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1 Scalar Conservation Laws

u+ (f(w)z=0
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x€R, t >0, typically f convex. u(z,0)=wuo(z) (given). Prototypical example: Inviscid Burgers Equation

u
flu)= 35
Motivation for Burgers Equation. Fluids in 3 dimensions are described by Nawvier-Stokes equations.
u+u-Du = —Dp+vAu
divu = 0.

Unknown: u: R? — R? velocity, p: R® — R pressure. v is a parameter called wviscosity. Get rid of incom-
pressibility and assume u: R — IR.
Ut 4+ U Uy = Vg -

Burgers equation (1940s): small correction matters only when wu, is large (Prantl). Method of characteris-

tics:
u2

Same as uy 4+ u u, =0 if u is smooth. We know how to solve u; + cu, =0. (¢ € R constant) (1D transport
equation). Assume

u=u(z(t),t)
By the chain rule
T
If do/dt =u, we have du/dt =uu, 4+ us=0. More precisely,
du
? = 0 along paths
5 = ula(®),t) =uo((0)).

Suppose ug(z) is something like this:

Initial Conditions

Characteristic Plane / /

Figure 1.1.
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Analytically, u(z, t) = uo(zo), dz/dt = up(xo) = z(t) = x(0) 4 ¢ up(xo). Strictly speaking, (z,t) is fixed,
need to determine xg. Need to invert =g+t ug(zg) to find z¢ and thus u(x,t) = ug(zo).

Figure 1.2.

As long as xg+ tup(z) is increasing, this method works. Example 2:

Figure 1.3.

This results in a sort-of breaking wave phenomenon. Analytically, the solution method breaks down

when
Ozd—le—ktu'(x )
dzo o{To)-
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No classical (smooth) solutions for all ¢t > 0. Let’s try weak solutions then. Look for solutions in D’. Pick
any test function fe C°(R X [0,00)):

/oOo /R SD{UH_ (%Q)J =0, u(z,0)=wuo(z).

Integrate by parts:

Definition 1.1. u € L.([0,00] x R) is a weak solution if (1.1) holds for all ¢ € CL([0,00) x R).

1.1 Shocks and the Rankine-Hugoniot condition

Ut

Figure 1.4. Solution for a simple discontinuity (v and 7 are unit vectors.)

Let ¢ have compact support in R x (0, 00) which crosses the the line of discontinuity. Apply (1.1). Q_
is the part of the support of ¢ to the left of the line of discontinuity, {2+ the one to the right.

u? u?
/ <ptu+<pz<_>dxdt—|—/ gatu++<pz<_+)dxdt
Q_ 2 Q, 2
Wl
/ (pu_)i+ (cpT) dedt+--
y u? ' u’
—/ cp[u_ut—i-(—)l/m]ds—i—/ cp[u+ut+<—+>uw}ds
r 2 r 2

Notation [¢g] = g+ — g— for any function that jumps across discontinuity. Thus, we have the integrated

jump condition
2
/ gp[ [u]ve + Hlﬂyz]ds.
I_‘ 2

v [ ],

0

Since ¢ is arbitrary,

For this path,

1 1
T=(2,1) , v=(—-1,0)——.
241 Viz+1

(2 is the speed of the shock.)

u2

=7 = [[7]] :u*+u+'

[u] 2

Rankine-Hugoniot condition:
[f(w)]

shock speed = ~——+

[u]
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for a scalar conservation law u; + (f(u)),=0.

Definition 1.2. The Riemann problem for a scalar conservation law is given by

ur+ (f(u))z=0,

u_ x<0,
uo(w) = uy x2=0.

Example 1.3. Let’s consider the Riemann problem for the Burgers equation: f(u)=u?/2.

0 z<0,
u(@) =11 Lo

By the derivation for “increasing” initial data above, we obtain

u2
w(@,t) =1azyeyp Y= [[ [[u/f]] =%.

The same initial data admits another (weak) solution. Use characteristics:

Figure 1.5.
Rarefaction wave: Assume u(x,t) =v(z/t)=:v(§). Then

o oz &
e (-2

Ug

Il
G\
7 N\
~|
~_
Il
~|
4

So, g+ uuy;=0= —&/tv'+v/tv'=0=v'(—{+v)=0. Choose v(§) — §. Then

u(z,t) :%
Thus we have a second weak solution
0 x<0,
u(z,t)=4{ o/t 0<F<1,
1 Z>1

So, which if any is the correct solution? Resolution:
e f(u)=wu?/2: E. Hopf, 1950
e General convex f: Lax, Oleinik, 1955.

e Scalar equation in R™: Kruzkov.
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1.2 Hopf’s treatment of Burgers equation

u2
“t*(?);(’

must be determined through a limit as € \, 0 of the solution u® of

Basic idea: The “correct” solution to

uf + uug, = eus .

This is also called to the vanishing viscosity method. Then, apply a clever change of variables. Assume u
has compact support. Let

U(x,t):/w u(y,t)dy.

— o0

(Hold & >0 fixed, drop superscript.)

x x 2 x
Ut:/ uze(y,t)dy=—/ (%) dy+€/ Uyy(y,t)dy.
— 00 — 00 y — 00

Then
2
Ui=— % +cuy
or
2
Ut+%=gUm. (1.2)

Equations of the form U;+ H(Dwu) =0 are called Hamilton-Jacobi equations. Let

w<x,t>_eXp<_%,t>>

(Cole-Hopf)

1

1) 1

U)t = E¢zma

Use (1.2) to see that

which is the heat equation for x € R, and

wom_eXp( - Uulz) )

Since 1 > 0, uniqueness by Widder.

w(x,t)_\/L;T?/Rexp<—2%€{($;—ty)2+Uo(y)})dy.

G(tvxv y) :¥+Uo(y),

Define

which is called the Cole-Hopf function. Finally, recover u(x,t) via

_ . IRﬁeXP(—%)dy_IR tyeXp(—% dy
u(z,t)=—2e,/¢p = —2¢ I exp( - Q—Ci)dy - Ir exp( — %)dy
1 IR yexp(—%)dy
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Heuristics: We want lim._.ou®(z,1).

(z—y)?/2t

Uo(y)

x (fixed) y

Figure 1.6.

Add to get G(x, y,t). We hold z,t fixed and consider €|0. Let a(z,t) be the point where G =0. We’d
expect
lim uf(z, t) = z—a(z,t)
e—0 t
Problems:
e ( may not have a unique minimum.
e G need not be C? near minimum.
Assumptions:
e Uy is continuous (could be weakened)

o Uo(y)=o(lyl) as x| — oo.
Definition 1.4. [The inverse Lagrangian function]
a_(z,t) = inf{z €R:G(z,z,t) =min G} =infargmin G,
y

ay(x,t) = sup {z €R:G(x, z,t) =min G} =sup argmin G,
y

Lemma 1.5. Use our two basic assumptions from above. Then
e These functions are well-defined.
o ay(xy,t)<a_(xzat) for x1 <x2. In particular, a_, ay are increasing (non-decreasing).
e a_ is left-continuous, a is right-continuous: ai(x,t) =ay(x4,t).
o lim, ,a_(z,t)=400, lim,,_ay(z,t)=—oc0.

In particular, ay =a_ except for a countable set of points x € R (These are called shocks ).
Theorem 1.6. (Hopf) Use our two basic assumptions from above. Then for every x €R, t >0

z=a+(@,t) < liminf uf(z, t) < limsup u®(x, t) < L(w’t).

e—0 e—0 t

In particular, for every t >0 except for x in a countable set, we have

lim ue(z, ) == —ai(z,t) _ = —a,(x,t).
e—0 t t
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Graphical solution I (Burgers): Treat Up(y) as given.

Uo(y)

T

[\ -y ’

Figure 1.7.

Uo(y) > C — (x — y)?/2t is parabola is below Up(y). Then

Uo(y)+w—0>0,

2t
where C' is chosen so that the two terms “touch”.
Graphical solution II: Let
a? (z—y)? a? Y xy
H t)=G t)——=U =~ 2 T g _ZJ
Observe H, G have minima at same points for fixed x, t.
convex hull
slope: z/t

Figure 1.8.

Definition 1.7. If f:R"— R continuous, then the convex hull of f is

sup{f > g: g convez}.
g

ay, a— defined by Uy(y) + y?/2t same as that obtained from the convex hull of Uy(y) + y?/2t = Irre-
versibility.
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Remark 1.8. Suppose Uy € C2. Observe that at a critical point of G, we have
8UG(I7 Y, t) = Oa
which means

N2
Oy UO(Z/H‘% =0,

SO

=0=>z=y+tu(y).

uo(y) +@

Every y such that y+tug(y) =z gives a Lagrangian point that arrives at x at the time ¢.

Global Min!

a(x,t) at global min.

Inverse Lagrangian points Characteristic Plane

Figure 1.9.

Remark 1.9. The main point of the Cole-Hopf method is that we have a solution formula independent of
¢, and thus provides a uniqueness criteria for suitable solutions.

Exact references for source papers are:

e Eberhard Hopf, CPAM 1950 “The PDE wus + vty = ptg,”

e S.N. Kruzkov, Math USSR Sbornik, Vol. 10, 1970 #2.

Sz0)= {ZGR: G(z,z,t) :myin G}

Proof. [Lemma 1.5] Observe that G(x, y,t) is continuous in y, and

Gy t) L (x—y)? Uo(y) 1
lim ——22 7 = lim =—>0.
lyl—oo  |y[? ly|—oo 2t|yl|? lyl> 2t

Therefore, minima of G exist and S(; ¢) is a bounded set for ¢ > 0.

=a_(z,t)=inf S,y > —oo,
ay(x,t)=sup S,y < o0.
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Proof of monotinicity: Fix xo > x1. For brevity, let z = ay(x1, t). We'll show G(zo, y, t) > G(z2, 2, t) for
any y < z. This shows that min, G(zs, y, t) can only be achieved in [z, c0), which implies a_(z2,t) > z =
a4(x1,t). Use definition of G:

G(:E% Y, t) - G(‘T27 Z, t) - (x —
— )2 _ )2 1

0 G| = | 525 )|+ 2= 07 = (o = 07+ (o -
2)? = (22— 2)?]
Gla,y ) = Glo,2, 1)+ 7

a)

a) > 0 because G(z, z, t) = min G(z, - , t), b) > 0 because xz > 1, by assumption z > y. By definition,
a—_(xae,t) <ay(xe,t). So in particular,

(22— 21)(2 — y>1

b)

at(z1,t) Say(22,t),
so a4 is increasing. Proof of other properties is similar. g
Corollary 1.10. a_(x,t) =ay(z,t) at all but a countable set of points.
Proof. We know a_, a4 are increasing functions and bounded on finite sets. Therefore,

lim ai(y,t), lUm ay(y,t)
y—ay

Yy—x -

exist at all z € R. Let F'={z:ay(x_,t) <a_(z4+,t)}. Then F is countable.
Claim: a_(x,t)=ay(z,t) for x ¢ F.
ay(y1,t) <a—(y2,t) <aq(ys ).
Therefore,
lim a_(y,t) =ay(z,t).

