
Advanced Topics in High-Order Numerical Methods for

Convection-Dominated Problems

by Chi-Wang Shu

Syllabus:

1. Hamilton-Jacobi

a. lectures

b. (steady) fast-sweeping

c. level-set method

2. Boltzmann type equations

a. lectures

b. finite difference

c. splitting method (+characteristic/Lagrange type methods)

d. spectral methods

3. Semiconductor Moment Models in semiconductor device simulations

a. lectures

b. drift-diffusion

c. energy transport models

d. hydrodynamic models

e. quantum {hydrodynamics, drift-diffusion}

Table of contents

1 Hamilton-Jacobi Equations . 2

1.1 Finite-Difference Method . 2
1.2 Two-dimensional Extensions . 4

1.2.1 Lax-Friedrichs Hamiltonian . 4
1.2.2 Gudonov Hamiltonian . 5
1.2.3 Osher-Sethian Hamiltonian . 5
1.2.4 Unstructured Grids . 6

1.3 High-Order Methods . 6
1.4 DG for Hamilton-Jacobi . 7
1.5 Proving Error Estimates . 9
1.6 Level-Set Methods . 9

2 Boltzmann-Type Equations . 11

3 Semiconductor Device Simulation Models . 12

3.1 Drift-diffusion model . 12
3.2 High field model . 13
3.3 Momentum solvers . 13
3.4 Energy Transport Models . 14
3.5 Hydrodynamic Model . 14
3.6 Kinetic Model . 14

1

3.7 Quantum Effects . 15

Typed by Akil Narayan, Andreas Klöckner <{anaray,kloeckner}@dam.brown.edu>.

1 Hamilton-Jacobi Equations

One-dimensional Hamilton-Jacobi equations look like this:

ϕt+H(ϕx)= 0. (1)

H is the Hamiltonian (nonlinear). For comparison, hyperbolic conservation laws look like this:

ut+ f(u)x= 0. (2)

Note that formally, if the H (or f) is linear, there’s no difference between the two types of equations.
Some differences remain however from the choice of function spaces where solutions are sought. For
Hamilton-Jacobi Equations, our solutions will be Lipschitz-continuous.

Feature Hamilton-Jacobi Conservation Laws

Function Space Lipschitz Discontinuous/BV

Generalized solution Viscosity solution Entropy solution

Table 1. Comparison of Hamilton-Jacobi and Conservation Laws.

There’s extra horridness waiting for people who have time for high-risk research: Equations like

ϕt+H(ϕx)+ f(ϕ)x=0

also occur in applications.
If we set u= ϕx, then a Hamilton-Jacobi equation (1) becomes ut+H(u)x= 0.

Definition 1. ϕ is called a viscosity subsolution of (1) if, for any smooth function ψ at each local max-
imum point (x̄ , t̄) of ϕ− ψ, we have

ψt(x̄ , t̄) +H(ψx(x̄ , t̄))6 0.

Definition 2. ϕ is called a viscosity supersolution of (1) if, for any smooth function ψ at each local min-
imum point (x̄ , t̄) of ϕ− ψ, we have

ψt(x̄ , t̄) +H(ψx(x̄ , t̄))> 0.

Definition 3. ϕ is called a viscosity solution if it is both a viscosity sub- and supersolution.

Deeper mathematical insight can be obtained from papers by Crandall, Lions, and Souganidis. There is
an L∞-contraction result that supplies well-posedness of the sort

‖ϕ1− ϕ2‖L∞
6 ‖ϕ1(· , 0)− ϕ2(· , 0)‖

L∞
.

1.1 Finite-Difference Method

Assume we have a few grid points � < x0 < x1 < x2 < � and also assume we approximate ϕj ≈ ϕ(xj , t).
We briefly recall that a correct discretization of a conservation law (2) depended crucially on the knowl-
edge of the present “wind direction”. This would determine the choice between

f(u)x|x=xj
≈ f(uj)− f(uj−1)

∆x
f ′(u)> 0,

f(u)x|x=xj
≈ f(uj+1)− f(uj)

∆x
f ′(u)< 0.

2 Section 1

This led to the introduction of a numerical flux to cope with the possibility of f ′(u) changing sign.

f(u)x|x=xj
≈ f̂ (uj , uj+1)− f̂ (uj−1, uj)

∆x
,

with f̂ (u−, u+) satisfying:

• f̂ (· , ·) is Lipschitz-continuous.

• Consistency: f̂ (u, u)= f(u).

• Monotonicity: f̂ (↑, ↓).
So for Hamilton-Jacobi we simply set

H(ϕx|x=xj
) ≈ H

(

ϕj − ϕj−1

∆x

)

H ′(u)> 0,

H(ϕx|x=xj
) ≈ H

(

ϕj+1− ϕj
∆x

)

H ′(u)< 0.

The generalization to changing signs of H ′(u) becomes

Ĥ

(

ϕj− ϕj−1

∆x
,
ϕj+1− ϕj

∆x

)

.

The scheme we come up with reads

(ϕj)t+ Ĥ

(

ϕj− ϕj−1

∆x
,
ϕj+1− ϕj

∆x

)

=0,

where we again assume that Ĥ (u−, u+) satisfying:

• Ĥ (· , ·) is Lipschitz-continuous.

• Consistency: Ĥ (u, u) = f(u).

• Monotonicity: Ĥ (↑, ↓).

Theorem 4. (Crandall, Lions) Solutions of monotone schemes converge to the viscosity solution.

‖ϕ− ϕ∆x‖L∞ 6C ∆x
√

.

[Begin Lecture October 3, 2007]
Recall the scheme

(φi)t+ Ĥ

(

φi− φi−1

∆x
,
φi+1− φi

∆x

)

=0 (3)

where Ĥ is a monotone numerical Hamiltonian (Monotonian):

• Ĥ is a Lipschitz continuos function with respect to both arguments

• Ĥ (↑, ↓) (increasing in first argument, decreasing in second)

• Ĥ (u, u)=H(u) (consistency)

Any monotone flux studied in conservation laws can be used for Ĥ , e.g. a Gudonov-type flux:

H(u−, u+)=











min
u−≤u≤u+

H(u) if u−≤u+

max
u−≤u≤u+

H(u) if u−>u+

And we can also use Engquist-Osher, or Lax-Friedrichs:

HLF(u−, u+)=H

(

u−+u+

2

)

− α

2
(u+−u−) (4)

Hamilton-Jacobi Equations 3

where α=maxu |H ′(u)|, or another ‘Lax-Friedrichs’ flux:

H(u−, u+) =
1

2

[

H(u−) +H(u+)−α(u+− u−)
]

(5)

Theorem 5. A monotone scheme is convergent to the viscosity solution

‖φ∆x− φ‖
L∞

≤C ∆x
√

(6)

1.2 Two-dimensional Extensions

The two-dimensional Hamilton-Jacobi equation takes the form

φt+H(φx, φy) =0 (7)

Note that all of the above has only been developed for equation in one space dimension, equation (1).
Recall that one dimension is special: HJ equations in one dimension are easily recast into 1D hyperbolic
conservation laws, for which all of the above analysis is already well-known. We can attempt to do a sim-
ilar thing in 2D: from equation (7), let u= φx, v= φy. Then equation (7) yields the system

{

ut+H(u, v)x= 0
vt+H(u, v)y=0

(8)

Thus our scalar equation has yielded an undesirable system of equations. We can recast (8) as
(

u

v

)

t

+

(

H(u, v)
0

)

x

+

(

0
H(u, v)

)

y

=0 (9)

We can define f(u) and g(u) so that the second and third terms read f(u)x and g(u)y, respectively, and
write Jacobians as

f ′(uK)=

(

Hu Hv

0 0

)

g ′(uK)=

(

0 0
Hu Hv

)

