj—1 Uy Ule
N
>0 (monotonicity) <1 <1
0<'<2

WV
o
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Claim:
In smooth and monotone regions the scheme maintains its original high order accuracy.
Consider the following Taylor expansions:
Uiy = u(@jp12) +O(A27), r>2
= ul(e)) + ualeg) 5+ O(A?)

uj = ﬁ I.u(ac)dw
L u(z;) +ug(z—zj)+u (x_—xj)Q—i—O(AwS) dz
Az Jp, / * / )
= u(z;)+ O(Az?).
Uj = Ujyq/o— Uy
= %JFO(A:E?).
ﬂj+1—ﬂj = u(:rj+1)—u(:rj)+0(Ax2)
= Az + O(Az?)
ﬂj—ﬂjfl = A$+O(A$2)

Observe that the second and third arguments of the minmod function—it is about half as big as the first
one. The monotonicity assumption above has the consequence that we may neglect the second-order terms
in favor of the first-order one.

Theorem 18. (Osher) TVD schemes are at most first-order accurate near smooth extrema.

A simple argument by Harten shows something similar. Why are we restricted near smooth extrema?
Suppose we are considering us + u, =0.

/ Consider what TVD means here:

/ At most first order!

Az?

initial condition

\

exact solution after At

Figure 4. Why TVD schemes don’t do so well near smooth extrema.

What routes can we take out of this dilemma? Relax TVD: Only demand TVB.
TV(a"th) < (14 CAH)TV(a”)



20 SECTION 2

or
TV(u"*+!) < TV(u") + CAtL.
Both have the consequence that

TV (a") < C(T)

for nAt < T. TVD/TVB is also an important theoretical property: The space of all TVB functions is
precompact, which has important consequences for convergence results.
This leads us to using a modified minmod function (min-mod-mod? min-mod?? :-) Replace

minmod(ﬁj, Ujqp1— Ujy Uj — ﬁj_l)

by
minmod(a;, Ujy1 — Uy, Uj — Uj—1)
with
— 2
minmod(a, b, ¢):=4{ ¢ la| < MAz
m(a,b,c) otherwise.

We get the following properties:
e The scheme s TVB:
TV(a" ) < TV(a"t1) + C M Az?> N < TV(a") + CAt

where NN is the total number of cells.

e The scheme maintains its high-order accuracy in smooth regions including at local extrema.

i = u(xj)%+om 2~ 0(Az?)

near smooth extrema. The choice of M represents a tradeoff between oscillation and accuracy. One
analysis of DG was carried out using M = §|umm| at extrema.

Discussion of HW#3, Problem 2: Here’s how to show the CEI in the semidiscrete case. Let f(1, ]) and
U"(u) >0, and

Integration by parts

F@Oz/mUﬁ&WWMu U%wf@)—/mU%wa)

du; 1.2 £
G T Aagl Wi ui)e = fluj—nuy)] = 0
Then
dU (u; 1 7 f
d(t J)+EU'(uj)[f(ujauj+1)—f(uj—lv“j)] = 0.
Define j
Fii1y2=U"(u;) f(uj, ujs1) —/ U"(u) f(u)du.
Then
dU(uz) 1 ; 1
Tt agl e Fiopl+ 170, =0.
7
“junky” :)
Then

uj

U () f (w)du — U (uz) F 1ty 1, 105) + Uy 1) Fug 1, 5) — / U ) f(u)du
U (ut) £ () — (U (1) — U (ot 1) F (g -1 05)

uj

Uj—1
uj

U ) f(a)du = [ U )duf ;)

Uj—1
uj

S

"(u)[f (u) = f (uj—1,u5)]du >0,

\\\\

Uj—1
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Then

1. Uj—1<Uj. Uj—1 ng

Fu) = fuj1,uy) = fu,uw) = fuj_1,uy)...

...and then he cleaned the blackboard.
(End of HW discussion)

2.3 Essentially Non-Oscillatory Schemes
This scheme goes back to the idea of the MUSCL scheme,
_ _ 1. _ o
U0 Ui+ §m1nmod(uj+1 —Uj, Uj — Uj—1).
—— ——
A A~
Recap: Newton interpolation. Suppose we have n points x; with values y;. Look for polynomial of degree

n — 1 such that p(z;) = y;. First review Lagrange polynomials and Lagrange interpolation (l;(x; = 0; ;).
(omitted) Next up, Newton interpolation:

ylo] = i
o ylwia] — yle)
y[xu xl-’rl] - :L'i+1 — ZCi_
oy . _ yl@iv, ig2] — ylwi, wiga]
ylzi, Tig1, 0] = s

Then
() = y[xo] + y[xo, 1] (x — zo) + y[zo, T1, 22) (T — o) (x — x1) + Y[x0, T1, T2, T3] (x — x0) (T — z1) (2 — x2).