Yy—x

Remark 1.11. Hopf proves a stronger version of Theorem 1.6:

z=a4(@,t) < liminf  wf(¢, 7)< limsup  wf(E, 7)< zoa(@,t)
t e—0,—x,7—t e—0,6—x,T—t t
Proof. (of Theorem 1.6) Use the explicit solution to write
T — - P
S5 e 5 )y
uf(z,t) =
—-pP
Ir exp(T)dy
where P(z,y,t)=G(z,y,t) —m(x,t) with m(z,t) =min, G.
G(z,y,1)
P> 0 Dere P >0 here
m(z,t)

Figure 1.10.
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Fix z,t. Fix >0, let a; and a_ denote a4(z,t) and a_(x,t). Let

[ oo Toa+—m
n t
T—a_ —
< ——7——ﬂ::L
Lower estimate
liminf u®(x,t) > i 7.

e—0 t
Consider

Jw (A

—l) ~exp(i)dy _ Ir (W—l) -exp(%)dy

us(z,t)—1 =

Ir exp( )dy Ir exp( )dy

Estimate the numerator as follows:

*art+n-y —r _
[t = [+ ]
at+n—y < P>
———~exp dy
/ A#m t 2¢e

On the interval y € [a4 + 1, 00|, we have the uniform lower bound

P(z,y,t) _ A
#>_>0
(y—ay)? ™ 2

for some constant A depending only on 1. Here we use

_ 2
P@%ﬂ:%@ (z @_m@?qi>0
ly| ly| 2t |y ly 2t

as |y| — co. We estimate

< lar+n—yl — < ag+1n— A
/ lat t77 y|e P/2€dy < / lat tﬁ y|exp _4_(y_a+)2 dy
at+n at++n €

N

AN
:,\
3
S
g
e} ~
7N
|
o~
o |
(V]
~__

For the denominator,

Since P is continuous, and P(z,a4,t) =0, there exists § depending only on 7 such that

P@dhﬂ<§n

for y € [ay, at+ + 6]. Thus,
a++5 a++5 5 5
/ efP/Qsdy>/ 67P/25dy>/ ef(A/Zs)n dy:(sef(A/Qs)n .
R ay ay

Combine our two estimates to obtain

c > — e~ (A/2)7° 1
we ) -2 e = T A

11
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Since A, ¢ depend only on 7,

liminf u®(x,t) > 1= W.
e—0
Since 1 > 0 arbitrary,
liminf u®(x,t) = S
e—0 t

O

Corollary 1.12. lim._,q u®(x, t) exists at all but a countable set of points and defines u € BV, with left
and right limits at oll x € R™.
Proof. We know
aJr(Ia t) = CL,(I, t)
at all but a countable set of shocks. So,

x—ay(z,t) z—a_(x,t)

lim ué(z,t) = =
lim (z,1) . .
at these points. BVj,. because we have the difference of increasing functions. O

Corollary 1.13. Suppose ug€ BC(R) (bounded, continuous). Then

u( -, t)=lm u®(-,¢t)

e—0

u2
w($) 0

Proof. Suppose p € C°(R x (0,00)). Then we have

£
<P<U% + <%> ) = (euza)ep
> I (u8)2 — > 1>
u® + pp~——|dxdt=¢ prgutde dt.
0 R 2 0 R

[e’e) u2
—/ {(ptu—l— <pm—}dxdt—0.
0 2

18 bounded and is a weak solution to

We want

Suppose
uf +ufuy =euy,, u(x,0)€BC(R).
Maximum principle yields
[[u=(+, )l oo < Nluol] -

Use DCT+lim,,gu®(z,t) =u a.e. to pass to limit. O

1.3 Two basic examples of Solutions

u2

u(z,0) =ug(z), Up(z) = fow uo(y)dy. Always consider the Cole-Hopf solution.

u(zx,t) =r-a%.b at(a:,t),

)2
a(xz,t)= argmin% + Uo(y).

G(z,y,t)
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Example 1.14. ug(z)=1(,>0}. Here,

Yy
Uo(y) = / 1>00dy =yliysoy
Then 0

2
r—
G(z,y,t) :%4' Yliyso1 20,
and

G(z,y,t)=0=2liy50y=0 [777]
if £ <0. So, a=x for x <0. Differentiate G and set =0

_y—=
O_t

So, y=x —t. Consistency: need y > 0=z >t. Gives u(z,t)=1 for z >t.

+1 (assuming y > 0)

£C2 2

X
G(xuyvt) = §+%_Ty+yl{y>0}

22 g2 T
= gty tu(tosn 7).

Consider 0 <2/t <1, t>0. Claim: G(x,y,t) >2?/2t and a=0.
e Case l: y<O0, then G(x,y,t) —2?/2t=y?/2t —zy/t > 0.
e CaseIl: y>0, then G(z,y,t) —2%/2t=y?/2t + (1 —z/t)y > 0.

x <0,
a(z,t)=< 0 0<z<t,
r—t x>t
Then
0 z <0,
u(x,t):%(x’t)z z/t 0<z<t,
1 t<x.

Example 1.15. ug(z)=—1{;>0}. Then
u(z,t)=— Lios 12y
Shock path: z=—1t/2.
Here are some properties of the Cole-Hopf solution:
e u(-,t)€BVi(R) — difference of two increasing functions
o u(x_,t) and u(zry,t) exist at all x € R. And u(zx_,t) > u(x,t). In particular,
u(z_,t) >u(zrs,t)

at jumps. This is the Laz-Oleinik entropy condition. It says that chracteristics always enter a
shock, but never leave it.

e Suppose u(x_,t) >u(x,t). We have the Rankine-Hugoniot condidtion:

i

Velocity of shock = T E(u(;m_, t) +u(z_,1)).
Claim: If x is a shock location
Lo t) +ules 1) = ! " uo(y)dy.
2 ’ ’ a(zy,t) —a(z_,t) Jo_

at
(a4 —a_)(velocity of shock) = / uo(y)dy

final momentum

N ———’
initial momentum
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k
a(z,1) a(zh 1)
Figure 1.11. The “clustering picture”.

1.4 Entropies and Admissibility Criteria
u+D-(f(u)) = 0
u(z,0) = wup(x)

for x € R™, t > 0. Many space dimensions, but u is a scalar u: R™ x (0, o0) — R, f: R — R"™ (which we
assume to be C!, but which usually is C°°). Basic calculation: Suppose u € C2°(R™ x [0, 00)), and also
suppose we have a convex function 7: R — R (example: n(u) =u?/2)

4 /R (u)de= / () =~ / () Dal £ (w)da.

Suppose we have a function ¢: IR — R"™ such that
Daq(u) = n'(u)Da(f(u)),
ie.
Oz, q1(u) + O go(w) + - + Opgn(u) - = qltiz, + ¢3te, + - + Gl
= () fu, 40 () fhgs 40 () f,
Always holds: Simply define g; =n'(u) f{. Then we have
d

at Jen n(u)dr =— / i div q(u)dz = — /man” q(u)-n=0,
provided ¢(0) =0.

Example 1.16. Suppose u; + uu, =0. Here f'(u)=w. If n(u) =u?/2, ¢'(u) =n'(u) f'(u) =u? So, q(u) =
u3/3. Smooth solution to Burgers Equation:

’LL2 ’LLB
(%) ra 2o

(called the companion balance law) And
d u?

Consider what happens if we add viscosity

which is conservation of energy.

ui+ Dy- (f(uf)) = eAus,

(
u®(z,0) = ug(x).
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In this case, we have

%/R n(us)dz = / 7' (uf)ujde = — . Dw-(q(ug))dx—i—g/ ' (uf) Dy - Dyueda:

=0

= —6/ 0" (uf)|Duf)?dz <0
>0
because 1 is convex. If a solution to our original system is lim._.¢ u® of solutions of the viscosity system,
we must have

d
— dz <0.
dt/Rn n(u)dz <0

Fundamental convex functions (Kruzkov entropies): (v — k), (k—u)4, |u—k|.

Definition 1.17. (Kruzkov) A function u € L®(R™ x (0, 00)) is an entropy (or admissible) solution to
the original system, provided

1. For every ¢ € CP(R™ x (0,00)) with ¢ >0 and every k € R we have
| [ =kt sentu =00 = £(0) - Degldz ae > (1.3)
2. There exists a set F' of measure zero such that for t ¢ F, u(-,t) € L°(R"™) and for any ball B(x,r)

I t)— dy=0.
e Jaem |u(y, ) —uo(y)ldy

An alternative way to state Condition 1 above is as follows: For every (entropy, entropy-fluz) pair (n, q),
we have

Oin(u) +0x(q(u)) <O (1.4)

in D'. Recover (1.3) by choosing n(u) =|u—k|. (1.8)= (1.4) because all convex 1 can be generated from
the fundamental entropies.

(1.3) means that if we multiply by ¢ >0 and integrate by parts we have

—/OOO /n [pm(u) + Dy - q(u)]de dt 0.

Positive distributions are measures, so
615"7(“’) + aﬂc(‘](“‘)) = — My,

where m, is some measure that depends on 7. To be concrete, consider Burgers equation and n(u) = u?/2
(energy). Dissipation in Burgers equation:

i/ (u¥)dz = —2/ (u€)2u§—|—25/ uug da
dt Jr R R

= —25/ (u$)?dx.
R

But what is the limit of the integral term as € — 07 Suppose we have a situation like in the following
figure:

- e—0

Suppose Ut us

Figure 1.12.
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Traveling wave solution is of the form

where ¢=[f(w)]/[u] = (u= +u4+)/2. And

Integrate and obtain

For a traveling wave

independent of ¢! In fact,

dv
N2 _ /.
2/R(v)d:b—2/Rv —dxdx
Ut v Wl
2/uf |:_C(’U_U_)+<7_7):|dv

> 2(u_ — u+)3/0 s(1—s)ds= (’LL;’LH»)?),

—
~

6

where the step marked () uses the Rankine-Hugoniot condition. We always have u_ > u,. Heuristic pic-

ture:
t
J =shock set
U_
Ut
T

Figure 1.13.

The dissipation measure is concentrated on J and has density
(ug —u_)?
5 .

1.5 Kruzkov’s uniqueness theorem
In what follows, Q@ =R™ x (0,00). Consider entropy solutions to

u+ Dy (f(w) = 0 (z,t)eQ
u(z,0) = wug(x)

Here, w: Q— R, fR—R, M: ) Characteristics:

= llull (g

dx

dz;
_—= / _Z: . ) —
dt f (u) or dz f1(u), 7 1, N
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Let c. =supye[—ar,m | f/'(u)| be the maximum speed of characteristics. Consider the area given by

KR_{(x,t):|x|§R—c*t70§t<£}

Define r:= R/cs.

Kpg

Si=slice at fixed t

T

R

Figure 1.14.
Theorem 1.18. (Kruzkov, 1970) Suppose u, v are entropy solutions to the system such that

||v M.

letll e o 10l e () <

Then for almost every t1 <ta, t; €[0,T], we have

/St2 |u(x,t2)—v(x,t2)|d$§/ |u(z,t1) —v(x, t1)|dz.

Stl

In particular, for a.e. t€[0,T]

/St |u(z,t) —v(x,t)] </ |uo(z) — vo(x)|d.

0
Corollary 1.19. If up=vq, then u=wv. (Le. entropy solutions are unique, if they exist.)

Proof. Two main ideas:
e doubling trick,
e clever choice of test functions.