Now the eigenvalues corresponding to these Jacobians are H u and 0. If H u � 0, then everything is fine,
we have a well-posed hyperbolic system. However, if H u = 0, then we have a weakly well-posed system,
and thus we must now deal with solving a weakly well-posed problem, which is undesirable.
We avoid this and deal directly with our scalar equation in two dimension, let us introduce a ‘monotone
Hamiltonian’, Ĥ (u−, u+; v−, v+), which we ask to satisfy

• Ĥ is Lipschitz in all arguments

• Ĥ (↑, ↓; ↑, ↓)
• Ĥ (u, u; v, v)=H(u, v)

and we introduce the semi-discrete ‘monotone scheme’ for equation (7)

(φij)t+ Ĥ

(

φi,j− φi−1,j

∆x
,
φi+1, j − φi,j

∆x
;
φi,j − φi,j−1

∆x
,
φi,j+1− φi,j

∆x

)

= 0 (10)

then we have the same result for 2D as is stated in theorem 5. Note that the introduction of the relatively
complex restrictions on our monotone Hamiltonians is necessary: because the Hamiltonian is possibly

(probably) nonlinear, we cannot simply take Ĥ=Ĥ1 + Ĥ2 where Ĥ1 and Ĥ2 are appropriate monotone
Hamiltonians for 1D problems.

1.2.1 Lax-Friedrichs Hamiltonian

So what are the possible monotone Hamiltonians at our disposal? As usual, we have a Lax-Friedrichs
choice:

ĤLF(u−, u+; v−, v+)=H

(

u−+ u+

2
,
v−+ v+

2

)

− 1

2
αx (u+− u−)− 1

2
αy(v+− v−) (11)

4 Section 1

where αx = maxu,v |Hu(u, v)| and αy = maxu,v |Hv(u, v)|. Note that the range over which the maximums
are taken define whether we have a local or a global Lax-Friedrichs flux (cf. 1D hyperbolic conservation
laws). If we have global numbers such that A≤ u≤B and C ≤ v ≤D for all space, then taking maximums
over this is a ‘global’ flux. However, if we consider the ranges in the definitions of αx and αy as

αx= max
u−≤u≤u+

v−≤v≤v+

|Hu(u, v)|

and similarly for αy. One can show (cf. Osher and Shu) that this flux is not monotone. Can we define a
proper local Lax-Friedrichs flux? Sort of. If we define

αx= max
u−≤u≤u+

C≤v≤D

|Hu(u, v)| αy= max
A≤u≤B

v−≤v≤v+

|Hv(u, v)|

where A, B, C, and D are the appropriate global bounds on u and v, then this in conjunction with equa-
tion (11) gives a true monotone Hamiltonian.

1.2.2 Gudonov Hamiltonian

We also have a Gudonov flux for the 2D scheme (10):

Ĥ
G(u−, u+; v−, v+)= extu−≤u≤u+ extv−≤v≤v+H(u, v) (12)

where we define the ext function as

extu−≤u≤u+ =











min
u−≤u≤u+

if u−≤ u+

max
u+≤u≤u−

if u−>u+ (13)

Note that the Godonov flux definition (12) is not symmetric, and it is not the same if we reverse the order
in which we apply the ext functions. I.e.,

min
u−≤u≤u+

max
v+≤v≤v−

H(u, v)
≥�
≤

max
v+≤v≤v−

min
u−≤u≤u+

H(u, v)

However, one can use the Gudonov Hamiltonian as shown in equation (12), or one can switch the direc-
tion of the application of the ext operators, and it can be shown that either Gudonov flux is a valid mono-
tone Hamiltonian.

1.2.3 Osher-Sethian Hamiltonian

Another type of monotone Hamiltonian which we may implement is the Osher-Sethian Hamiltonian: If
H(u, v)= f(u2, v2) and f is monotone with respect to each argument, one can use the Hamiltonian

Ĥ
OS(u−, u+; v−, v+)= f(ū 2, v̄ 2) (14)

where

ū 2 =







(min (ū , 0))
2 +
(

max
(

u+, 0
))2

if f(↓, ·)
(

min
(

u+, 0
))2

+ (max (ū , 0))
2 if f(↑, ·)

(15)

and v̄ is defined similarly. The great advantage of this monotone Hamiltonian is its ease of implementa-
tion and low computational cost. However, the restriction on the required form of the analytic Hamilto-
nian limits its applicability. NB this monotone Hamiltonian has the flavor of the Engquist-Osher mono-
tone flux for hyperbolic conservation laws.
A typical equation on which can use the Osher-Sethian Hamiltonian is the Eikonal Equation:

φt+ φx
2 + φy

2
√

= 0 (16)

In this equation H(u, v) = u2 + v2
√

, which satisfies the hypotheses of the Osher-Sethian Hamiltonian for-
mulation, so one can use (14) and (15). This equation is solved very often in the context of level-set
methods.

Hamilton-Jacobi Equations 5

1.2.4 Unstructured Grids

The only known monotone flux on unstructured grids is a Lax-Friedrichs flux introduced by Abgrall. See
Shu’s paper for details and picture. The general form looks like

Ĥ
LF=H

(∑

i
θi(∇φ)i
2π

)

− α

π

∑

i

βi+1/2

(

(∇φ)i+ (∇φ)i+1

2

)

·nK i+1/2

where the sums are taken over all the adjacent faces.

1.3 High-Order Methods

We have so far described first-order monotone schemes for Hamilton-Jacobi equations. We can now handle
equations in one space dimension very well, and we have methods for solving two-dimensional equations
either on Cartesian grids, or on unstructured grids. Now we shall attempt to formulate some high-order
methods to solve equations (1) and (7).
We again consider the one-dimensional Hamilton-Jacobi equation (1) with the scheme (3) where we
require monotonicity of the flux: Ĥ (↑, ↓). Recall from the hyperbolic conservation law case that when for-
mulating high-order methods, we had many options for scheme type (FD vs FV) and there were regularity
restrictions on the mesh in 1D. However, for H-J equations in 1D, the idea is much simpler: we restrict
ourselves to

• finite-difference schemes

• any mesh

We define a high-order scheme as a semi-discrete ODE of the form

(φj)t+ Ĥ (uj
−, uj

+) =0

uj
±= φx

∣

∣

x=xj
+O(∆xr)

(17)

We impose the following stencils (cf hyperbolic conservation laws):

• The stencil for u− is biased to the left

• The stencil for u+ is biased to the right

The modus operandi for this method is very familiar from conservation laws: we identify a stencil over
which to interpolate a polynomial φ of degree r. When then differentiate this polynomial, and evaluate

the result at xj, and assign that as the value of uj
±.

One main setback for using this method for conservation laws is the following: for conservation laws, the
underlying function which the interpolant represents is discontinuous, so our reconstruction will be oscilla-
tory near shocks. However, for H-J equations, the underlying function defining the interpolant is contin-
uous. Thus, one may conjecture that perhaps our direct interpolant reconstruction will be more well-
behaved. However, it turns out that even with our increased regularity in φ, this straightforward method
still does not work except for rather simple problems. (cf Y. Cheng paper)

We can, however, borrow many of the tools we introduced for conservation laws (e.g. ENO). However, we
shall need a bigger stencil to achieve the same order since we are differentiating our interpolant and thus
require one more degree of freedom.

Let us recall the ENO procedure to compute u−:

1. Start with the stencil S(1) = {φj−1, φj}. Build the linear function p(1)(x)= φj − φj − φj−1

∆x
(x− xj)

2. Add either (xj−2, φj−2) or (xj+1, φj+1) to the stencil depending on the magnitude of the updating
Newton divided difference, which is a measure of the oscillatory nature of the polynomial. E.g. for

this step, the divided differences to compare are
(

φj − φj−1

∆xj−1/2
− φj−1− φj−2

∆xj−3/2

)

1

(xj −xj−2)
and

(

φj+1− φj

∆xj+1/2
− φj − φj−1

∆xj−1/2

)

1

(xj+1−xj−1)
. Upon choosing the new stencil, build a new polynomial.