But we are doing reconstruction, not interpolation. How can we convert reconstruction to interpolation?
Consider that we're looking for a p(x) such that

1 zj+1/2 ) B f . 1 2
- p(x)=u; forj=1,2,...m.
Ax S J
Then define
Pa)= [ p
and observe /2
zj+1/2 J Ti41/2 )
P($j+1/2):/ p(f)d§:Z/ Az, j=0,...,m.
T1/2 =1 Y Ti—1/2

So how do we implement this? (Aargh, Fortran.) This algorithm works only for a uniform mesh:
1. Given the cell averages ug, 41, Uz, ... as ub(0) ,ub(1),...

2. Compute the un-divided differences of w.
do i=1,n
u(i,0)=ub(1)
enddo
do 1=1,m
do i =1,n-1
u(i,)=u(i+1,1-1)-u(i,1-1)
enddo
enddo

3. At each location j+1/2, to compute Ujiq/9, do
a. Find the origin is(j) of the ENO stencil
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is(j)=j
do 1=1,m
if (abs( u(is(j)-1,1) ) .1t. abs( u(is(j),1) ) ) is(j) = is(j)-1
enddo
b.
is(j)+m
un(§) = Y c(-is(j),j-is(j-1))ub(1)
m 1=is(j)

(consider that 1-is(j),j-is(j) €{0,...,m}).

2.4 Weighted ENO Schemes

Aside: Why is an interpolation polynomial monotone in the cell containing the discontinuity of a jump
function? Suppose we're using 6 points, with the discontinuity in the middle cell. Then the polynomial
is of degree five. The mean value theorem tells us that the derivative has zeros in the cells away from the
discontinuity, of which there are four. But the derivative is of degree four, so it can at most have four zeros:
Nice! There isn’t one in the middle cell! (End aside)

Idea: Don’t choose stencils like ENO, use a weighted sum.

Do it like this:

- — (1) (2) (3)
Ujp1/2 = WG9 T WaUG Ly g+ WU Ty g+ oo,

where w1 + wo + w3 + --- =1 and uglll /2 are the higher-order linear reconstructions above. The goal is to
choose the weights such that a higher order than just with ug-:)Ll /2 18 achieved, if the desired smoothness is

available. Choose «; such that the linear combination of smaller stencils adds up to a high-order stencil.
o w;=a;+ O(Ar?) in smooth regions
e If the stencil S; contains a discontinuity, then we would like to have w; = O(Ax?).
We define a “smoothness indicator”, 8; to measure the smoothness of the function in stencil s;.
~ (073 . —6
W, = ———= 1=1,2,3..., £=107°,
! (E + ﬂZ)Q
w;
W, = —/m——————-
w1 + w4+ w3
Shu’s graduate student Jiang derived these smoothness indicators:

= Az / [(P/(2)2 4+ Az?(P"(2)2)]dz.
Homework: K

e Code for Burgers’:

Give same output as before

o 3rd order linear using «
Ujpryp b Uj—1,Ug, Ujp1,
uliipe b G, U4, Gy

o 3rd order TVD

o 3rd order TVB (M =5)

o 3rd order ENO

o 5th order ENO
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o 5th order WENO

Use 3rd order Runge-Kutta. (Might need to reduce At to see the 5th order accuracy.)
(Remember to initialize with and compare to cell averages of IC and exact solution!)

2.5 Finite Difference Methods
We are still considering
Ut + f(u)$ = 07

which we hope to approximate by

du; 1,4 5

T ag(fivr2— fimi2) =0
using

Fivr2=F(ui—ps o ujtq)-

Our requirements are

2.5.1 Accuracy

Accuracy means
(fi412— fiz1/2) = [(W)a]e=a,+O(Az").

Lemma 19. (ENO paper by Shu, Osher) If there is a function h(zx) (which depends on Ax) s.t.

z+Azx/2
ful) =55 [ heac

—Ax/2

f(u)m—%x{i(x—i-%) —h(x —%)}.