Recall that if u is an entropy solution for every ¢ >0 in C§°(Q) and every k € R, we have
| 1o 8) = Kl s —R)( ) = F0) - Dt >0
Fix y, 7 such that v(y, 7) is defined, let k =v(y, 7).
/Q (lu(z,t) = v(y, 7)|@:+sgn(u —v)(f(u) = f(v)) - Depldz dt > 0.
This holds for (y,7) a.e., so we have
/ / [as above]dz dtdydT > 0.
QJQ

Moreover, this holds for every ¢ € C°(Q x @), with ¢ > 0. We also have a symmetric inequality with ¢,
Dy instead of ¢y, Dyp. Add these to obtain

/ / [u(e,£) — v(y, )01+ 0r) +sgn(u —v)(F(u) = £(0)) - (Daip+ Dyp))da dt dy dr > 0.
QJQ
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This is what is called the doubling trick. Fix ¢ C C¢°(Q) and a “bump” function 7: R — R with > 0,
J g ndr=1. For h >0, let ny(r):=1/hn(r/h). Let

. r+y t+7 r—y t—7
1/)(1137tay77')—1/1< 2 ' 9 )Ah< 2 ' 9 )

where
An(z, 5) = mn(s) [T mn(z0)-
Approximate 1dentity in R” i
1 1
ot = §¢t “An+ 51#()%)1&
1 1
Yr = 51/%/\}1—51/)(/\}1)15
Adding the two cancels out the last term:
43 + Pr= /\h1/)t-
Similarly,
Do+ Dyp =Dy
We then have

(5 ) ) =t T ) st )00 = (00 D[ ey ar >0

A concentrates at x =y, t=71 as h— 0.
Technical step 1. Let h— 0. (partly outlined in homework, Problems 6 & 7)

/Q [luz,t) —v(z,t)[¢+sgn(u —v)(f(u) = f(v) - Daypldz dt >0 (1.5)

[To prove this step, use Lebesgue’s Differentiation Theorem.]
Claim: (1.5) = L' stability estimate. Pick two test functions:

t t

Test function a
Test function x

to

[51

Figure 1.15.
Let
t
ap(t) :/ Ny (r)dr.
Choose o
1#(907 t) = (ah(t - tl) - O‘h(t - t2))X6($7 t)'
where

Xe=1—ae(|z]| +cit — R+¢).
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Observe that
(xe)i=—0al(cs) <0, Dyxe=—al-
Therefore
(Xe)t + | Daxe| = — alew + ace. = 0.
Drop e:
[u—v]xe+sgn(u—v)(f(u) = f(v) - Dax
= vl L ] <ol D=0 (#)

— v

Substitute for 1 and use (#%#) to find

/ (ap(t —t1) —ap(t —t2))|lu —v|xdzdt =0
Q

= L! contraction. O

2 Hamilton-Jacobi Equations

us+ H(z, Du)=0

for x € R™ and t >0, with u(z,0) =ug(z). Typical application: Curve/surface evolution. (Think fire front.)

\T//f\\T/ Nj

Figure 2.1.

Example 2.1. (A curve that evolves with unit normal velocity) If C; is given as a graph u(z,t). If 7 is a
tangential vector, then

(1, uz)
V14u2 '
Let y =us(x,t). So the normal velocity is
Un = (07 y) v,
where v is the normal.
V= (ulﬂa — 1)

Vit
Then vn:1:>y/mz—1$ut:—\/m.
u+vV1+u2=0
H is the Hamiltonian, which in this case is \/rui In R™

ur+/1+|Dyul?=0,

a graph in R™.

Other rules for normal velocity can lead to equations with very different character.
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Example 2.2. (Motion by mean curvature) Here v, = — k (mean curvature).

= —tar

(1+uf)*?
vy, =— k. Then
— Ut _ — Uzz
Vitu2  (1+u)*?
So the equation is
(1+uz)’

which is parabolic. Heuristics:

smoothed corner

arc of a circle

preserved corner

Figure 2.2.
If (x,y) € Cy, then dist((x, y), Co) =t. Also
2 integrate 2
8tu+8z(u7) =0 e UH—%:O.

2.1 Other motivation: Classical mechanics/optics
cf. Evans, chapter 3.3
e Newton’s second law — FF=ma
e Lagrange’s equations
e Hamilton’s equations
Lagrange’s equations: State of the system z € R™ or M™ (which is the configuration space). Then
L(x,:t,t):\l; - U(z) .
kinetic pmal

Typically, T = %:v - Mx, where M is the (pos.def.) mass matrix.
Hamilton’s principle: A path in configuration space between fixed states x(to) and x(¢1) minimizes the
action

t1
S(T) :/ Liz, &, t)dt
over all paths z(t)=T. o

Theorem 2.3. Assume L is C?. Fix x(to), z(t1). If T is an extremum of S then

d (0oL oL
(%) E-o
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Proof. (“Proof’) Assume that there is an optimal path z(¢). Then consider a perturbed path that

respects the endpoints:
e(t) = z(t) +ep(t)
with ¢(tg) = ¢(t1) =0. Sicne z(¢) is an extremem of action,

5 (@(t) + (1)) lemo =0,

So
d M

= . L(z4ep, @ +ep,t)dt,

which results in

“ror, . oL, . .. B

0

h oL d (0L oL 4
“ 90(”[%‘5(%)}1”%@ =0
——
=0
Since ¢ was arbitrary,

d /oL oL
- %)+ 5o

‘r:(ylu-'-uyN)a yiERS'

Typical example: N-body problem

Then

1 N
_ a2
T—§ E_l mz|yz|
and U (x) = given potential, L=T —U. So -

AU
miyi,j—_ay_ij

2.1.1 Hamilton’s formulation

H(x,p,t)= sup (py— L(z,y,t))
yeR™

Legendre‘gransform

Then
OH
ap b)
. OH
p = = %a
called Hamilton’s equations. They end up being 2N first-order equations.

Definition 2.4. Suppose f:R™— R is convex. Then the Legendre transform is
f*(p) == sup (p-z— f(2))

zeR™
= max (...) if M—>oo as |z|— oo.
zeR™ |fE|

Example 2.5. f(x)= %m 2%, m>0 and x € R.

And
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Example 2.6. f(x) :%x - Mz, where M is pos.def. Then
. 1 -
f(p)=5p-M~'p.

Example 2.7. Suppose f(z)=12%/a with 1 <a < oo.

f*(p) :%, Wherei—kéz 1.

Young’s inequality and

imply

Example 2.8.

duality: edges « corners

Pi+1 Di+2
® ®
Figure 2.3.

Theorem 2.9. Assume L is convexr. Then L**= L.

Proof. see Evans. Sketch:
e If Ly is piecewise affine, then L}* = L) can be verified explicitly.

e Approximation: If Ly — L locally uniformly, then L} — L* locally uniformly. O

Back to Hamilton-Jacobi equations:
ug+ H(x, Dyu,t)=0.
H is always assumed to be
e C%R"xR"x[0,00)),
e uniformly convex in p= D,u,

e uniformly superlinear in p.
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2.1.2 Motivation for Hamilton-Jacobi from classical mechanics

Principle of least action: For every path connecting (zo,to) — (21, 1) associate the ‘action’

S(T) = /F L(z, &, t)dt.

L Lagrangian, convex, superlinear in 2. Least action = Lagrange’s equations:

z €R"=n 2nd order ODE.

_E[

d

Theorem 2.10. (“Theorem”) (2.1) is equivalent to

¢ =D,H, p=—D,H.

Note that those are 2n first order ODEs.

Proof. (“Proof”)

Maximum is attained when

DL(z,4,t)] + DL =0

H(z,p,t)=max (vp— L(z,v,t)).

veR™?

p:D'UL(I7’U)t)7

and the solution is unique because of convexity.

H(I,p,t):’U(.I,p,t)p—L(I,’U({E,p,t),t),

where v solves (2.3).

Thus & = D,H. Similarly,

Note that

Thus, p=— D,

H.

D,H = v+pDyw—D,L-Dyv
= v+ (p—DyL)

Connections to Hamilton-Jacobi:

we use (2.1)

———
=0Dbecause of (2.3)

Dy

= pDv—D,L—D,LD,v

= —D,L+ [p—D,L]

D, v.

=0 because of (2.3)

e (2.2) are characteristics of Hamilton-Jacobi equations.

o If u=S(T), then du = pdz — H dt. (cf. Arnold, “Mathematical Methods in Classical Mechanics”,
Chapter 46)

o _
o _

— H(z,p,t); Dmuzp} = w+ H(z,Du,t)=0.

Important special case: H(z,p,t) = H(p).

Example 2.11. u; —

1+|Dyul*=0. H(p)=—+/1+|p|*.

Example 2.12. ut+%|Dwu|2:O. H(p)=%|]9|2-

{

2 =D,H(p) -

p=0

2(0) + DpH (p(0))

—

straight line characteristics!

23

(2.2)

(2.3)
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2.2 The Hopf-Lax Formula
ur+ H(Dyu)=0, u(z,0)=uo(zx) (2.4)

for z € R", t > 0. Always, H is considered convex and superlinear, L = H*. Action on a path connecting
x(to) =y and z(t1) =a:

/tt Lz, &, t)dt = /tl L@ (t)dt > (1 —tO)L(i :z))

to

Using Jensen’s inequality:

121 t1 _
1 / L(gﬁ)dt}[,( 1 / jdt)_L<M)_
t—to Jy, ti—to Jy, t —to

u(z,t)= min {tL<x;y>+uo(y)]. (2.5)

Hopf-Lax formula:

yeR™

Theorem 2.13. Assume ug: R™ — R is Lipschitz with Lip(u(-,t)) < M Then u defined by (2.5) is Lips-
chitz in R™ x [0,00) and solves (2.4) a.e.. In particular, u solves (2.4) in D'.

(Proof exacty follows Evans.)

Lemma 2.14. (Semigroup Property)

w(z,t) = min {(t—s)L(%) —l—u(y,s)]

yeR™
where 0 < s <t.

Proof.
(z,1)
Figure 2.4.
rT—2 T—Y Y—=2
t  t—s s
So

S0 ()
(552) < (58) ()

u(y,s)—sL<¥>+uo(z).

Since L is convex,

Choose z such that

The minimum is achieved because L is superlinear. Also,

Juoly) ~ uo(0)] _
ly| h
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because ug is Lipschitz.

But

Thus

for all y € R™. So,

8
|
<
~_
+
=
<
|
»
S~—
| I

u(a, ) < min {(t - S)L<

To obtain the opposite inequality, choose z such that

u(x,t)_tL<$;Z) +ug(z).

Let y=(L—s/t)z + (s/t)z. Then
)+ (=9 L( 572 = ulyos) -2 25

R U )

= u(y,s)_<uo(z)+sL<%))+u(x,w

N
£
8

=

That means
min [(t - @L(%) Fuly— s)] <u(z,t).

yeR"

Lemma 2.15. w:R" x [0,00) = R is uniformly Lipschitz. On any slice t = const we have

Lip(u(-,£)) < M.

Proof. (1) Fix x,Z € R™. Choose y € R" such that
ulw,t) = tL(I_y)—I—uo(y),
(@ f) = tL(f;y>+uo(y).

Then

u(€,t) —u(x,t)= inf {tL(I_Z>—|—u0(z)]—{tL(I_y>—|—uo(y)].
zeR"® t t
Choose z such that
T—z = -y
Sz =2—-z+y.
Then

u(E,t) —u(z,t) uo( —z+y) —uo(y)

<
< M|z —z|,

where M =Lip(ug). Similarly,
u(z,t) —u(z,t) < M|z —Z|.

25
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This yields the Lipschitz claim. In fact, using Lemma 2.14 we have

Lip(u( -,t)) < Lip(u

for every 0 < s < t, which can be seen as “the solution is gett
(2) Smoothness in t:

Y

u(z,t) = min [tL<¥> —|—u0(y)] <tL(0)+ug(z) (choose y=1).

Then
u(x,t) — uo(z)
t

luo(y) —uo(@)| <Mz —y[ = wuo(y) >uo(z) - M|z —yl.

Thus

By (2.6), tL<$;y)+“0(y)>tL(x;y)

('73))

ing smoother”.

< L(0).