6 Section 1

3. Continue in this fashion by enlargening the stencil and updating the polynomial p(r) until the

desired accuracy is required. u−= p(r)(xj−1)

And this is the abridged WENO procedure:

1. Start with one stencil

2. Consider the all the possible rth-order stencils to add, construct all the possible polynomials, and
linearly combine all these polynomials into via nonlinear weights of the form:

wi∼
∫

[

(

pi
′(x)

)2
+ c
(

pi
′′(x)

)2
]

dx.

To convert this into an approrpiate H-J formulation, we can do the same thing, except for WENO, we use
nonlinear weights of the form

wi∼
∫

[

c
(

pi
′′(x)

)2
]

dx.

We make this modification because the reconstructed interpolant has more smoothness than in the conver-
sation law case, and it is now the second derivative norm which is a more appropriate measure of regu-
larity. (Cf. Jiang & Peng paper, 5th-order, conforming Cartesian meshes)
If one wishes to do either nonconforming Cartesian meshes or unstructured meshes, the above procedure
does not work out-of-the-box. Instead, others have worked about the WENO procedure for triangular
meshes (cf Yongtao Zhang thesis).

1.4 DG for Hamilton-Jacobi

Recall FD WENO (Jiang & Peng):
For HCL, transforamtion form global to uniform mesh must be smooth⇒ nonuniform Cartesian meshes do
not work. For HJ, said transformation need not be smoot , can do this on nonunifrom Cartesian meshes
(and smooth meshes). (Thus WENO here is more popular for HJ equation sthan for HCL equations.)
DG for HJ is not quite so popular yet because geometries are regular for many applications, because FD
WENO is easily h-adaptible and because FD is more mature.
Applying DG:

1. Convert HJ to HCL:

ϕt+H(ϕx)= 0,

then set u= ϕx and get
∫

Ii

utv−
∫

Ii

H(u)vxdx+ (Ĥv)|i−1/2
i+1/2

,

where Hi+1/24 Ĥ (ui+1/2
− , u+1/2

+) and v |i+1/2 = vi+1/2
− and v |i−1/2 = vi−1/2

+ . Altogether, we get

∫

Ii

(ϕx)tv−
∫

Ii

H(ϕx)vxdx+ (Ĥv)i−1/2
i+1/2

,

where Ĥ
i+1/2

= Ĥ ((ϕx)i+1/2
− , (ϕx)i+1/2

+).

2. Integrate HJ directly: In 1D:
∫

Ii

ϕt+

∫

Ii

H(ϕx)dx= 0.

In 2D: ϕt+H(ϕx, ϕy) =0. Setting u= ϕx, v= ϕy gives the nasty system

{

ut+H(u, v)x=0
vt+H(u, v)y= 0

→HCL system.

Finte, but the system may be weakly hyperbolic if (Hu= 0, Hv� 0) or (Hv= 0, Hu� 0).

Hamilton-Jacobi Equations 7

Despite the complications, we can still write down a DG scheme:

(∗)

∫

K

utw−
∫

Ht(u, v)wx+
∑

e∈∂K

∫

e

Ĥ1,e,KwdΓ = 0,

∫

K

vtz −
∫

Ht(u, v)zy+
∑

e∈∂K

∫

e

Ĥ2,e,KwdΓ = 0,

where

Ĥi4





∂H

∂u
i=1,

∂H

∂v
i=2.

If we do what we did in 1D and let u→ ϕx, v→ ϕy and we count equations and unknowns, we find
an overdetermined system–BUT:

∫

K

ftdxdy+

∫

K

H(u, v)dxdy=0

is OK.

a. Start with ϕn∈P k:
un= ϕx

n, vn= ϕy
n.

b. Euler forward of (∗) to get un+1, vn+1.

We can advance (∗) using a time stepper for ϕn ∈ P k, there may not exist a polynomial of degree

k such that ϕx= un+1, ϕy= vn+1. “Do your best”: Find a least-squares ϕ solution so that

∥

∥

∥
ϕx
n+1− un+1

∥

∥

∥

L2

2
+
∥

∥

∥
ϕy
n+1− vn+1

∥

∥

∥

L2

2
= min
ψ∈Pk

∥

∥

∥
ψx
n+1−un+1

∥

∥

∥

L2

2
+
∥

∥

∥
ψy
n+1− un+1

∥

∥

∥

L2

2
.

(This method is from Hu & Shu in SISC ’99.)
The nasty and unmotivated least-squares approach method can however be recast in a more beau-
tiful manner: (Li & Shu) Instead of all of P k × P k, we consider only a subspace of it, namely a

space W ⊂P k×P k whose members satisfy the condition

ϕxy− ϕyx= uy− vx=0.

It turns out that the two procedures yield the same results, as proven in Li & Shu, Appl. Math.
Let. 2005.

3. Yet another different method: (Yingda Cheng & Shu) Let’s start with something simple:

ϕt+ a(x)ϕx= 0

or

ϕt+ (a(x)ϕ)x= a′(x)ϕ,

i.e. a hyperbolic conservation law with a source term. Further, assume a(x) > 0. Construct a DG
method for this
∫

Ij

ϕtvdx−
∫

Ij

a(x)ϕvxdx+ a(xj+1/2)ϕj+1/2
− vj+1/2

− − a(xj−1/2)ϕj−1/2
− vj−1/2

+ =

∫

Ij

a′(x)ϕvdx

↓ (I. by parts)
∫

Ij

ϕtvdx+

∫

Ij

(a(x)ϕ)xvdx− a(xj+1/2)ϕj+1/2
− vj+1/2

− + a(xj−1/2)ϕj−1/2
+ vj−1/2

+

+ a(xj+1/2)ϕj+1/2
− vj+1/2

− − a(xj−1/2)ϕj−1/2
− vj−1/2

+ =

∫

Ij

a′(x)ϕvdx

[∫

(a(x)ϕ)xv=

∫

a′(x)ϕv+

∫

a(x)ϕxv

]

∫

Ij

(ϕt+ a(x)ϕx)vdx+ a(xj−1/2)[ϕ]j−1/2vj−1/2
+ = 0.

8 Section 1

We take this as inspiration for the general case ϕt+H(ϕx) = 0, and from the sky falls the following
monstrosity (ouch):

∫

Ij

(ϕt+H(ϕx))vdx

+
1

2

(

min
x∈Ij+1/2

H ′(ϕx)−
∣

∣

∣

∣

min
x∈Ij+1/2

H ′(ϕx)

∣

∣

∣

∣

)

[ϕ]j+1/2vj+1/2
−

+
1

2

(

max
x∈Ij−1/2

H ′(ϕx)−
∣

∣

∣

∣

max
x∈Ij−1/2

H ′(ϕx)

∣

∣

∣

∣

)

[ϕ]j−1/2vj−1/2
+ = 0.

Yingda came up with this by experimentally figuring out what perturbation to the coefficient in
the above “inspiring” example are possible. This scheme is a pure upwinding scheme, effectively of
Roe type. This scheme work satisfactorily except for cells where H ′(ϕx) = 0, where a quick fix is to
go back to Hu & Shu.

1.5 Proving Error Estimates

For HCLs, a typical convergence proof goes like this:

• uh is bounded in some strong (semi-)norm, e.g. BV-norm

‖uh‖TV
=
∑

j

|uj+1−uj |.

TV(un+1) 6TV(un) or TV(un) 6C(n∆t)⇒ a subsequence of uh converges to something when h→
0.

• “Something” is a weak solution if a conservative scheme is used (Lax-Wendroff theorem).