All that’s needed to obtain a higher-order scheme is now to approximate the function h to a certain
degree of accuracy.

then

we want

{uj}given:{f(uj)}given:{ﬁj}given - {hjs12}

reconstruction
Then

z;j+Ax/2 _
fu) = flute) =5 [ h(Eae =,

i—Az/2
2.5.2 Stability
For the moment, assume f'(u) > 0.
1. TVD Schemes:

a. Use an upwind-biased stencil to compute fj+1/2, e.g.

{fluj—1), f(uy), f(ujr1)}— fj+1/2'
b. limit f; /0 — f(u;)=df.
df "0V = minmod(df;, f(uj1) — Fluy), f(ug) = fluj—1)).
Then
2= Flug) +d fe?.

Then use Harten’s Lemma to prove TVDness. We only have the term D;_ 1/ since we have a unique wind
direction by assumption, in

wi T = = N(=Cjppa(ulfyr — ) + Dy a(uf —uf 1))
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By brute force, we have

Flug) +df ™o = flujoy) —afged

iz = Uj—uj—1
_ f(uj)_ f(uj_l)_i_dfj(mod)_df;L_(I{lod)
Uj —Uj—1
“+(mod +(mod
f(uj)—f(ujl)[1+ agfey Aty ]
Uj—uj_1 flug) = fluj—1)  flug)— fluj—1)
£79) 0<*<1 0<*<1

with
0 < Dj,1/2 < 2max|f’(u)|

In order to lift the condition on the wind direction (f/(u) > 0), we need to consider only a subclass of montone
fluxes, namely those characterized by flux splitting:

Fumut) = fHu™) + f~(ub),
where
o flu)=f"(u)+ f(u)
df*(u) df~(u)
du >0, du <0.

One such example is Lax-Friedrichs: f*(u)= 5(f(u) £ au), where a=max, | f'(u)|.

e Then use the previous (single-wind-direction) procedure w/ f*(u) instead of f(u).
e The mirror-symetric (w.r.t. j+1/2) procedure with f~(u) instead of f*(u).
e Thus we obtain fjH/Q.

Summary of FV versus FD:

FV FD
- Tz,
uj:Ef;;jll//;u(x,t) uj=u(z;,t)
reconstruction {a;} — {u;+1/2} reconstruction { f*(u;)} — {fﬁ_l/g}
numerical flux f(uj;l, u;-L_H) numerical flux fj+1/2: f;L+1/2+ fjH/Q
any f(1,1) splittable monotone flux f(u=,u*)= f+(u=)+ f~(u™)
Az arbitrary (meshing unrestricted) | Az uniform or smoothly mappable to uniform
not much physics in the derivation

3 Two Space Dimensions

Now consider

up+ f(u)z+ g(u)y =0.

The good news are:
e Theoretical properties of weak solutions, entropy solutions etc. are the same as in 1D.

e All properties of monotone schmes (TVD, entropy condition, Li-contraction, ...) are still valid in 2D.
Theorem 20. (Goodman & LeVeque) In 2D, TVD schemes are at most first order accurate.

Proof. (Very rough idea) Many things can happen in 2D:
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Low Total Variation High TV

O

“TVD” Schemes in the literature for nD means schemes which are TVD in 1D and are generalized to 2D
in a dimension by dimension fashion, like this:

dcﬁ“— (fﬂ+1/2 fj71/2) =0
with fj+1/2<—{f(uj,1), Fuy), fuji1)}
becomes

dug, 1 A 1,4 A
dtj+A (fz+1/2j fi71/2,j)+A_y(fi,j+1/2_fi,jfl/2) =0

with fi 12,5 {f(uiz1.5), f(uig), f(uirr;)}

They really are not TVD in more than one dimension.

One good property we have in more than one dimension is a mazimum principle: Given a scheme in
Harten form, i.e.

up Tt =u = Aa[—=Cigyo,j(ufir j —uf )+ Diyyo j(uf ;— w1 )]

“Ay[=Ci jyry20ui jo1—uil ) + Dy j1y2(ui j —ui j-1)]
with

)

Civi/2,5,Di—1/2,5,1 = Ae[Ciy1/2,+ Dig1/2,5] = 0
Ciit1/2:Dij—1/2, 1 = N[Ci jp12+ Dj jy172) = 0,

we can proceed as follows:

uptt = [1=XCiyryo=AeDio1/2, = MCi 12— AyDi -1 poful;

>0
FACi 112, Uit 1,5+ AeDi—1/2, U515
———
>0 >0
FAYCi /2 1+ Ay Di g1 /2ui 1.
——— ——
>0 >0

Thus

min (stencil) < u}' 7' < max (stencil)

because it is a convex combination of the values in the stencil.