+ug(z) — M|z —y|.

e, =) > minfer(£5L) by

Y

= —tmax [M|z]| - L(z)]
zeR™

- —tmax[ max w-z—L(Z)}

z€R™
= —1 max

we B(0,M)

max [w-z — L(2)]

w€B(0,M) ze R™
= —t max H(w).

weB(0,M)
Now

_ H(w) <
w Erg(a(i(M ) (W) t

u(z,t) —uo(z)

< L(0),

SECTION 2

(2.6)

where both the left and right term only depend on the equation. = Lipschitz const in time < max (L(0),

max, e p(o,m) H(w)).
(Feb 22) Let Q :=R" x (0, c0).

Theorem 2.16. u satisfies (2.4) almost everywhere in Q.

O

Proof. 1) We will use Rademacher’s Theorem, which says u € Lip(Q) = w is differentiable a.e. (i.e., in

Sobolev space notation, W>°(Q) = Lip(Q).)

2) We'll assume Rademacher’s Theorem and show that (2.4) holds at any (z, t) where u is differen-

tiable. Fix (z,t) as above. Fix ¢ €¢ R™, h>0. Then

u(x+hq,t+h)

Y

Choose y=x. Then
u(x+hq,t+h) < hL(

and

u(x+hq,t+h) +u(x,t—|—h)—u(:z:,t)

(Lcmrn:a 2.14) min {hl(W) +u(y,t)]

q) +u(z,t)

h h
So, if we let h \, 0, we have D u- g+ u; < L(g). Then

< —[Dyu-q—L

since ¢ is arbitrary, optimize bound to become

< L(q).

(9],

ur < — H(Dgu).
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[Quick reminder: We want
uy=— H(Dyu).

We already have one side of this.]| Now for the converse inequality: Choose z such that

u(z,t) :L(””;Z) +ug(2).

(2,1)
(y,s)

(2,0)

Figure 2.5.

Fix h >0, let s=t—h. Then

yz(l—%)z—i—%x—hz—i—(l—%)x

u(y,s) = rrii/n{sL(y_sZ/)—i—uo( )]<3L( ; >+u0()
= —u(y,s) > {@(%)Jruo(z)].

and observe

to find

w(z,t) —uly,s) > tL(mzz)+u9/(z)_[s/:<¥)+u0/(z)}
:>u(x,t)—u(y,s) > hL(x;Z)
w(z,t) —u (x—ﬁ(:c—z) x_z)

= L

h

ut—i—DIu(:E;Z) L(

u L(az—z

Let A \,0. Then

> o
)
)-

2.3 Regularity of Solutions

Consider again surface evolution: u; — /1+|D,u|?> = 0 (note the concave Hamiltonian). The surface
evolves with unit normal velocity. So far, Lip(u(-,t)) <Lip(u(-,s)) for any s <t.
“One sided second derivative™

Definition 2.17. (Semiconcavity) f:R"™— R is semiconcave if 3¢ >0

fl@+2)=2f(2) + flz—2) <CJz[*
for every x,z € R™.
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oK \ / NoT OK\f\/
VAN

f

Figure 2.6. Semiconcavity.

In the example, u is semiconvex (because H(p)=—+/1+ |p|?, so signs change).

Definition 2.18. H is uniformly convex if there is a constant 6 >0 such that

§'D*H(p)€ > 0|2
for every p, £ € R™.

Theorem 2.19. Assume H is uniformly convex. Then

u(z+2z,t) = 2u(z,t) +u(zr —2,t) < %|z|2 (Vx e R™, ¢t>0).
Proof. 1) Because H is uniformly convex, we have

+ 1 1 0
H<M> <5H(p) +5H(p) + gl pal?

2 )72 2
So from C?)qnvexity from uniform convexity
1 + 1
S + L) < L( 252 )+ Gl — 2.7

To see this, choose p; such that H(p;) = pig; — L(¢;). Then

%(H(pl) +H(p2)) = %(plfh + paga) — %(L((h) + L(q2)).

This yields (2.7).
2) Choose y such that

u(x,t)_tL(x;y) +uo(y).

By the Hopf-Lax formula,

w(@+2,8) = 2u(z, ) +u(z —2,8) < tL<w> +2u0(y) — 2tL<”” — y) ~ 2uo(y)

t t
. 1 (fx+z—y)\ T—y 1 (ex—y—=z2
= () () ()
@D 122?11
< Sl Peniad a2
S 27 T
O
2.4 Viscosity Solutions
(cf. Chapter 10 in Evans) Again, let Q:=1R" x (0,00) and consider
ug+ H(Dyu,2) =0, u(x,0)=up(x). (2.8)

Suppose
L. H(p,z)+ H(p),

2. There is no convexity on H.

Basic question: The weak solutions are non-unique. What is the ‘right’ weak solution?
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Definition 2.20. (Crandall, Evans, P.L. Lions) v € BC(R" x [0,00) is a viscosity solution provided
1. u(x,0) =up(x)
2. For test functions v e C*(Q):
A) If u—v has a local mazimum at (xo,to), then v+ H(Dzyv,x) <0,
B) if u—wv has a local minimum at (xg,to), then vi+ H(Dyv,z) > 0.

Remark 2.21. If u is a C* solution to (2.8), then it is a viscosity solution. Therefore suppose u — v has a

max at (xo,tp). Then

O(u—v)=0 Dz(u—v)=0
Oiu = O D,u=Dv at (zo, o)
Since u solves (2.8), vi + H(Dgv, )| (2,,t,) = 0 as desired.

Remark 2.22. The definition is unusual in the sense that ‘there is no integration by parts’ in the defini-
tion.

Theorem 2.23. (Crandall, Evans, Lions) Assume there is C >0 such that
|H(x,p1) — H(x,p2)| < Clp1—pol
[H (1, p) = H(z2,p)| < C(1+]pl)lxs — 2|
for all x e R™ and p e R™. If a vicosity solution exists, it is unique.

Remark 2.24. Proving uniqueness is the hard part of the preceding theorem. Cf. Evans for complete
proof. It uses the doubling trick of Kruzkov.

What we will prove is the following:

Theorem 2.25. If u is a viscosity solution, then uy + H(Dyu, x) = 0 at all points where u is differen-
tiable.
Corollary 2.26. If u is Lipschitz and a viscosity solution, then us+ H(Dyu,z) =0 almost everywhere.

ademacher

Proof. Lipschitz " = differentiable a.e. 0

Lemma 2.27. (Touching by a C! function) Suppose u: R" — R is differentiable at (zo,t0), then there is a
C! function v:IR"™ — R"™ such that u —v has a strict mazimum at (xq,to).

Proof. (of Theorem 2.25) 1) Suppose u is differentiable at (xg, tg). Choose v touching u at (xg, tg) such
that u — v has a strict maximum at (z, to).
2) Pick a standard mollifier 7, let 7. be the L! rescaling. Let v =1.*v. Then

€

v — v
v — v uniformly on compacts as € — 0.
D¢ — Dyv

Claim: v — v° has a local maximum at some (z, t.) such that (z, t.) — (xo, to). (Important here: strict
maximum assumption.)

Proof: For any r, there is a ball B((xo, to), ) such that (v — v)(zo, tg) > maxsp (u — v). So, for & suffi-
ciently small (u — v®)(zo, to) > maxgp (u — v°). Then there exists some (x, t.) in the ball such that u — v®
has a local maximum. Moreover, letting r — 0, we find (2., t.) — (2o, to).

(3) We use the definition of viscosity solutions to find

vi+ H(Dyvf,z) < 0 at(xe,t.)
:>’Ut+H(Dm’U,{E) < 0 at (Io,to).

But v — v is a local max = D,u = D,v, u;=v;. So,

us+ H(Dyu,z) <0.
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(4) Similarly, use v touching from above to obtain the opposite inequality. O

Digression: Why this definition?
e Semiconcavity
e Maximum principle (Evans)

If H were convex and H(p), once again:

N

u
semiconcave not semiconcave

Figure 2.7. Semiconcavity

Proof. (of Lemma 2.27)

Lo

Figure 2.8.

We want v € C! such that u — v has a strict maximum at 9. We know that v is differentiable at zg
and continuous. Without loss, suppose xo=0, u(zq) =0, Du(xz) =0. If not, consider

a(x) =u(z + x0) —u(xo) — Du(zo)(x — 20).
We can write u(z) = |z|p1(z), where p1(x) is continuous and p;(0) =0. Let
p2(r) = max |p1(2)]-
p2: [0, 00) — [0, 00) is continuous with p3(0) =0. Then set

2|z|

v(z)= /m p2(r)dr — |z |2

Clearly v(0) =0,
2z T
v(0)=0,Dv = 7P2(2|$|) —p2(|z]) — 22

|z

So, it is continuous and Dv(0) =0. (just check) O

3 Sobolev Spaces

Let Q CIR™ be open. Also, let D*u be the distributional derivative, with o a multi-index. 9%u shall be the
classical derivative (if it exists).
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Definition 3.1. Let k€N and p>1. Let
WkP(Q):={ueD" D e LP(Q),|a|<k}.
If ue WkP(Q), we denote its norm by

lully o= 3 1D%ull o

la|<k

Definition 3.2. WFP(Q) is the closure of D(Q) in the || - ||

k. ps2~TOTTIL.
Proposition 3.3. W*?(Q) is a Banach space.
Proposition 3.4. Suppose u € Wy'*(Q). Define

_o o fu(z) zeQ,
“(x)_{o ¢ Q.

Then i@ € Wy 'P(R™). (Extension by zero for Wy'?(Q) is OK.)

Choose a standard mollifier ¢ € CZ°(R™) with ¥ >0, supp(¢) C B(0,1), [, ¢ dz=1. For >0, let
1
Ye(x) ::E—ndj(x/s).

Theorem 3.5. Suppose u € WHP()). For every open Q' C C ), there exist ug, € C°(Q') such that

[|eer — u||17p;9,—>0.

Proof. Let gg= dist(ﬁ, 0%2). Choose e, \, 0, with g5 <e&p. Set
up(T) = e, ¥ u

for z € Q'. We have D%y, = D*),, * u = g, * D%, for every a. Moreover, for |a| <[, we have D%y —
D%y in LP(SY). O

Typical idea in the theory: We want to find a representation of an equivalence class that has classical
properties. Ezample: If f € LY(R"), set

= lim 1
p@=tim g [ iwa

Theorem 3.6. Suppose uc€ WHP(Q), 1<p<oo. Let Q' CCQ.

1. Then u has a representative u, on ' that is absolutely continuous on a line parallel to the coordi-
nate axes almost everywhere, and

Oz us=Dyu a.e. foranyi=1,....n.
2. Conversely, if u has such a representative with 0°u* € LP(Q'), |a| <1, then ue WhP(Q).
Why do we care? Two examples:
Corollary 3.7. If Q is connected, and Du=0, then u is constant.
Corollary 3.8. Suppose u,v € WHP(Q). Then max{u,v} and min{u,v} are in WHP(Q), and we have

Du on{uz>v},
Dv on{u<v}.

Dmax{u,v}:{

Proof. Choose representatives u, v.. Then max {u,,v.} is absolutely continuous. O
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Corollary 3.9. uy=max {u,0} € WhP(Q). Likewise for u_.
Corollary 3.10. ue WhP(Q) = |u|e W1P(Q).
Proof. |u|=max{us,u_}. O

Proof. (of Theorem 3.6) 1) Without loss of generality, suppose Q2 =R"™, and u has compact support. We
may as well set p=1 because of Jensen’s inequality. Pick y € Ce°(R"™) with x =1 on '’ and consider 4 =
xu, and extend by 0.