• If a discrete entropy condition (cell entropy inequality/wavewise entropy inequality) is satisfied,
then the “something” will be an entropy solution. (∗)

• Use the uniqueness of the entropy solution to conclude that the original sequence of the numerical
solutions (not just a subequence) converges to this unique entropy solution. (Every subsequence
has a subsequence that converges to something unique.)

Also, there is a “brute-force” approach estimating ‖u− uh‖L1 6C h
√

.

For HJ equations, things are generally expected to be better, since the solutions are smoother. In fact, it
is not hard to prove TV(ϕ) 6 C for the Hu & Shu DG scheme. However, there is no equivalent for the
step (∗) in the HJ case for the first approach. There is however some “brute-force” work done in the liter-
ature.
[Lecture 10/3/07: Hyongsu Baek: Level Set Methods]

1.6 Level-Set Methods

Level set methods can be described as methods to capture the evolution of an interface. There are two
ways in general to capture an interface:

• Lagrangian: mark locations of the interface and evolve the locations in time

• Eulerian: define a function over space x as F (x) and define the level set as {x:F (x) =0}.

In the Lagrangian framework, suppose that we have one marker denoted as xK which denotes the location
of one point on the interface. If we can calculate the temporal derivative of the location of this point and
call it vK , the velocity, then solving

dxK
dt

= vK (18)

Hamilton-Jacobi Equations 9

will generate the evolution of one point on the interface. Now suppose xK ∈ R2 and we want to evolve an
interface which is a one-dimensional subset C of R2. We parameterize the points on C via e.g. normalized
arclength p∈ [0, 1) and we can then solve for

xK (p, t)= (x(p, t), y(p, t))

via some evolution method similar to (18). Analogously, if xK ∈ R3, then our unknown is a two-dimen-
sional subspace, and is thus parameterized by two variables:

xK (p, t) = (x(p, q, t), y(p, q, t), z(p, q, t))

Now consider the Eulerian framework: we consider a function φ:R2×R+→R. We let D ∈R2 be a subset
of R2. Define

Ω−= {(x, y): φ(x, y, t)< 0}
Ω+ = {(x, y): φ(x, y, t)> 0}
∂Ω = {(x, y): φ(x, y, t)= 0}

Then ∂Ω⊂R2 is the interface we are looking for, and solving for (x, y) satisfying φ(x, y, t) = 0 defines the
interface ∂Ω as a function of time. Note that this framework is easily generalized to higher dimensions.

Consider a very special form of φ as φ(x, y, t) = x2 + y2
√

− 1. This function represents the signed dis-
tance function between a point in R2 and the unit circle. I.e.,

φ=

{

d(x, S1) x∈Ω+

− d(x, S1) x∈Ω−

where S1 is the unit circle in R2 and d(· , ·) is the natural Euclidean function on R2. It turns out that
any function satisfying |∇d|=1 is a distance function.

Consider the Lagrangian framework (again). Suppose that our marker xK evolves with the law (18). We
can decompose the velocity of the marker into a portion tangential to the interface (TK) and a component

normal to the interface (NK). The portion of the velocity vK in the direction TK does not change the shape
of the object, it simply rotates the markers around the interface. Thus, it does not contribute to the
change in shape and we shall not consider it in our evolution. With this, our new evolution equation sim-
plifies to

dxK
dt

=(vK ·NK)NK
Now consider the Eulerian framework. We wish to solve for x(t), y(t) satisfying φ(x(t), y(t), t) = 0. Taking
a total derivative of φ yields

dφ

dt
=

∂φ

∂t
+
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt

=
∂φ

∂t
+

(

dx

dt
,
dy

dt

)

· ∇φ

=
∂φ

∂t
+FNK · ∇φ,

where

NK =
∇φ
|∇φ| .

Then the evolution equation simplifies to

∂φ

∂t
+F |∇φ|=0. (19)

But a distance function satisfies |∇φ|= 1, so we recover

∂φ

∂t
+F = 0

10 Section 1

for distance functions φ. Equation (19) is the starting point for our mathematical discussion.
[Lecture 10/10/07: Chi-Wang Shu]

2 Boltzmann-Type Equations

The function that we are seeking as a solution of Boltzmann-type equations is a density f(x, u, t) over
space (1D to 3D), velocity (1D to 3D), and time (1D). Total dimensionality is 6 (+1 for time). The equa-
tions that we’re dealing with read

ft+ u fx − e

m
Efu�

outside force

=
1

τ
(nM(u)− f),

E = − ϕx,

(εϕx)x = e(n−nd), ϕ(0)= 0, ϕ(1)= vbias,

n(x, t) 4 ∫

−∞

∞

f(x, u, t)du,

M(u) =
1

2π
√

θ
e−2u2/2θ,

where we have given constants e, m, τ , vbias, and ε, nd are given functions of x. The coordinates observe
the bounds: 0<x< 1, −∞<u<∞, t > 0. This equation has the following features:

⊕ . It’s a scalar equation.

⊕ . LHS is a simple convection in conservation form. Upwinding is simple to implement.

⊕ . RHS is “just” a source term

⊖ . Dimension is too high.
1D or at most 2D in space.
1D in space ⇒ 1D or 2D in velocity space. (collision dependent)
2D in space ⇒ 2D or 3D in velocity space.

⊖ . Often the characteristic speed u convection is unbounded. That, of course, kills explicit timestep-
ping in its reliance on CFL-type conditions

max |u| ∆t
∆x

+max
(∣

∣

∣
− e

m
E
∣

∣

∣

)∆t

∆u
6 1.

Possible resolutions include:

• Just bound it −umax6 u6 umax.

• u in the Boltzmann equation is replaced by a bounded function h(u).

⊖ . More complicated collision models exist:
∫

K(x, u, u′)f(u′)du′.

x, u: compute a numerical integral in the dimension of u.

Treating the LHS:

• spectral methods.
In space:

◦ Chebyshev

◦ Legendre (no good FFT)

In velocity space: −∞<u<∞ in multiple dimensions

◦ Infinite domains: Hermite and Laguerrre polynomials have been tried...

◦ ...with mixed success

Boltzmann-Type Equations 11

• f can sometimes be pretty nonsmooth

• Lagrange-type methods (follow characteristics)

◦ increase ∆t tremendously

• Usual “high-resolution” solvers

◦ treat fx and fu by TVD, ENO, WENO, DG

◦ drastic restrictions on ∆t

◦ save time by freezing weights in WENO (high-order linear approximation)

Treating the RHS:

• simple relaxation type collision can be handled explicitly as a source term.

• handled explicitly as a source term

◦ difficulty arises when τ ≪∆x or ∆u. (“stiff” source term)→∆t has to be reduced

◦ use an implicit solver for the source term

◦ could choose an implicit solver to overcome this difficulty

◦ or go really high-tech and use implicit-explicit methods :

fn+1 = fn+ ∆t(Cn+Sn+1),

where C stands for the convection term and S stands for the source term.

In general, the collision term is a real integral.

• Fatemi & Odeh: use linear interpolation to actually evaluate the integral.

• Possibly use WENO interpolation to avoid oscillation.

• A. Majorana (2001) et al. use a clever transform to avoid interpolation and have the integral evalu-
ation always use values at exact grid points.

• Possibly use Fast Multipole Methods to reduce computational cost.

• Or use FFT.