3.1 FV methods in 2D
Next, let’s consider F'V methods in 2D. Let

- Yji+1/2 1+1/2 Nded
ui,j A:rAy/ /z u(z,y,t)drdy,

i—1/2
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where we note that

~ is the cell-averaging operator in y,

~ is the cell-averaging operator in z.

Next,
1 /yj+1/2/:51+1/2 d d
AxAy Yj—1/2 JTi—-1/2
o ) — flu( H)d
= X~ u $i+1/27y7 - u xi*l/%ya Y.
AxAy Yi—1/2
Thus
d - 1 1 Yi+1/2 1 Yji+1/2
auz,j*’m A_y/y f(u(le/?,y,t))dy—A— , f(u(xi,l/g,y,t))dy
j—1/2 Yj—1/2
1 1 Tit+1/2
+A_y Az 1 fu(z,yj—1/2,t))dz | = 0.
i—1/2
The equality (x) below is what breaks when we switch to a nonlinear equation.
FV Scheme:
d - 1 - 1 R —0
dtuz it Az [f1+1/2 j fifl/Q,j} +A_y[ - gi,jfl/Q] =0

3.1.1 The Linear Case
Let’s consider a simple case to start:
Uutaug+buy,=0 = fluy=au, gu)=bu.

In this case, we only have to perform 2 reconstructions per point, so that

d - 1 |V 1 Yi+1/2 1 Yji+1/2
it An Ay/y f(u($i+1/2ayat))dy—A—/y fu(iz1y2,y,1))dy

j—1/2 j—1/2

Ax
7 ) pym
fi +1/2, j—au1+1/2 i f(ui+1/2,j) B

1 [ 1 Tit1/2 ]
=) L ey e = 0

Ti—1/2

3.1.2 The Nonlinear Case

In general, if f(u) and g(u) are nonlinear, then we have to perform one reconstructions for each point of the
stencil, i.e. many times along one cut line through the stencil.

1D rec num.int.
{uz+1/2 J} — {u1+1/2 ]+wk}_>{f(ul+l/2 ]+’u)k)} — {f1+1/2 J}
1D rec
/\
{ui s}
1D rec
N\

1D rec num.int.

{Ui, 541728 — {Wivwn,j+172) — {f Wigwr,j+1/2)) — {fz J+1/2}

Remark 21. These considerations only matter if we are interested in order of accuracy three or greater. If
we are concerned with only second order accuracy, then

U, ;= u(z;, y;) + O(Az?, Ay?)

is all we need.
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3.2 Finite Difference Methods
We are still considering
ur+ f(u)z+ g(u)y =0,
but we switch the focus of our approximation to actual point values:
ui,j=u(xs, y;,t)
to get the discretized conservation law

dui,' 1 - ~ 1 .. R
i J +A_x[fi+l/2.,j - fi71/2.,j} +A_y[gi,j+1/2 - gi,j,l/g].

We need
1 -« .
E[fi-‘,—l/&j - fi—1/2,j} = f(Wale=z; y=y,+O(AZ", Ay")

for accuracy. This is identical to the 1D routine with fixed j.

4 Systems of Conservation Laws
Ut + f(u)ac =0
u is a vector, and so is f. For the moment, x is still only 1-dimensional.

Example 22. Compressible flow:
2

p pv
u=| pv |, flu)=| pv+p |
E v(E+ p)

where p is density, v is velocity, F is total energy and p is pressure. For a y-law gas, for example, we could
have the constitutive relationship

P L
y— +2pv.

E.g. for air y=14.

(Now, drop the bold-for-vector notation.)

4.1 A First Attempt: Generalize Methods from AM255

Example 23. (From 255) If f(u)= Au, then we have the equation
ug+ Aug, =0 (6)
If A has only real eigenvalues and a complete set of eigenvectors, then (6) is called hypberbolic. Consider
Ari=Airi,
so that
A R=Rdiag(A1, ..., An),

where R has the vectors r; in its columns. Then we obtain
R 'AR=A.