2) Choose regularizations ug such that

a) supp(ug) C B(0, R) fixed,
b) [Jux —ull, , < 27k,
Set
G= {x eR™ klim ug(x) exists}
and

for z € G. We’ll show that |[R™\ G| =0. Fix a coordinate direction, say (0, ...,0,1). Write z € R" = (y, =)
with y € R"~ L Let
filn) = 32 [ 10—l (. 2)da,

la|<1

Also let

:Z fi(y)
k=1

Observe that
LU B M DRLCTSSIES SITSETINES 3F =
]Rn—l 1,1 2k
\a\<1 k=1
Then f <oo for ye R"~! a.e. Fix y s.t. f(y) <oo. This implies
Jim fr(y)=0.
Let gi(t) =ui(y,t) for t € R. Then

t
9(t) — g (B) = / Do (i1 — 1) (9> ).
Thus o

t
900~ 910201 < [ 100, (w1 = i) ()l < i)
uniformly in ¢. Thus -

lim gi(t)= lim ui(y,t) =u.(y,1)

k— oo — 00

is a continuous function of ¢t. We may write

t
alt) = [ gianda,
oo N~
! | (Cauchy sequence in L'(R))
u«(y,t) = an L! function h.

Thus
¢
ux(y,t) = / h(zy)dzy,

for every t € R. Thus u, is absolutely continuous on the line y = const. O
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Theorem 3.11. (Density of C*°(Q)) Let 1< p<oo. Let
Sp:= {u: ueC>®(Q), ull, , < oo}
Then S, =W1P(Q).

Remark 3.12. The above theorem is stronger than the previous approximation theorem 3.5, which was
only concerned with compactly contained subsets ' C C Q.

Proof. (Sketch, cf. Evans for details) Use partition of unity and previous approximation theorem. The
idea is to exhaust by Qy C Q1 for which Uiozl Q, for example

Q= {z e Q:dist(z,00) > 1/k}.
Choose partition of unity subordinate to
Ge=U\ U1, Q=0

and previous theorem on mollification. O

3.1 Campanato’s Inequality

Theorem 3.13. (Campanato) Suppose u € Li,.(Q) and 0 <a < 1. Suppose there exists M >0 such that
][ |lu(x) —ap|de < Mr®
B

for all balls BC Q. Then ue C%%(Q) and
0SCR(z,r/2) U< C(n, ) M1,
Here,

[B(w, )| =—=r
1

T, )l = "
e = 57 [ vy = fu(v)ay,

oscgpu= sup (u(x)—u(y))= sup |u(z)—u(y)|.
z,yeB z,y€B

and finally C%% is the space of Hélder-continuous functions with exponent .
Proof. Let x be a Lebesgue point of u. Suppose B(z,r/2) C B(z,r) CQ. Then

1
|B(I7 T/2)| B(z,r/2)

;/ |u_ﬂB(z,r)|dy
|B(x,7/2)| JB(w,r/2)

S — |t — gz m|dy
[B(z,7/2)] J(e.m) (=)

2"][ |u —Up(z,m|dy <2™- Mre.
B(z,r)

|ﬂB(z,r/2)_aB(z,r)| = u(y) _ﬂB(z,r)dy

N

N

N

Choose z =z and iterate this inequality for increasingly smaller balls. This yields

k
_ _ " A\
@B (a2 =~ TB,n| < 2"M Y (7)
i=1
< CMre
independent of k. Since z is a Lebesgue point,

kli}r{.lo UB(x,r/2%) = U(T).
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Thus
|’U,(.’I,') - ﬂB(m,r/2)| < C(?’L, Oé)]\f?‘oz7
which also yields

lu(x) =g, < |u(x) =8B r/2) + UB@,r/2) = UB(z,)
< C(n,a)Mre.
For any Lebesgue points z, ¥y s.t.
B(xz,r/2)C B(z,7) and B(y,r/2)CB(z,r),
this inequality holds:
|u(z) —u(y)| < C(n, ) Mr*.

This shows u € C9°. O

3.2 Poincaré’s and Morrey’s Inequality

To obtain Poincaré’s and Morrey’s Inequalities, first consider some potential estimates. Consider the Riesz
kernels

Lo(z) = |z

Lo+ [)(z) = / I,

Re [T =y

for 0 < o <n and the Riesz potential

In R™, |z|*~ "€ Li,, for 0 < a <n, but not a=0.
Lemma 3.14. Suppose 0< || <oo, 0<a<n. Then

/ |z —y|* "dy < C(n, 04)|Q|‘3‘/"7
Q

where
a/n
_ l—-a/nn
C(n,a)=uw, —

Proof. Let x €2, without loss x=0. choose B(0,r) with r > 0 such that |B(0,r)| = ||

/Iyl"‘"dy =/ Iyla‘"der/ ly|*~"dy,
Q QNB Q\B

/Iyla‘"dy / Iyla‘"der/ ly|*~"dy.
B QNB B\Q

We know
/ ly|* "dy < T“‘"/ 1dy
Q\B Q\B
= TO“”/ 1dy
B\Q
< / lylo—rdy
B\Q
Thus,
a—n a—n " a—n n— Wn o
/Iyl dy < / ly| dy:wn/ pmp T dp ==L
Q B 0 «a
Then

Wn (n|Q|)1/n
Zrt=r= — .
a

Wn
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So,
l—a/n,a/n
Wno_ 07O 0 am
« o
O
Theorem 3.15. Let 1< p<oo. Suppose |Q] <oco and f € LP(Y). Then,
||Ilf||LP(Q) <Cll|f||Lp(gl)7
where
C1=w71;1/nn1/n|9|1/".
Recall
I f(z :/ W 4, seq
0= J syt
Proof. By Lemma 3.14,
/|$_y|1_"dy<cl-
Therefore &
p 1/p 1 1-1/p
It /lf d<</ |f()|d) (/_)
it ey S ) Uy
1
- Cll/p</ W )/P_
o lz—y[" T
Therefore
Iif(z)|Pdz < CP~ 1/ — Ly da
/z|1 @) QJa Ix—yI" ]W—/
< O f1ILCt
= CY|fIL
a

Theorem 3.16. (Poincaré’s Inequality on convex sets) Suppose 2 conver, |Q] < co. Let d = diam(Q).
Suppose u€ WhHP(Q), 1<p<oo. Then

lu(z) — dq|Pdz < C(n, p)dp][ |Dwu|Pdx
Q Q

Remark 3.17. Many inequalities relating oscillation to the gradient are called Poincaré Inequalities.

Remark 3.18. This inequality is not scale invariant. It is of the form

1/p 1/p
< |’U,($) _aﬂ|pd$> gcunivcrsal' d < |Du|de) .
Q Tovah N\ ©

Corollary 3.19. (Morrey’s Inequality) Let u€ WH1(Q) and 0<a < 1. Suppose there is M >0 s.t.
/ |Duldz < Myn—1te
B(z,r)

for all B(xz,r) C . Then ue C%*() and
05CB(z,mu<CMr®, C=C(n,a).

Proof. For any B(x,r) C ), Poincaré’s Inequality gives

][|u—ﬂ3|d:17§0r][ |Du|:w€—r/ |Du| < C Mre.
B (=) Js

Then use Campanato’s Inequality. |
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Proof. (of Theorem 3.16) Step 1. Using pure calculus, derive

) —a| < L f e

dy.
n | goler—

Let |w|=1 and

0(w) =sup {z + tw € Q},
t>0

which can be seen as the distance to the bounary in the direction w. Let y = 2 + tw and 0 < ¢t < §(w).
Then

lu(z) —u(y)| = IU(tx)—U(IHW)I
< / |Du(z + sw)|ds
0
S(w)
< / |Du(z + sw)|ds.
0
Since
u(e) = =u(o) = f_utu)dy= {_u@)=u(v)ay,
we have @ @
lu(z) —a| < IU( ) —u(y)|dy
(w)
= —/ / Ju(r) —u(z + tw)[t" ~1dt dw
Q Sn— 1
1 S(w) S(w)
< = |Du(x + sw)|dst™~1dt dw
Q Sn— 1
< L(/ / |Dua:—|15w) n=1ldg dw) d—
Q gn-1 sn n’
considering 5)
max/ t"~1dt = max ) :d—.
. . . w 0 w n n
Rewrite the integral using
s"ldsdw=dy
as
nJ |x— I"
Recall that
def
np® [ LUy
o lz—yl

Using Theorem 3.15 on Riesz potentials, we have

. ar p< [Du(y)| >p
u(z) —u |Pdx < _ — % d dx
Q| (=) | / <n|Q|> o lr—yl"! Y

d’ll
< p p
s (mm)C/'D“ JIdy

_ d” 1-1/n_1/n n
o=l ey < qigren " n IR DU g

anel— l/n _(wndn)l/"
(n‘n‘)lfl/ni n|Q|

with Cy =w. = "n!/7Q|*/" Thus

Now, realize that <" is just the ratio of volumes of ball of diameter d to volume of ||, which is univer-

nd™
n|Q|
sally bounded by the isoperimetric inequality. So, the inequality takes the form

Hu_a”Lp(m< C(n) N d, '”DUHLP(Q)' 0

universal length
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3.3 The Sobolev Inequality

The desire to make Poincaré’s Inequality scale-invariant leads to
Theorem 3.20. (Sobolev Inequality) Suppose u € CL(R™). Then for 1<p<n, we have

HUHLP*(Rn) g O(TL?p)HDu”LZD(Rn))

where

Remark 3.21. This inequality is scale-invariant, and p* is the only allowable exponent. Suppose we had

</n |u(x)|qu)1/qgc(n,p,q)(/n |D’UJ(I)|de)1/p

for every u € CL(R™). Then since uq(x) =u(z/a) for a >0 is also in R™, we must also have

</n |ua(a:)|ng;>l/q < C(n,p7q)</n |DUQ(x)|de)1/p
) < C(ﬂ,p,q)(%/ﬂ{n |D“(%)|pdx>l/p

<:><a"/n |u(ac)|qu>1/q < C(n,p,q)(Z—Z/Rn |Du(:c)|pd:v)l/p.

a™'P
a9l < ——CllDul| L.

We then have

Unless
a4 =qn/P-1
we have contradiction: simply choose a— 0 or a«— 0o0. So we must have
1 1 1 np def

—=——_ 0 =

g p n n—p

*

Remark 3.22. Suppose p=1. Then the Inequality is

ot e gy < Call Dt

R")*
Consider 1* = ni T The best constant is when v =1p(g,1). Then
LHS = < [R B(Oyl)(x)dx> =|B["" = (=) "
And,
RHS = |Du(z)|dz = (n — 1)-dimensional volume = w,.

Rn
So, we have

n—1

()" <

This gives the sharp constant. Thus it turns out that in this case the Sobolev Inequality is nothing but
the Isoperimetric Inequality.

Proof. u(a:):/ Diu(x1, ooy Tl 1,y Yk T 1y -+ Lo ) A Y- (3.1)

Notation: £x:=

Then
|u(x)|</ |Dyu(dy)dys, k=1,...,n.
R
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First assume p=1, p*=1*=n/(n—1), n>1. Then

n 1/(n—1)
jua)|/ D < H( [ ipatain)

We need a generalized Hélder Inequality:

/R P o Fnda il L ol ol Fll,

provided

1 1 1
—+ =4+ —=1
. b1 P2 Pm
In particular, we have

1/(n—1) 1/(n—1)
/fl/n D 1/ f;“"”dxg(/ f2> (/ fm) ,
R R

choosing pa = ps=---p, =n — 1. Progressively integrate (3.1) on 1, ..., z,, and apply Holder’s Inequality.
Step 1:

1/(n—1)

1/n=1)
/ lu(z)[™ "~ Ddz; < </ | Dyu(ay |dy1) / /Dku(:ﬁk)dyk day
R R 5 | /R

doesn’t depend on x1 treat as fr(z1)

1/(n—1) n 1/(n—1)
< </ |D1U(f1)|dy1) </ / |Dku(a§k)|dykdx1> )
R k=2 \/RJR

Step 2: Now integrate over xa:

1
/ / lu(z)[TTdaydzs < ( / / |D2u(£2)|dx1dy2>nl
R JR R JR

doesn’t see o

x A ( /lR Dlu(fl)dy1>nlllﬁ3 < /R A |Dku(:ﬁk)|dykdx1>nlldx2

Use Holder’s Inequality again. Repeat this process n times to find

n _r
n—1
P 1dx< / Dru dx>
[ s <1 ([ 1w

n-t n kS
(/ |u(:1c)|n1d;v) "< H (/ |Dku|d:v)n
" kil "
Z l/ |Dyu|da,
n Jgrn
k=1

a1+ +an
e

or

where we used
Var-an <

Since

|Dul=/[Druf? + - +|Dyul?,
we have by Cauchy-Schwarz

1 @ 1
— |Dyu| < —=|Dul.