[Begin lecture October 17, 2007: Chi-Wang Shu]

3 Semiconductor Device Simulation Models

[Name-dropping in Shu’s circle of friends: Joseph Jerome (Northwestern University), Odeh (Bell labs?),
and Fatemi (NU as well? Graduated)]

3.1 Drift-diffusion model

nt+ Jx=0, (20)

where n(x, t) is the number density of electrons, and J is the current density. Physical properties of the
medium include the doping density nd. We can decompose J into a hyperbolic and a viscous factor as fol-
lows:

J =Jhyp + Jvis. (21)

We define

Jhyp =− µnE,

12 Section 3

where µ is the electron mobility . A typical value for µ is 0.75 [µm2/V]. One of the usual functions values
for µ is

µ=

{

0.75 where nd= 106 (µm)−3

4.0 where nd= 2× 103 (µm)−3

or we can also make µ a function of E (the electric field) as

µ= µ(E) =
2µ0

1+ (1+ 4
(

µ0|E |

vd

)2
√ ,

for µ0 = 4.0, vd= 2.0[µm/ps]. Recall that E is the electric field given by

E =− φx,

where φ is the electric potential and is solved for via

(ε φx)x= e (n−nd)

φ(0)= 0, φ(L)= vbias







ε is the electric permittivity and vbias is some bias potential. Now we can define the diffusive term as

Jvis=− σ (nθ)x,

where we have introduced the temperature θ

θ=
kb
m
Tb.

Note that in this model, the diffusive term (Jvis)x is linear in n, so this is a relativey ‘easy’ model. How-
ever, this model is difficult to compute because the doping nd is very often discontinuous, and leads to
very sharp gradients (layers) in the number density n.
A very popular method (e.g. commercial softwares) for solving drift-diffusion systems like this one is the
Schurfetter-Gummel method: suppose we have steady state. Then the equation basically reads (20)

(a n)x− (b nx)x=0

Integrating as
a

b
n−nx= const.

then the solution can be written as

n= c e
ax

b .

However, one can still just hit (20) with ENO/WENO/DG solvers, and it will work quite well.

3.2 High field model

(See Cercignani and Gamba and Levermore)
Idea: use Maxwell’s equations as the driving force. Start with same equations (20) and (21). But now take

Jhyp =− µnE − τ µ
e

ε
n (− µnE +ω)

Jvis=− τ (n (θ+ 2 µ2E2))x+ τ µE (µnE)x

Computationally, is not that much different than drift-diffusion: just add some more terms to solver.

3.3 Momentum solvers

So far we have only conserved ‘mass’, i.e. the mass density n(x, t). However, it also makes sense to con-
serve ‘momentum’:

nu=

∫

f v dv,

Semiconductor Device Simulation Models 13

where f is the phase-space density function (unknown in the Boltzmann eqn).

3.4 Energy Transport Models

Idea: use mass and ‘energy’ conservation:

W =

∫

f (v− nu)2 dv

Then we model momentum explicity so that we don’t have to conserve it. The equations are then conser-
vation of mass (20) and some conservation law for W . There are many, many types of energy transport
models. A particular one is

ut+ f(u)x= g(u)xx+ h(u),

with

u=

(

e n
nE

m

)

, f(u)= φ′n

(

e µ(E)

µE(E)+D(E)

)

, g(n) =

(

nD(E)

nDE(E)

)

,

and

h(u) =





0

e nµ(E) (φ′)2 +
e

ε
(n−nd)nD(E)−n

〈

∂E

∂t

∣

∣

∣

coll

〉





Advantage of this model: only two unknowns (as opposed to three for momentum conservation).

3.5 Hydrodynamic Model






































nt+ (nv)x= 0

pt+ (p v+n kbT)x=− e nE − p

τp

Wt+ (nw+n v kbT)x=− σn vE −W −W0

τW
+ (κnTx)x

(22)

p is the momentum, T is temperature, E is energy. The LHS of the system above exactly the Euler equa-
tions of gas dynamics. This is great: we can just apply the usual hyperbolic conservation law techniques.
However, it’s costly: in 2D, we’ve got 4 unknowns.

3.6 Kinetic Model

ft+u fx− e

m
Efu=

nM − f

τ

f is the phase-space density function. M is the Maxwellian (Gaussian) profile in velocity-space. This
model is more general than drift-diffusion, high field, and (maybe) energy transport. However, one cannot
derive the hydrodynamic model from this one. One could also replace the right-hand side by

Q(f)=

∫

R3

[s(k ′, k) f(t, x, k ′)− s(k, k ′) f(t, x, k)] dk ′,

where the kernel s is defined as

s(k, k ′) = k0(k, k ′) δ (z(k ′)− z(k))+

k (k, k ′)[(nq+ 1) δ (z(k ′)− z(k)+ ~ω) +n1 (δ(z(k ′)− z(k)−~ω)],
where

z(k) =
1

1+ 1 + z
σ̃

m
~2 |k |2

√

~
2

m
|k |2.

14 Section 3

3.7 Quantum Effects

Earliest attempts at incorporating quantum effects into these models is attributed to C. Gardner, who
developed a quantum hydrodynamic model. Unfortunately, that first model looks like it might have some
problems with it. Quantum models for simpler models (drift-diffusion) have been done, and are relatively
well-accepted.
Nobody has really done anything solid with quantum effects in the kinetic model.
[Begin Lecture 10/25/07: Alan Schiemenz]

4 Fast Sweeping

We’ere solving the 2D Eikonal equation

|∇ϕ(x, y)|= f(x, y) for x∈Ω \Γ

with the condition ϕ(x)= 0 for x on some given curve Γ.

4.1 Godunov Hamiltonian

Let Ωh= {(xi, yj)}i,j=1
I ,J , where h= ∆x=∆y. and then set

Ĥ :





(

ϕi,j− ϕx,min
i,j

h

)+




2

+





(

ϕi,j− ϕy,min
i,j

h

)+




2

= fi,j
2 , (23)

where

ϕx,min
i,j 4 min (ϕi−1,j , ϕi+1,j),

ϕy,min
i,j 4 min (ϕi,j−1, ϕi,j+1).

Steps in the algorithm:

1. Initialize ϕ=∞
2. Fix ϕ on Γ, never let it change.

3. Until convergence, do

a. Pick the next sweep_order out of

• i= 1� I , j= 1� J
• i= I� 1, j= 1� J
• i= I� 1, j= J� 1

• i= 1� I , j= J� 1

and for each point in the sweep according to sweep_order, do:

i. solve (23) for a quantity ϕ̄i,j

ii. set the new ϕi,j4 min (ϕ̄i,j , ϕi,j
old)

in a sweeping motion, moving according to sweep_order.

The solution to (23) can be written down explicitly:

ϕ̄i,j=







min (a, b)+ fi,jh |a− b|> fi,jh,

a+ b+ 2fi,jh
2− (a− b)2

√

2
else.

Remarks:

• Easily generalizable to multiple dimensions

• The entire thing is essentially a Gauß-Seidel update. Since Gauß-Seidel is order-dependent, we try
each ordering in turn.

Fast Sweeping 15

• A 1D problem is done after 2 sweeps.

• In O(1) sweeps, you can bring down the error to order h.

Thinking about the 1D situation is really helpful: Solve |∂xf |= 1, keeping f(0) = f(1). Sweeping right just
gives f(x) = x, and sweeping left puts the mandatory kink at x= 0.5 if starting out to the left with slope
1 from f(1)= 0.

4.2 Lax-Friedrichs Hamiltonian

Next, we’re trying to solve a more horrible, even more nonlinear equation:

ψt+ γ

(

∇ψ
|∇ψ |

)

|∇ψ |= 0,

where again we’re given ψ = 0 on the curve Γ, and γ is sort of a “normal speed” or a “surface tension”.
Focusing on the zero level set gives us the time-independent equation

γ

(

∇ψ
|∇ψ |

)

|∇ψ |�
H

= 1

on all of Rd. The solution of this problem takes a shape called Wulff crystals .
To tackle this nonlinearity, we use the Lax-Friedrichs Hamiltonian, which in 1D reads

Ĥi,j(ρ
−, ρ+)=H

(

ρ+ + ρ−

2

)

− σx
ρ+ + ρ−

2
,

where

σx> max
ρ∈[ρ−,ρ+]

∣

∣

∣

∣

∂H

∂p

∣

∣

∣

∣

.