The rows I; of R~ are called the left eigenvectors of A, with ;A= \;l; with lir;j=10; ;.
Now, perform a change of variables, namely v = R~ 'u, so that

Ut+AUm:0. (7)
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The goal for the nonlinear case is to take the lessons from the linear case, but rewrite the scheme (7)
so that it only acts on w. If all the eigenvalues are positive, then we can rewrite the upwind scheme (now
reinstating bold-face-for-vector, with index for z location)

S Al — 0]

; i Az =0
T +AxRAR [Rv; — Rv;_1] 0
u;
du; 1
@d—;‘FEA[’U/j—Uj,l] = 0.

If we do not have the above eigenvalue condition, then we need a good way to write the resulting system
concisely. Why not start with some notation...

ati=d 0 a=0, 0 0 otherwise
"] 0 otherwise, " la a<0 ’

Thus |a|=a™ —a~ and a=a™ + a~. This notation has natural generalizations to matrices and vectors. We
obtain the following scheme in v:

dv; 1 -
G T Az Mo — o] H AT -yl = 0

dt Az ——

du; 1
@ﬂ —{RA+R_1[Uj—Uj_1]+RA_R_1[Uj+1—’LLj]} = 0.
At:= A=

Note the slightly ambiguous notation here-A™ is not the positive part of A in the above sense, even though
A= AT+ A~ still holds.

4.2 How to Generalize Scalar Higher-Order Schemes to Systems
We are still considering
u+ Auy,=0.

1. Find the eigenvalues of A, hence A
Also find the eigenvectors of A, hence R and R~

2. At each point that we need to compute a flux or a reconstruction, say at x;,1/2, do the following
a. vi=R 'u; (i=j—p,...i+q)
b. Use the scalar subroutine to each component of v to obtain a reconstruction v;1/s.

C. ’LLj+1/2: Rvj+1/2.

Now, why should we do this transformation instead of just applying the scalar subroutine to u? Consider
this example:

(v1)e+ (v1)2 = 0,
(v2)e + (v2). = O.

Any combination of u is bound to develop two shocks, travelling at different speeds. If however we calculate
v, then we retain the two nicely separated shocks. To drive home the point, ENO always counts on the
fact that it can find a stencil near a shock where the function is smooth. For a point “trapped” between two
shocks, this assumption is violated, and we will lose something.

Also note that this procedure only makes sense if you are doing something nonlinear in step 2b.

Next, note that if our discussion is targetted at generalizing to nonlinear conservation laws. Consequently,
it is really pointless to actually carry out steps 2a and 2c each time unless the matrix A is actually changing
as it will be.

Note 24. “Theorem”: All results about stability and convergence carry over to the case of linear systems
if the numerical schemes use the above the “characteristic” procedure.
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4.3 The Nonlinear Case
If we consider the equation
ur+ f(u), =0,
then
e There is essentially no theory.

e The numerical procedure is essentially identical to that for the linear system case performed in (local)
characteristic fields.

Additional Homework: (This+HW4 due Nov 29)
1. Add third order finite difference version to HW4.

[one class’s worth of material is missing here. It is available as a separate PDF file called 257-missed-
class.pdf courtesy of Ishani Roy.|
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5 The Discontinuous Galerkin Method
Ut + f(u);v =

To begin a FV discretization, we rewrite this as

1 [Ti+1/2
Kt/ (us+ f(u),)dz =0,

. . j—1/2
which results in:

da 1
dt] * A (f(ujt1/2) = fuj—1/2))=0
FV in its full glory is
duj 1 A A +
O +Aa: (f(ujp1)2 J+1/2) Fui_1 0, u5 1)),

where, to make this a scheme, we need a monotone flux f (u™, uT), which needs to satisfy the following
criteria:

o J(D),
L4 f(u7 u) = u?
e Lipschitz continuous.

For DG, we do something different. We multiply the PDE by a “test function” v, then integrate the result
over the interval (z;_1/2,7;41/2)

/le/z(ut + f(u)z)vdx=0.

i—1/2

Now consider v and v both from a finite-dimensional function space V4, where h=max (21 /2,2;_1/2). The
space is then given by

Vi= {w:w|1j EPk(Ij)},

where I; = (zj_1/2, 41/2) and P*(I;) is a collection of polynomials of degree<k on cell I;. We observe
dim V=N - (k+1). Then perform integration by parts and write

Tjt1/2 Tjt1/2
/ Utv—/ fuw)vede + f(ujyi/2)vip172— f(uj—1/2)v5-1/2=0.