Therefore,

[[u

1
1* < %”DUHLI
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For p=£ 1, we use the fact that
DuY=~u""'Du

for any ~y. Therefore we may apply the Sobolev Inequality with p=1 to find

n—1
U, n 1 Yy _
|u|7 nldx> < — |Du”|dr = —= |u|" =Y Duldz
n ﬁ R7l ﬁ Rn

1 1

o / (v=1)p’ )P/(/ p )p

< U dx Dul|Pdx ) .
\/ﬁ( n | | R" | |

Choose v that

n
v o—g=0-1
This works for 1 < p<n and yields
n—1 ,
el < = 5 PHlI Pl s
where
* np
P, T
as p—n.

Theorem 3.23. (Morrey’s Inequality) Suppose u€ WHP(R™), n<p<oo. Then u€ Cﬁml "/p(

0SCRB(z,r)U < Crl_"/p||Du||Lp.

In particular, if p=o00, u is locally Lipschitz.

Proof. Poincaré’s Inequality in Wﬁ)’cl reads

][ |u—ﬁ3|d:17§0r][ |Du|dz.
B(z,r) B(z,r)

Therefore, by Jensen’s Inequality

1/p
][ |lu—aglde < Cr ][ |Dul|Pdx
B(z,r) B(w ™)

OT(Wn,r.n)l/p” ||Lp

n

Crl_"/pHDuHLp.

N

Now apply Campanato’s Inequality.

3.4 Imbeddings
What have we obtained?

L forl<p<n

e

WLP(R?) ——> ? for p=n
Cloc (]R”) for n < p < oo.

Figure 3.1.

R™). And

39

O
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Typical example where we need W™ Suppose u is a map R™ — R"™ (We are often interested in
det(Dw).) Especially care about

/ det(Du)dx
for Q € c R™. Then @

det(Du) = Z (= 1)1 6y Un, o,
So, we need u; ;€ L"(§) or ue Whm.
Theorem 3.24. (John-Nirenberg) If ue WH™(R"), then u€ BMO(R"™), where
[ulmo = SUP][ lu —up|dx
and BMO(R") := {[u]gmo < o0}. BB

For a compact domain,
L'—H' LPC..-C L*cBMO,
where H! is contained in the dual of BMO.

Definition 3.25. A Banach space B is imbedded into a Banach space By (written By — Bs) if there is
a continuous, linear one-to-one mapping 1: By — Bs.

Example 3.26. W1P(R") — L (R") for 1< p<n.
Let  be bounded.
Example 3.27. W;?(Q) — CO'=/?(Q) for n < p < oo.
Example 3.28. Wol’p(Q) —L9Q) for 1<p<n and 1< ¢q<p*, where we used
oy < Il 12117
which is derived from Hoélder’s Inequality.

Definition 3.29. The imbedding is compact (written By < By) if the image of every bounded set in By is
precompact in Bo.

Recall that in a complete metric: precompact < totally bounded.

Theorem 3.30. (Rellich-Kondrachev) Assume 2 is bounded. Then
1. WhP(Q)— LYQ) for 1<p<n and 1< q<p*.
2. WyP(Q) — C%Q) for n < p< oco.

Remark 3.31. We only have strict inequality in part 1. (That is, ¢ = p* does not work.)

Proof. Of part 2: By Morrey’s Inequality, W?(Q) — C%'~"/?(Q). Now apply the Arzela-Ascoli the-
orem.

Of part 1: We have to reduce to Arzela-Ascoli. Let A be a bounded set in Wol’p(Q). We may as well
assume that A C C}(9). Let ¢ > 0 be a standard mollifier. Consider the family

Ac={usveued}, vy =—o(L)

Claim: A. is precompact in C°(Q).
Proof: We must show A, is uniformly bounded, equicontinuous.

ua<w>=ain/ﬂ w(””;y)u@)dy:}n . w($;y>u<y>dy.
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Therefore,
191l
lue(z)| < on ||u||L1(Q)'
9]l | y1-1
§ €—n|Q| /pHu”LP(Q)
< M||1/}||OO|Q|1—1/;D
S —En .
Similarly,
1 T —
Dus(x):w/kn D1/)< - y)u(y)dy
Thus

[Duc()| < g 1D 2.
The claim is thereby established.
In particular, the claim implies A, is precompact in L*(€). (Indeed, if u* is convergent in C°(Q), then
by DCT, u? is convergent in L'(Q).
We also have the estimate

u() = we()] - -

2 oY)t - ute - myas

z=y/e,supp(¥)CB(0,1)

[ e - e =)
B(0,1)

By the fundamental theorem of calculus, the subterm

1 1
u(a:)—u(x—sz):/ iu(a:—stz)dt§/ Du(z —etz)- zdt.
o dt 0
Then
Z

elz|
1/1(2)/0 |Du(x —tw)|dtdz, w= Ek

u(z) — ue(a)] < /

B(0,1)
(We use ¥ >0 and differentiability on a line.) Therefore,

elz|
1/)(2')/ |Du(x — tw)|dx dtdz
0 Q
9

< 1Dule | o VO | aa

< ellDull g <eMIQP,

|u(r) — ue(z)|dz < /

Q B(0,1)

where

(*):/Q|Du(x—tw)|d:1c</Q|Du(x)|dx.

using u € C} 4 zero extension. Summary:
e A, precompact in L'(2) & totally bounded,
e Every u € A is e-close to u. € A..
Therefore A is totally bounded in L.
This shows that A is precompact in L'(). If 1 < ¢ < p*, we have

[l = vl o < lu—=u| pyq)llu —uf <&, @Ml

.o <
@S Nl
just proved gopdlev’s

where

Therefore A is totally bounded in L?(£2). O
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BVCWl’l Wl,p Wl,n Wl,p Wl,oo
v BMO co1—n/p Lip(Q)
Also — L1 \Ij
(0
Figure 3.2.

4 Scalar Elliptic Equations

Reference: Gilbarg/Trudinger, Chapter 3 and 8
The basic setup in divergence form:

Lu = div(ADu+bu)+c-Du+du
= Di(aiijju —+ bZ’UJ) —+ CZ'DZ'U + d u,

where A: Q —M"*" b, c: Q) —R", d: Q2 — R. Main assumptions:

1. Strict ellipticity: There exists A >0 such that

ETA(z)E = M€
for every z €2, £ € R™

2. A)b,c,de L™(Q).

There exists A >0, v >0 such that

def
)

141l = | VICATAY| <A

L>=(Q
and

1
Ul + el + el ) < v

Motivation: Typical problem is to minimize
1u] :/ E(Du)dz,
Q

where F is “energy”. If u is a minimizer, we obtain the Euler-Lagrange equations as follows:
d
dt Jq

= / DE(Dw)-Dvdx.
Q

s tollimo =

a4 E(D(u+tv))d:v|t:0:/ﬂ DE(D(u+tv))- Dvda

Necessary condition for minimum:

DE(Du)-Dvdx=0
Q

for all test functions v. This “means” that
D(DE(Duw))-vdx,
Q

which is the term that we had in the first placenamely the FEuler-Lagrange equations:

div(DE(Du))=0
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with u: Q@ — R™ and E: R"— R is a given smooth function, for example E(u) = |Dul|P for p> 1. In coordi-
nates,
Di| Dp,E(Dju)]=0= Dy, , E(Dju)-D; ju=0 or tr(AD?u)=0,
where A(x)= D?E(Du(x)), which is the unknown as yet.
Regularity problem: Assuming u solves the above problem. Show that u is regular. A priori, we only

know that A € L*° — DeGiorgi and Nash = classical regularity.

4.1 Weak Formulation
Formally multiply Lu=0 by v € C}(Q) and integrate by parts:

/ (div(ADu+bu)+ (¢c- Du+du))-vdx
Q

/ (DvTADu+b-Dvu)+ (c- Du+du)vdx
Q

=: Blu,v].
Basic assumption: u € WH2(Q). Then Blu, v] is well-defined for all v € C3(2) and by Cauchy-Schwarz for

all v e Wy 2(Q).
Now consider the classical Dirichlet problem:

Lu = f onf),

g ondfd.

u =
Definition 4.1. (Generalized Dirichlet Problem) Given g € L?(Q), f € L*(Q2), o € W12(Q).

ueWh2(Q) is a solution to
Lu = g+divf nQ,
©  ondfd

u

if
1. Blu,v]=F[v]:= [, [gv— f-Dvldz for ve C§(Q)
2. u—peWy3(9).

4.2 The Weak Maximum Principle
We want Lu > 0= supgu <supgqu. Catch: How do we define supgq u?

Definition 4.2. Suppose u€ W12(Q). We say u<0 on 99 if
uwt =max (u,0) € Wy 2(Q).

Similarly, u<v on 08 if
(u—v)TeW, Q).
{keR%u—m+eWﬁ%Qﬁ.

Definition 4.3. supu=inf{k € R:u <k} =inf
a0
Basic assumptions:
(E1). There is a A > 0 such that ¢TA(x)¢ > A|€|? for all z €, £ €R™

E5). There is A >0, v >0 such that
(
1 1
2l +llelloo)® + Flldlle <% [Jtr(ATA)| < A2
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Definition 4.4. (The Generalized Dirichlet Problem) Given f, g, ¢, find u € W2(Q) such that
(x) Lu = g+divf in Q,
#) u=¢ ondo,
where () means Blu,v] = F[v] and (#) means u— ¢ € Wy '*(Q) with

Blu,v] = DvT(ADu—bu)— (c- Du+b)vdz,
Q

F(v) = Dv- f—gvdz.
Q

Classical Mazimum Principle: If L is not in divergence form, say
0=AD?*u+b-Du+du,

where we need d <0 to obtain a maximum principle (see Evans or Gilbarg&Trudinger, Chapter 3).
Additional Assumption for Maximum Principle:

(E3). divb+d <0 in the weak sense, that is

/ (divb+d)vdr <0 YveCY{Q),v>0.
Q

Precisely,

/ dv—>b-Dvdr<0 YoeCHQ),v=0.
Q

Definition 4.5. u € W12(Q) is a subsolution to the Generalized Dirichlet Problem if Blu, v] < F(v) for
all v € CH(Q) with v >0, which is

Lu>g+div f

read in a weak sense.

Theorem 4.6. (Weak Maximum Principle) Suppose Lu >0 and (E1), (E2), (E3) hold. Then

supu <suput.
Q o0

Remark 4.7. Recall

suput = inf{keR: (ut — k)t e Wh3(Q)}
o0
inf {k > 0: (u— k)T e WHA(Q)}.

Remark 4.8. There are no assumptions of boundedness or connectedness or smoothness on 2.
Compare the above theorem with the classical maximum principle for Awu > 0.
Corollary 4.9. W2(Q) solutions to the Generalized Dirichlet Problem are unique if they eist.