To repeat, our equation reads H(∇ϕ) =R(x), with ϕ= g on Γ given. Then our L-F update can be written
as

ϕ̄i=
∆x

σx

(

R(xi)−H

(

ϕi+1− ϕi−1

2∆x

))

+
ϕi+1− ϕi−1

2
, (24)

and again we’ll have ϕi
new=min (ϕi

old, ϕ̄i).
The computational boundary is handled by means of ghost cells, setting

ϕ0,j = ϕi,0,

ϕI+1,j = ϕi,J+1.

Remarks:

• We’re no longer upwinding–(24) takes information from both sides of the point currently being
updated.

• The flux is monotone. ⊕
• It’s easier to do in higher dimensions. ⊕
• No nonlinear inversion necessary. ⊕
• Takes many more Gauß-Seidel iterations to converge. ⊖

4.3 High-Order Methods

In order to achieve high-order, we will look at a WENO approximation ∇ϕ. Recall:

(ϕx)i,j
Godunov =

ϕi,j − ϕi,j
x,min

∆x
,

(ϕx)i,j
LF =

ϕi+1,j − ϕi−1,j

2∆x
.

16 Section 4

Now we’re going to have

(ϕx)i,j
− = (1−w−)

ϕi+1,j − ϕi−1,j

2h
+w−

3ϕi,j− 4ϕi−1,j+ ϕi−2,j

2h
,

(ϕx)i,j
+ = (1 +w+)

ϕi+1,j − ϕi−1,j

2h
+w+

− ϕi+2,j+4ϕi+1,j − 3ϕi,j
,

where our weights are

w− =
1

1+ 2Γ−
2 , Γ−=

ε+ [ϕi,j − 2ϕi−1,j+ ϕi−2,j]2

ε+ [ϕi+1,j− 2ϕi,j+ ϕi−1,j]2
,

w+ =
1

1+ 2Γ+
2 , Γ+ =

ε+ [ϕi+2,j − 2ϕi+1,j+ ϕi,j]2

ε+ [ϕi+1,j − 2ϕi,j+ ϕi−1,j]2
.

(ϕy)
± are analogous. We introduce the Godunov Hamiltonian just as above:

ϕ̄i,j=







min (a, b)+ fi,jh |a− b|> fi,jh,

a+ b+ 2fi,jh
2− (a− b)2

√

2
else.

But this time, we are going to set

a=ux,min =min
[(

ϕi,j
old−∆x(ϕx)i,j

−),
(

ϕi,j
old−∆x(ϕx)i,j

+)

,

and b likewise.
using our WENO approximations.
Remarks:

• Neither monotone nor upwinded.

• We do not take ϕi,j
new = min (ϕi,j

old, ϕ̄i,j), because we might accidentally generate values below the
viscosity solution, which would kill our nice high-order accuracy.
Instead, we take ϕi,j

new = ϕ̄i,j.

WENO may also be introduced for the Lax-Friedrichs Hamiltonian. Recall our previous result

ϕ̄i,j=
1

σx

∆x
+

σy

∆y

[

Ri,j −H

(

ϕi+1,j − ϕi−1,j

2∆x
,
ϕi,j+1− ϕi,j+1

2∆y

)

+ σx
ϕi+1,j− ϕi−1,j

2∆x?
+ σy

ϕi,j+1− ϕi,j+1

2∆y

]

.

To introduce WENO into this, we do the following:

1. Replace

H(· , ·)→H

(

(ϕx)i,j
− + (ϕx)i,j

+

2
,
(ϕy)i,j

− +(ϕy)i,j
+

2

)

2. Replace

ϕi+1,j+ ϕi−1,j

2
→ 2ϕi,j

old +∆x[(ϕx)i,j
+ − (ϕx)i,j

−]

2∆x
.

Remarks:

• LF-WENO is more robust than Godunov-WENO.

• The high-order methods require a good starting guess to actually converge. One possibility is to
have a low-order method to produce a starting guess, and then use high-order.

[Begin Lecture 10/31/07: Ishani Roy]

5 Boltzmann Equations for Semiconductor Devices

The Boltzmann equation models the evolution of (multiple) species of particles in phase (physical-
velocity) space. The collisionless Boltzmann equation is called the Vlasov Equation . What kinds of colli-
sions can we have? In semiconductor devices, electron-electron and electron-hole collisions are negligible
(hole = positively charged ion). The only external applied field we consider is the electric field.

Boltzmann Equations for Semiconductor Devices 17

Consider the number density f = f(t, x, v). The rate of change due to convection is zero (neglecting colli-
sion):

(

df

dt

)

conv

=0

It’s reasonable to say the rate of change of collision and convection are the same:
(

df

dt

)

conv

=

(

df

dt

)

coll

5.1 Convection

The convection can be carried out by following characteristics:

ẋ= u

u̇=− q

m
E(x, t)

5.2 Collision

The collision term P (t, x, u′ → u) is the rate that a particle with position x at time t changes its velocity
from u′ to u due to a scattering (collision). Via probabilities and Pauli exclusion principle, the scattering
term has the form
slide advanced (d’oh!)

5.3 Semiclassical Boltzmann Eqn

This formulation employed to incorporate quantum effects in semiconductor crystal lattice. Semiclassical
Boltzmann eqn:

∂tf + u(k) · ∇xf − e

~
E · ∇kf =Q(f),

where

Q(f) =

∫

(R3)
[s(x, k ′, k) f(t, x, k ′) (1− f(t, x, k))− s(x, k, k ′) f(t, x, k) (1− f(t, x, k ′))]dk ′

Types of collisions:

• conservation of particles
∫

R3

Q(f) dk= 0

• Relaxation to thermal equilibrium

• (something else)

• Low-density approximation: quadratic term ignored

We will look at relaxation to equilibrium: the Maxwellian (equilibrium distribution) is

M(k)=N∗ e

(

−
ε(k)

kBTL

)

where N∗ is a normalizing term.
We also will look at Polar optical scattering:

Q(f)=

∫

R3

[S(k ′, k) f(t, x, k ′)−S(k, k ′) f(t, x, k)] dk ′,

where

S(k, k ′)=
∑

i=1

n

Gi(k, k
′) [(ni+ 1) δ(ε(k ′)− ε(k)+ ~ωi) + something else]

18 Section 5

The δ((ε(k ′)− ε(k) + ~ωi) function is used as an approximation. Usually ε(k) can be taken as some simple
smooth function to make the calculation of Q(f) easier. We can take

• ε(k)= parabolic

• non-parabolic

• Kane dispersion

A common application of this equation is for Gallium-arsenide semiconductors. Direct band-gap semicon-
ductors like GaAs can be used for LEDs and for semiconductor lasers.

5.4 Kinetic model for a GaAs diode

∂f

∂t
+ u

∂f

∂x
− e

m
E(x, t)= blah blah

In order to determine the electric field, we need to solve a Poisson problem

E(x, t)=− φx

(εφx)x= e(n(x, t)−nd)

φ(0, t)= 0

φ(1, t)= vbias







































Usually the collision term is
n(x, t)M(u)− f(t, x, u)

τ

All the moments (except the zeroth order one) relax to the equilibrium at the same rate, but momentum
and energy realistically don’t do this, so this is a disadvantage of this method.

This equation has stuff like

ft+ u fx= 0,

but u is technically unbounded. This is bad for CFL conditions. The way to get around this is to dis-
cretize so that you cut off u at say |u| ≤ a, and you increase a until you see that the answer doesn’t
change. E.g. WENO is used to solve these things.