i—1/2 i—1/2

To make this into a scheme: find u € V}, such that

/ut’l}dZC—/f(u)’l}md.%'—f—f(u]'+1/2)’l}j+1/2—f(’u]‘_l/z)’l}j_l/gzo
I I ~f

is true for any test function v € V. But the term marked “?” is meaningless, since the functions are double-
valued at the spots in question. To motivate a meaning for the term, consider the following: If we take the
test function

_ 1 x S Ij,
"] 0 elsewhere,
we recover

/Utd$+f(uj+1/2)vj+1/2—f(uj—1/2) vj_12 = 0
I

from left from right

/I_Utdw+f(uj+1/2)—f(“j—1/2) = 0,

which is exactly reminiscent of the F'V scheme, motivating the equality

f(uj+1/2)_f(uj71/2):f(uj_+1/2a Wlh1/2) — Fluy_ 12U 1 /2)
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and thus the scheme

/I_Utv dz — /I_f(u)vzdf + f(U;+1/2a U;_+1/2)’Uj_+1/2 - f(uj_fl/Qa U;71/2)Uj71/2 =0.

Pick a basis for Vj:
Vi={pV: 1< <N, 0<I<k).
For example, we could take
W) = 11(x),
AD@) = (@ -z)1n),
PP @) = (2 —a;)p, (),

then

Zu(l) x €1

=1

Now take v= cpgm)(x), m=0,1,...,] and put that into our scheme

k
Tjt1/2
/ <Z ul (l) ) tpgm)(x)dx
i t

j—1/2 1
k
Tj+1/2 d (m)
/m (Zu )agoj (x)dx
j—1/2 l
k k
l l l m
(ZU % $j+1/2)7 u§) (t)wﬁil(xm/z))@g )($j+1/2)
1=0 1=0

3‘

k
_f< ugl)_l(t) NCTIRYPY Z ul le/2)>@§m>(le/2) - 0.
=0 =0

Working with that yields

k
d Tj+1/2 m
> G0 [ e @

=0 j—1/2
(k+1)x (k+1) matrix
+F (w1 (1), w;(t), wja(t) = 0,

where
ul(#)
u;(t) = :

u{P ()

If the matrix above (also called the local mass matriz) is, we can rewrite the scheme as
Z dt J u] 1(t)auj(t>7uj+1(t)):0a

which, if F' is locally Lipschitz (which it is), gives a well-defined scheme. If we have a linear PDE f(u) = A u,
where A= A(z,t), then the scheme becomes

du;(?)
de

where the three matrices B;_1, Cj, D;11 (each of size (k+ 1) x (k+1)) do not depend on wu.

+[Bj—1uj—1+ Cjui(t) + Djp1u;1(t)] =0,
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5.1 Some Theoretical Properties of the Scheme

This scheme satisfies the cell entropy inequality for the square entropy U(u) = u?/2. Recall the general
entropy inequality, where for an entropy U satisfying U”(u) > 0 and a matching flux

we have

in some weak sense.

Proof. Take v=1wu in the scheme:
uudx—/fuuzdx—i-f- ul — fieut -0
/Ij ' Ijj(]?%:/ J+1/2%5+1/2 j—1/2U%5_1/2
d u2d - . ) ) ) . »
a\ | 2 =91 y0) 9y 0) + fivay2uiiaye — fic1pui_1)e =

d u? - S _ - _ -
E(/de)‘i‘Fjﬂ/z—Fj—l/z-F[—g(uj1/2)+fj—1/2uj1/2+9(U;r1/2)—fj—1/2uf1/2} =0

O -1/2

where we have taken
W= [ ), g =
and
Fg+1/2— —g(u ]+1/2) + fg+1/2uj+1/27

where we observe that F' is consistent, i.e.

F(u,u) g(u) + f(u)u

i/ w f'(u) du
- /udf(u)= /f

g(u)

F'o= = f(u)+ fuyut f(u) = f(u)u.

We would like to show ©;_1,5> 0 to prove the cell entropy inequality, i.e. the term above<0.
0 = —gu )+ Fum u)um+ g(ut) — Flum, u)ut

gu™) - Q(U’) Flu™ wf)(u —u”)
9N —u™) = flu™,ut)(u" —u7)
(u™ —u7)(f(€ ) fu=,u®))
= (u+—u )(f(€:6) - ( “uh)).

After a simple case distinction on v~ < S u™ and using f(T,i), we find © > 0. O
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