Remark 4.10. Nonuniqueness of the extension problem. Consider the ball B(0,1) and

u(x)=a+(1-a)z]*~"
for a € R™.
/|Du(:1:)|2<oo & a=0,n>3.

Proof. (of weak maximum principle) Step 1) The inequality (Fs)

/ (dv—Dv-b)dz <0
Q
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for v>0, v € CL(Q) holds for all v € Wy ' (Q) (since by (Es), d,be L™).
Step 2) Basic inequality:
Blu,v] <0
for v € CH() and v > 0.

DvT(ADu+bu) - (c- Du+du)vdr < 0
Q

= [ DvTA-Du—(b+c)Du-v < /d(uv)—b-D(uv)d:z:éO.
Q Q

Now choose test functions cleverly such that uv >0 and uv € Wy (Q).
(applying step 1) But D(u v) =u Dv + v Du holds for uv € Wy '(Q) and u v € Wy '(Q) holds for u €
Wh2(Q) and v € C}(Q), which is OK. (See the chain rule for W? in Evans.)

DvTA Dudx g/ (b+c¢)Du-vdz,
Q

provided uv >0, v>0, uv € W&’l(ﬂ).
Step 3) Let [ :=supaqu. Suppose supqu > 1 (else there is nothing to prove). Choose | < k <supgu and
v=(u—Fk)T. We know that v € Wy *(Q) by the definition of I.

l=suput =inf{k>0: (u— k)t €Wy 3(Q)}.
00

Assume | <k <supgu=:m, v:=(u—k)*. Then

| Du u>k,
D“_{o u< k.

And if T ={Dv +# 0}, we have

strict ellip. (E2)-+above

A |DvPdz < DvTA Dvdx < 2u)\/ v|Dv(x)|dx.
Q r

Q
1/2 1/2
/|DU|2<2V</ |v|2dx> (/ |Dv|2dx> .
Q r Q

100 oy <2010

Thus we obtain

20y
By Sobolev’s Inequality,

<Cull Do) oy < Cu2v [0l oy < Cu2 [TV 0]

[|v HLz*(Q) ||L2(F) = L2*(Q)

Thus
1

I'>——
Tl Ch2v

>0, (4.1)

independent of k. Letting k — m, we obtain that m < oo (else u ¢ W12(Q2). Choosing k =m, obtain Dv =
0 a.e. contradicting (4.1). O

4.3 Existence Theory

Definition 4.11. A continuous operator T: By — Bs, where By and Bs are Banach spaces, is called com-
pact if T(A) is precompact in Bs for every bounded set A C Bj.

Theorem 4.12. (Fredholm Alternative) Assume T: B — B is linear, continuous and compact. Then
either

1. (I-T)x=0 has a solution x+0
or
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2. (I —=T)~* exists and is a bounded linear operator from B — B.
Read this as “Uniqueness and Compactness = Existence”

Theorem 4.13. (Lax-Milgram) Let B: H x H— T be bilinear form on a Hilbert space such that
1. |Blu,v]| < K ||u||||v]| for some K >0,

2. Blu,u]>k|u|® for some k>0.

Then for every F € H* there exists a g € H such that Blu, g] = F(u) for every ue ™.
Assumption 2 above is called coercivity.

Proof. 1) Riesz representation theorem. For any v € H the map u — B[u, v] defines a bounded linear
functional on H. By the Riesz Representation Theorem, there is Tv € H* such that

Blu,v] =Twv(u)

for every u € H. Thus we obtain a linear map H — H*, v+ Tw.
2) |Tv(u)| = |Blu,v]| < K |lu||||v], so ||T|| < K. Moreover,

2
kllv||”< Blv,v] =Tv(v) < | Tv|[|v]]-
Thus
[T ||

O<k<|
vl

<K.

Claim: T is one-to-one. Tv=0=k|v| <||Tv||=0=|v||=0.
Claim: T is onto. If not, there exists z # 0 such that T(H) L z. Now use that T(H) is closed. Choose
v=2z. Then

0=(z,Tz) =T=z(2) > k| z|? O
Theorem 4.14. Let € be bounded, assume Ei, E5, E3. Then the Generalized Dirichlet Problem has a
solution for every f, g€ L*(Q) and p € W12(Q).
Then the Generalized Dirichlet Problem can be stated as finding a u € Wy %(Q) such that
Blu,v]=F(v) for every ve Wy %(Q).
using
Fv) = / (f-Dv—gv)de.
Q
Proof. (Step 1) Reduce to the case ¢ =0. Consider @ =u — ¢.
(Step 2)

Lemma 4.15. (Coercivity) Assume (E1), (Ez) hold. Then

B[u,u]}é/ |Du|2—)\l/2/ |u|?dz.
2 Ja Q
Proof.
Blu,u] = DullA- Du+bu] — [c- Du+ du]udz.
ARG %) )

/ Du'A Dudz > )\/ |Dul?dx.
Q (Bv) JQ

—
—

~—
I

S
n

A 2 1 2
(bl +lell) | ful 1Dl < 3101 )+ g (Bl + el
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using the elementary inequality
2
2ab< \a?+ bX

for A>0. By assumption (F»),

16117, + llell?, , lld]] 2
[e.e] [o.9] (o 9] < .
oy T SV

Now combine these estimates. O

Notation: H:=Wy*(€), a Hilbert space. H*=dual of H.
Aside: Isn’t H* ="H by reflexivity of Hilbert spaces? No, only H=H*. In R", we denote

H3(R"):= {UES’ / (1+|k2|)5/2|11(§)|2d§<oo}.
This works for every s € R. If s=1, we have

(L+ R ()PAE=Cn | (Jul*+ | Dul)dz = Cul[ulljy 2 -
R R" S
By Parseval’s Equation

/ u(z)v*(z)de=C, a(k)o*(k)dk.
If ue H*, ve H—*, then RHS is * R

(u, ) o= / (L4 (kP20 (K)(L+ k)20 (k)dk < fJul] . ||v
Rn

by Cauchy-Schwarz. (cf. a 1-page paper by Meyer-Serrin??, PNAS, 1960s, the title is H =W.) End aside.
Every u € H also defines an element of H* as follows: Define

I(u)(v) = /Q u(z)v(x)dx for everywv e H.

-

Recall that the first step in the proof of our Theorem is to reduce to ¢ =0 by setting © =u — ¢ if p#£0.
Lemma 4.16. (Compactness) Z: H — H* is compact.
Proof. I=1I,I,, where I>,: H — L? is compact by Rellich and I;: L? — H* is continuous. O

We are trying to solve
Lu=g+div f (4.2)
————

Indeed, given g, f, we have defined e

F(v):/Q (Dv- f —gv)dx

We treat (4.2) as an equation in H*. Define
Lo,=L—-o0ol

for o0 € R and the associated bilinear form

B,lu,v]=Blu,v]+0 | u(x)v(z)d.
Thus, /Q

By [u, u) = Blu u]—|—a/ u(x)v(x)de
Lcmma4 153
/|Du|2dac—)\l/ / |u] 2dx+0/ |u|?dz

—[/ |Du|2da:—|—/ |ul 2d:1:]_/\||u|H.
21 Ja Q

o > A2+ \/2.

WV
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So B, is coercive = Lax-Milgram: L *: H* — H is bounded.
Lu=g+divf inH*
< Lou+ol(u)=g+divf inH*
& u+o Ly I(w) =L;Yg+divf) inH.
continuous compact

compact
Weak maximum principle = if g =0, f =0, then v =0. By the Fredholm alternative, using 7 = L I = 3lu
for every g+ div f. 0

Remark 4.17. L' is the abstract Green’s function.

4.4 Elliptic Regularity
e Bootstrap arguments: Finite differences and Sobolev spaces

e Weak Harnack Inequalities: Measurable — Holder continuous (deGiorgi, Nash, Moser)

4.4.1 Finite Differences and Sobolev Spaces

Let
Al — u(z+ he;) —u(x)
(3 - h I
where e; is the ith coordinate vector w.r.t. the standard basis of R™. APy is well-defined on Q' C C Q pro-

vided h < dist(2, 09).

Theorem 4.18. Q' C CQ, h <dist(Q,09),
a) Let 1< p<oo and u€ WHP(Q). Then Alue LP(QY) and

||AhuHLP(Q/) < HDU’”LP(Q)'

b) Let 1< p<oo. Suppose u€ LP(Q) and

HA}LUHLP(Q/)gM’
for all h < dist(2,00) =ue WHP(Q') and HDu||Lp(Q,) <M.

Ell. regularity started over.
Goal: Existence of weak solutions 4+ smoothness of A,b,¢,d, f, g

e = Regularity of weak solutions
e = Uniqueness of classical solutions+Existence.
Basic assumptions: Ey, Ea, E3 as before, Lu= g+ div f (assume f=0).

Theorem 4.19. Assume Lu = g, E1 Es, E3. Moreover, assume A, b Lipschitz functions. Then for any
Q' c cQ we have

2.z < C(Iellpr.zgey + 191 gy )
where C'=C(n,\,d', K), where K =max (Lip(A), Lip(b), ||lc|| ., ||d]|..) and d"=dist(€2,09). In particular,
Lu=g a.e. in Q.

Proof. Uses finite differences A} for 0 < |h| < d’. Tt suffices to show HAZDiu
for 0< |h|<d'/2.
Definition of weak solutions is: for every v € CL(Q)

‘L2(Q/) uniformly bounded

/[DUT(ADu—l—bu)—(C-Du—i—du)v]dx:/ gvda.
Q Q
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Rewrite as

DvT(A Du)daj:/ gudx (4.3)

Q Q

for all v € C4(92), where
g=g+(c+b)-Du+du.
By (E2) we know that g, € L?(2). Now think about “discrete integration by parts’:

[ @osaar = - [ v@ag" o
Q Q

for every f € L?(Q). We may replace v € C1(Q) by Alv € CL(Q) in (4.3), provided 0 < h < d’/2. Then we
have

/ DUTAZ(A-Du)dx:—/ (DA,:hv)TADud:E(;)—/ GA; v da. (4.4)
Q T Q Q
In coordinates, () is

Al(ai (@) Dju(x)) = ai,j($+h€k)DjU(.’L'+hh6k)—ai)j(q;)Dju(;E)

= a; j(x+hex) (AZDju) (z) + (AZaiﬁj)(x)Dju(x).

By assumption, a;, ;(z) is Lipschitz, therefore

|Akai,j(x)| = |ai’j(x+h€;) — i@l Llp(ﬁﬁ) all =Lip(ai,;),

where

o= Lip(az.;) = sup |ai,j(x) — aij(y)|
x,ye |$_y|

We may rewrite (4.4) as

/(DUTA(x—l—hek)DAZudx —/ (GAN + aDv)dz
Q Q

lgla| Ake]| ,+llal 21Dl s
(191 2+ el ) [ Do)
(K ) (atllyr.zgy + 191 gy ) I DV o

This holds for all v € C}(Q) and by density for all v € W;*(€2). So we may choose

NN N

v=nAhu,
where 1 € C2(£2) and )
dist(supp(n), 9Q) > %
By strict ellipticity (E7), we have
ETAE = N[E]? for allE e R™,x €9,
If >0, we have
N(ARDu)TA(z + hex) (ARDu) = | AR Du >

Therefore, v = nAfu in the estimate of rewritten (4.4)

(E1)
)\/ n|ARDu|*dx §1 /n(AZDu)TAAZDu
Q Q

roduct rule
product DvTAA}Dw, —/ (v Dn)TAARDu
Q Q

< CO(llullyre+ gl IDol = (1)722.