5.5 WENO solver for transients of the Boltzmann-Poisson system

∂f

∂t
+

1

~

∂ε

∂k
· ∂f
∂x

− e

~
E · ∂f

∂k
=Q(f)

is the model we shall use. ~ and e are constants. In this case, we take ε(k) in Q(f) as

ε(k)=
1

1 + 1+ 2
α̃

m
~2|k |2

√

~
2

m
|k |2, (25)

where α̃ is the non-parabolicity factor (parabolic band ⇒ α̃ = 0). we use α̃ = 0.5. The collision operator is

Q(f)=

∫

[S(k ′, k) f(t, x, k ′)−S(k, k ′) f(t, x, k)]dk ′,

and S is some horrible function of ε(k). Again the E-field is obtained via a Poisson system.

Boltzmann Equations for Semiconductor Devices 19

5.5.1 Solving

We’ve got a 6-D in space, 1-D in time for a 3D device. This huge physical space with the collision integral
is motivation for using DSMC. DSMC is simple, and relatively cheap to compute. The disadvantage is
that this method introduces some noise, so we need lots and lots of particles (Monte-Carlo trials) in order
to get a reasonable approximation back. This is why we need deterministic solvers. However, this is
expensive. Ways that have been explored to do this are

• Use spherical coordinates and energy as an unknown ⇒ can get down to 2 dimensions

• Use parabolic approximation, solve HCL with upwinding and a predictor-corrector in time. How-
ever, there is singularity in the transformation, so you’ve got to do some fancy footwork to get
around this.

• Mazorana and Pidatella use a new transformation of variables which is good even in the non-
parabolic case, and changes the BP system into an HCL, and this is great.

The HCL is linear if we neglect nonlinearities in E. A good way to avoid oscillations inherent with high-
order oscillations is WENO. Usually these applications are 1D, but they ‘can be generalized’ to as much
as 2D (5D phase space) problem.

5.5.2 Transformation

Crazy transformation in k:

k= 2
√ mkBTLw

√

h
w

√
1+αkw

√ (

1− µ2
√

cosφ, 1− µ2
√

sinφ, µ
)

.

In addition we use (25). Need to find the Jacobian J also, which can be done. The equation is nondimen-
sionalized by introducing appropriate variables for k, t, x. the new unknown is

Φ(t, z, w, µ) = s(w)F (t, z, w, µ)

s(w) = w
√

1 +αkw
√

(1 + 2αkw)

where F (t, z , w, µ) is the direct transformation of f(t, x, v) at some energy. (z ∼ x, w ∼ |v |, µ ∼
cos(angle between z and k)).

f @ 1

2

∫ ∫ ∫

Φ dw dµ dz

We now write the collision term as C(Φ), which is a one-dimensional integral over µ. Now z ∈ [0, L], w ∈
[0, wmax], µ ∈ [− 1, 1]. We let wmax = N h w be the maximum value of the energy. We can also introduce
some ‘cut’ in the collision kernel so that the number of electrons with velocity less than wmax is constant
in time. The new eqn is

∂Φ

∂t
+
∂(a1Φ)

∂z
+
∂(a2Φ)

∂w
+
∂(a3Φ)

∂µ
= s(µ)C(Φ)

This is a form for which we can do successive one-dimensional differentiations, in contrast to the non-
transformed equation, for which we must do a three-dimensional differentiation. In addition, C(Φ) is a
one-dimensional integral (as opposed to the original three-dimensional integral without the δ-function
approximation).

5.5.3 Numerical Scheme

The numerical scheme uses a 5th order FD WENO method with a 3rd order TVD RK in time. wmax is
chosen to be an integer multiple of α, where α is some translation in w in evaluating Φ needed to com-
pute the collision operator. wmax is thus chosen so that Φ(t, z, w ± α, µ) lands exactly on a grid point.
Thus, ∆w is also chosen so that wj + α is an integral multiple of ∆w. This saves time so that we don’t
have to do any high-order interpolation to evaluate Φ(t, z , w ± α, µ). The scheme is to integrate the BTE
on some w × µ rectangle. We use a tensor-product like approximation so that we can do constant-coeffi-
cient one-dimensional derivative approximations for a multi-dimensional non-constant coefficient problem.

[Begin Lecture 11/07/07: Yanlai Chen]

20 Section 5

6 Adaptive High-Order DG Method w/Error Control for H-J
Equations

6.1 Error Indictator Methods

(cf. R. Nochetto)

The general adaptive method includes the following (looped) steps:

1. Solve a problem on a triangulation T h

2. Estimate the error in solving on this mesh

3. Mark elements for which the error is too large

4. Refine/Coarsen the grid according to the marked elements

The ‘estimate’ step usually involves estimates of the error e as follows:

• ‖e‖≤C
∑

T∈T h
η(T) (upper bound)

• Lower bound: C ′
∑

T∈T h
η(T)≤‖e‖

Often times we don’t really use the lower bound because we don’t do much coarsening. The ‘refine’ step
usually involves refined meshes T̂h and to determine:

argminT̂h

{

∑

T∈T̂h

η(T)≥ θ η(Ω)

}

for some θ ∈ (0, 1). If you do this, with the estimation loop, then one can prove convergence on loop k:

‖u− uh‖≤Cβk

for some β < 1.

6.2 Moving Mesh Methods

(cf. T. Tang)
The steps here are

1. Evolve n steps

2. Redistribute the mesh

3. Update

One keeps the number of elements |T h| the same, but redistributes the vertices (and thus nodes) of the
elements according to a ‘monitor function’, of which

w= 1 + |∇u|2
√

is an example. Let x(ξ) be the physical domain (global) quantities while ξ is the computational domain
(standard) coordinates. One evolves the element vertices as

(wxξ)ξ=0⇒wxξ= 0

6.3 Adaptivity with Error Control

The procedure here is

1. Solve

2. Estimate

Adaptive High-Order DG Method w/Error Control for H-J Equations 21

3. Generate a new mesh

Utilitze a computable function Φ which satisfies ‖u− uh‖<Φ(uh).

The equation we’re trying to solve is

u+H(∇u) = f. (26)

Why no time-evolution? (Unofficially: can’t prove error bound.) However, suppose φ solves the Eikonal

equation, e.g. (16). Then u= eφ satisfies (26).

Another way: first obtain φ=ux, which solves

φ+H(φ)x= fx

and compute u via

u(x)= f(0)−H(φ(0)) +

∫

0

x

φ(s)ds

Note: u is also a steady-state solution to

wt+w+H(wx) =0.

So anothe way for obtaining φ is to solve

ψt+ ψ+H(ψ)x− fx= 0.

Newton’s method is used to solve the weak formulation of (26). However, Newton’s method only con-
verges for sufficiently close initial guesses. So a dual Runge-Kutta-type method is used to supplement
Newton-Raphson far away from the point of convergence.

6.3.1 A Posteriori Error Estimate

Several estimates have been attempted:

• 1995: Cockburn & Gau developed a method for conservation laws ⇒ H-J equations. However, the
effectivity indicator is O(h−1).

• Crandall & Lions: Continuous dependence ⇒ error estimate, the effectivity index is O(1) in
smooth, monotone regions, but O(h−1) for non-smooth solutions

• Albert, Cockburn, French, & Paterson developed an O(1), or O(log h) effectivity index for mono-

tone solutions (in smooth or non-smooth regions). However, it’s O(h−1) for high-order DG
schemes. However, one can postprocess the solution to get an O(1) effectivity index, but only when
the mesh is uniform.

• Chen and Cockburn: the effectivity index is O(1), O(log h) for any scheme, but only for one-dimen-
sional problems.

6.3.2 Continuous Dependence

One can show
{

u+H(∇u) = f

v+H(∇v)= g
⇒‖u− v‖L∞≤‖f − g‖L∞

Then we can form
{

u+H(∇u)= f

uh+H(∇uh)= g
where we define g as

g=

{

sup
{

uh+H(p): p∈D+
}

if D+� 0

inf
{

uh+H(p): p∈D−
}

if D−� 0

in accordance with the theory of viscosity solutions. If we do this then

‖u−uh‖L∞≤ sup {|R(uh)|},
where R is the residual.

22 Section 6

[Missed Lecture 11/29/07: Wei Wang and Dan Paulsen]

[Begin Lecture 12/05/07: Chi-Wang Shu]

7 Other Applications

7.1 Hierarchical Size-Structured Model

Much of this section is take from A.S. Acnleh, et al, Applied Math Optimization, v51 (2005), pp 35-59.
Notation:

• x: size

• t: time

• u(x, t): density of individuals of size x at time t

We take (x, t)∈ (0, L]× (0, T], where L and T are some upper bounds. The PDE is

ut+ (g(x, Q(x, t) u)x+m(x, Q(x, t))u= 0 (27)

We can call this a conservation law with a ‘source term’. g represents some sort of growth. Boundary con-
ditions can be prescribed as

g(0, Q(0, t))u(0, t)=C(t)+

∫

0

L

β(x, Q(x, t))u(x, t) dx, t∈ (0, T].

C can be viewed as some source (e.g. growth from some external source). Q(x, t) is called the ‘environ-
ment’. It is defined as

Q(x, t)=α

∫

0

x

w(ξ) u(ξ, t) dξ+

∫

x

L

w(ξ) u(ξ, t) dξ.

Thus the ‘environment’ depends globally on the density everywhere. 0 ≤ α < 1 is a constant which takes
into account the notion that individuals with size smaller than x have limited (or reduced) influence on
those of size x. Some physical interpretations of certain quantities are

• g: growth rate

• m: mortality rate

• β: reproduction rate

• C(θ): inflow rate of size-zero individuals from some external source

We assume some hypotheses on properties and regularity of the system:

1. g(x, Q)∈C2, g(x, Q)> 0 for x∈ (0, L), g(L, Q) =0, gQ(x, Q)≤ 0

2. m(x, Q)≥ 0, m∈C1

3. β(x, Q)≥ 0, β ∈C1, β(x, Q)≤ω1

4. w(x)≥ 0, w ∈C1

5. C(t)≥ 0, C ∈C1

6. u(x, 0)∈BV(0, L), u(x, 0)≥ 0

Acnleh uses a first-order backward-Euler scheme with upwinding:

uj
n+1−uj

n

∆t
+
g(xj , Q(xj , tn+1)uj

n+1)− g(xj−1, Q(xj−1, t
n+1) uj−1

n+1)

∆x
+m(xj , Q(xj , t

n+1)uj
n+1 = 0.

Other Applications 23

The quadrature used to compute the integrals in the definition of Q is Riemann integration using right-
hand values. This is to avoid using the value u(0, t), which depends in a complicated fashion on the global
values of u.
The above scheme is weighed toward theory more than practice: it’s hard to implement but one can prove
existence and uniqueness for solutions to the PDE and convergence of the scheme. If one instead uses
Euler forward, then the implementation becomes much easier (using the right-hand Riemann quadrature).
However, proving convergence is much harder, but it can be done (Jun Shen). However, both schemes are
first-order.

Suppose we’re looking for a second-order TVD scheme. One ingredient would be second-order quadrature,
which requires u(0, t), and this makes implementation much harder. But this can also be done.
[long,long discussion on quadrature]
One can also do e.g. 5th order WENO to do this stuff.

[comments about DG conference]

7.2 Error estimate for DG

Consider the equation

φt+ a φx= b φ,

with a> 0. We define the discontinuous finite element space

Vh=
{

v: vIj
∈P k(Ij)

}

.

The scheme is: find φh∈Vh such that

Bj(φh, vh) =

∫

Ij

(φh)t vh dx− a

∫

Ij

φh(vh)xdx+ a (φh)j+ 1

2

− (vh)j+ 1

2

− − a(φh)j−1

2

− (vh)j− 1

2

+ −
∫

Ij

b φh vh dx=0

for all vh∈Vh.

Proposition 6. (Cell entropy inequality for DG)

1

2

d

dt

∫

Ij

(φh)
2dx+ F̂

j+
1

2

− F̂
j−

1

2

≤ b

∫

Ij

φh
2 dx

which implies

1

2

d

dt

∫

0

1

(φh)
2 dx≤ b

∫

0

1

(φh)
2 dx

Proof. Take vh= φh:

0 = Bj(φh, φh)=

∫

Ij

(φh)tφhdx− a

∫

Ij

φh(φh)xdx+ a (φh)j+ 1

2

− (φh)j+ 1

2

− − a(φh)j−1

2

− (φh)j− 1

2

+ −
∫

Ij

b φhφh dx

=
d

dt

1

2

∫

Ij

(φh)
2 dx− 1

2
a (φh

2)
j+

1

2

− +
1

2
a (φh

2)
j−

1

2

+ +� .
=

1

2

d

dt

∫

Ij

(φh)
2dx+ F̂

j+
1

2

− F̂
j−

1

2

+ Θ
j−

1

2

− b

∫

Ij

φh
2 dx.

where we have defined

F̂ =− 1

2
a (φh

2)−+ a (φh
2)−=

1

2
a (φh

2)−,

and

Θ=
1

2
a(φh

2)−+
1

2
a(φh

2)+− a(φh
−)(φh

+)=
1

2
a (φh

+− φh
−

)2

≥ 0

�

24 Section 7

Proposition 7. (Error estimate)
Let φ be the exact solution to the PDE. define e= φ− φh. Then we have

∫

0

1

(e)2(x, T) dx≤O(h2k+2)

Proof. We have Bj(φ, vh) =0 for all vh∈ Vh. Thus, we have

Bj(e, vh)=0

for all vh∈Vh. We can rewrite e as

e= φ− φh= (φ−Phφ)+ (Phφ− φh)= ε+ eh

where eh∈Vh. Then we have

Bj(e, eh)= 0

which gives us

Bj(eh, eh)=−Bj(ε, eh) (28)

The first proposition gives us

Bj(eh, eh)=
1

2

∫

Ij

(eh)
2 dx+ F̂

j+
1

2

− F̂
j−

1

2

+
1

2
aJehK

j−
1

2

2 − b

∫

Ij

(eh)
2 dx.

And also

Bj(ε, eh) =

∫

Ij

εt eh dx− a

∫

Ij

ε(eh)xdx+ a ε
j+

1

2

− (eh)j+ 1

2

− − a ε
j−

1

2

− (eh)j− 1

2

+ −
∫

Ij

b ε eh dx.

Now we define the projection Ph as
∫

Ij

(Phw−w) vh dx= 0 ∀ vh∈P k−1(Ij)

and

(Phw−w)
j+

1

2

− = 0 ∀ j

One can check that these two conditions give a unique projection. Then we can reduce Bj(ε, eh) to

Bj(ε, eh)=

∫

Ij

εt eh dx−
∫

Ij

b ε eh dx.

We also get
∫

Ij

εt
2 dx∼O(h2k+2).

We preserve this k+ 1 order property because the projection leaves polynomials of degree k untouched.
After summing (28) over j we get

d

dt

1

2

∫

0

1

(eh)2 dx− b

∫

0

1

(eh)2 dx≤O(h2k+2) +
1

2

∫

0

1

(eh)2 dx+O(h2k+2) +
1

2

∫

0

1

(eh)2 dx

This implies that
d

dt

∫

0

1

(eh)
2 dx≤ (|b|+ 2)

∫

0

1

(eh)
2 dx

Using Gronwall, we obtain
∫

0

1

(eh)
2(x, T) dx≤O(h2k+2)

and from here can get
∫

0

1

(e)2(x, T) dx≤O(h2k+2)

�

Other Applications 25