Dv=D(nAku) = DnAlu+nDA.
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Observe that we may choose n =1 on ' and n € C:(©') such that ||Dnl||,.. < C(n)/d". Estimate RHS
using this to find

3 |DA;;U|2dx<A/Q 1Dz < O [l + 191 20 ) O

Theorem 4.20. (Ladyzhenskaya & Uraltseva) Assume (E;) and (E»). Assume f € LI(2), g € L9/?

for some ¢ >n. Then if u is a Wb subsolution with u <0 on 9, we have

Jr
supu<C([|u] gy +1).
where

1
k=5 (1710 lgll,n) and C=(n,v,q.19).

Proof. (Moser) To expose the main idea, assume that
f=0,g=0 = k=0
and ¢=0, d=0. We need to show
sup u < C’Hu*” L2

Recall that (1) © <0 on 02 means that

ut =max {u,0} € Wy 2(Q).
(2) u is a subsolution if

Blu,v] < F(v)
for v € W, *(2) and v >0, which means that
DvT(ADu+bu)dz <0

Lo Q
for ve Wy 7(Q) and v > 0.

Main idea: Choose nonlinear test functions of the form v = (u*)” for some 3 > 1. Let w := u™ for
brevity. We know that w € Wy (). Let

B
H(Z):{z 0<z<N,

linear z> N,
i.e.
linear
28
N
Figure 4.1.
Let
W(z)
v(x) :/ |H'(2)|?dz
Then 0

Dv(x)=|H'(w)|?Dw(z). (4.5)
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Note that v >0 by construction. Moreover, |H'(w)|? € L and w € Wy (Q) = v € W, *(Q). We have from
(4.5) that

/DUTADudx < —/ (DvTb)u(z)dx
Q Q
[
/|H’(w)|2DwTADud:E = / |H'(w)|?DwTA Dw dx
Q Q

WV

)\/ | (w) 2 Do |?dz.
Q

On the other hand,

‘—/ (DvTb)u(z)dx /|H’(w)|2Dwaudx
Q
o= '/ |H'(w)]?2DwTbwdx
cs 1/2 1/2
< [ mwppera | ([ rpeeera)
—,—/ Q

|D H(w)|?
Thus we have

ez < ([ 1o le’) </IH )b |w|2dx)1/2

AM-GM 1
<
2,

Q

|D H (w)|*dx —I—H ” /|H )2 |w|3d.

Therefore

/|DH (w)|2dz < | AQ /|H ) 2lwds < v /|H )[2Jw|2da.
By Sobolev’s Inequality
1 (0) - ) < CONDH ()] ) S ()] oy

This inequality is independent of N, so take NToo. Then H(w)=w? H'(w)= pwl~1, so

w H'(w) = puwb.
Then
1/2* 1/2
</ |w|ﬁ2*dx) <1/C(n)ﬁ</ |w|2ﬁdx> .
Thus we have “ ¢
SWCM)BY |lwlyy B21. (4.6)

Note that 2* =2n/(n —2) > 2. Let r:=n/(n —2). Then iterate (4.6):

f=1 = [lwlly, < ECn))lwl,
B=r = [wl, < @C)NY wl,, < @C(n)r) /" (vC(n))wlly-

By induction,
T L
[wllyymss < @CR)) 7777 () 2w,
1
< (O(n) =7 ()Y

Let m — oo and obtain
]| o = sUD U™ < Cfut]],. =
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4.5 The Weak Harnack Inequality
Label two common assumptions for this section
(1). Assume (Ey), (E2).
(2). Also assume f € L(Q), g€ LY?(Q) for some ¢ > n.
Theorem 4.21. (Local boundedness) Assume (1), (2). Assume u is a subsolution. Then for any ball
B(y,2R)CQ and p>1
up w ORIt 1y, oy +HOD)

B(y,R
where (v 1)

Rl—7/a o
K(R) = (111, + B9l )

O—O(n,%, |Q|,V>.

Theorem 4.22. (Weak Harnack Inequality) Assume (1), (2). If u is a W2(Q) supersolution and u >0
in a ball B(y,4R) C Q, then

and

Rl 20y <O int, e KR) )

for every 1< p<n/(n—2) with C and k as before.
Now, let us consider the consequences of Theorem 1 and 2.

Theorem 4.23. (Strong Harnack Inequality) Assume (1), (2). Assume u is a W2 solution with u > 0.
Then
sup u<C( inf u+k(R)>.
B(y,R) B(y,R)

Theorem 4.24. (Strong Maximum Principle) Assume (1), (2) and (E3). Assume Q connected. Suppose
u is a WH2 subsolution. If for some ball B(y, R) C ), we have

sup u =sup u,
B Q
then u = const.

Proof. Suppose M = supq u. Also suppose B(y, 4R) C Q and supp(y,4r) v = M. Let v = M — u, then
Lv=— Lu<0 (ie. supersolution) and v > 0. Apply weak Harnack inequality with p=1:

R‘"/ (M—u)d:v<C( inf (M—u))zO.
B(y,2R) B(y,R)

= {u= M} is open. Even though u is not continuous, it is still true that {u = M} is relatively closed in
Q. Then {u= M } = since 2 is connected. O

Theorem 4.25. (DeGiorgi, Nash) Assume (1), (2). Assume u€ W2 solves Lu= g +div f. Then u is
locally Hélder continuous and for any ball Bo= B(y, Ry) C and 0 < R< Ry. Then

0SCR(y, R)U < CRO‘(ROO‘sup ||+ k)
Bo

Here, C and k are as before and a=a(n,A/A\, v, R, q).

Proof. To avoid complications work with the simpler setting

Lu=div(A Du)=0,
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ie. b=c=f=0,d=g=0. Assume without loss R< Ry/4. Let
MQSZSUP |’U,|,
Bo

Mi:=supu, mq:=infu,
Br

Br
My:=supu, my:= inf u.
Bir Bar

Let w(R) := oscgpu= M; —my. Observe that My —u >0 on Bygr and L(My—w)=0. Similarly, v —my4 >0
on Byg and L(u—my4)=0. Thus, we can apply the weak Harnack inequality with p=1 to obtain

Likewise, Ban "

Br

R‘"/BZR (u —m4)dx<C<inf (u—m4)) =C(m1—my).

Add both inequalities to obtain

1
o | (My=mi)de = Cu(My—my) < C| (My —ma) — (M —ml)].
Bsyr —— N——
0SCB, pU 0SCB R

Rewrite as
w(R) < w(4R)
for some v > 1. Fix r < Ryg. Choose m such that

Ry.

1 1
RQ<T’<W

qm
Observe that w(R) is non-decreasing since w(r) =supp, v —infp_u. Therefore

w(r) < w(%&;)

< Y™ w(Ro).

logr/log 4
w) et

N

Ry
where we used
Ller 1
gqm Ry ~4m— 1
therefore

—mlogd <log(r/Ry) < (—m—1)log4
< m > —log(r/Rp)/logd > (m—1).

5 Calculus of Variations
General set-up:

Iu] = /Q F(Du(z))ds.

Here, we have u: Q —R™, m>1. Du: Q— M™*", Minimize I over u € A, where A is a class of admissible
functions.

Example 5.1. (Dirichlet’s principle) Let 2 be open and bounded and u: 2 — R, ¢g: Q2 — R given,

I[u]z/Q <%|Du|2—gu)dx
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and A=W12(Q). The terms have the following meanings:

|Dwu|?. Represents the strain energy in a membrane.

gu. Is the work done by the applied force.
General principles:

1. Is inf g I{u] > — 007

2. Is inf 4 I[u] =min4 Iu]? (This will be resolved by the “Direct Method” due to Hilbert.)
To show 1.): Suppose g € L?(€2). Then

’/ gudz
Q

< llgllallell

1 1
< 5(etul+ 2al. )

By the Sobolev Inequality,
[ull - <C ()| Dufl -

Moreover, 2* > 2 and

Hélder’s 1/
lullge < Jlull -9
< C(n,Q)HDuHLz.
Then
Iu] = l/ |Du|2dx—/gudx
2 Ja Q
1 2 1 2 1 2
> gIDulia-3(cCIDuli.+ Lol
1 2 1 2
=l
* 1
2 CHU||‘2/V01,2_2_E|‘9H§2’

where the step (*) uses the Sobolev inequality again, with a suitable ¢ chosen.
This is called a coercivity bound. In particular,

. 1 2
1Bf1[u]2—%|\g|\m>—oo.

Since inf I[u] > — oo, there is some sequence uy such that I[ug] — inf I{ug].
Bounds on {uy}:
Iu] = l/ |Dul|?dz —/ gudz
2 Ja Q

< l</ |Du|2+|u|2d:c)+1/ lg|2dz
2 Q 2 Q
1

= (Il gl ).

By coercivity, we have

2 1 1 2
||uk||W0112(Q) < 6 I[uk]—i—%"g”[ﬁ ?

*

fixed!

where term * is uniformly bounded because I[u] — inf. We could say I[uy] <inf-+ 1.

SECTION 5

The main problem is: We cann only assert that there is a weakly converging subsequence. That is,

up; — u in W01’2(Q), where we relabel the subsequence uy; as uy.
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Theorem 5.2. I[u] is weakly lower semicontinuous. That is, if vy —v, then

Iv] < llicminf Ivg].

Assuming the theorem, we see that I[u] is a minimizer. Indeed,
w.l.s.c.
Iu] < liminf I'fug] = inf I[v] < I{u).
k— o0 vEA
Aside: TNu] is also strictly convex = is a minimizer:
V1 + V2
1
=

| < 5ton)+ 1)

with equality only if v; = awvy for some a € R.

Proof. Assume two distinct minimizers uj # cug. Then

Uy + ug 1 .
I[ 5 } <§(I[u1]+1[u2])—1r}ré13[[v],
which contradicts the definition of the minimum. O

Theorem 5.3. Assume F: M™*"™ — 1R is convex and F'>0. Then
Iu) :/ F(Du(x))dx
Q
is weakly lower semicontinuous in Wy'*(Q) for 1< p<oo.

Proof. From homework, we know that F(A) = limy_,o Fn(A) where Fy is an increasing sequence of
piecewise affine approximations. Since fy is piecewise affine, if

w, — u in WyP(Q)
Dur — Du in LP(Q),

we have

/ Fn(Dug)dz — [ Fn(Du)da.
Q Q
Thus,

/FN(Du)d:C = lim [ Fyn(Duy)dz
Q k—co Jo

Fyincreasing — < lligminf F(Duy)dz
= liminf I{ug].
k— o0

Now let N — oo, and use the monotone convergence theorem to find

Iu] = / f(Du)dx < lligminf T[ug]. O
Q —00
Basic issue: Suppose f(x) is as given in this picture:

a

Ll LT L

A 1

Figure 5.1. f(z).



56 SECTION 5

Consider gi(z)= f(kx), k=1,  €]0,1]. This just makes f oscillate faster. We then know that
gr2Aa+ (1= )b,

Suppose F' is a nonlinear function. Consider the sequence

Gir(z) = F(gi(x))

_ { F(a) when gi(z)=a
F(b) when gg(x)=b.

3

Then
Gr—G=AF(a)+ (1= X)F(b).
But then in general
G = weak-*lim F(gi) # F(w- x lim gy,)
= F(ha+(1-X)d)
However if F' is convexr, we do have an inequality
F(g) < w-*limF(gg).
Fix m=1, that is Du: Q — R", write F' = F(z) for z € R™.
Why convezity? Let v e Wy P(2), consider i(t) = I[u+tv]. If u is a critical point I =4'(0)=0.

i'(t):%/ F(Du+tDv)de= | DF(Du+tDv)-Dvdx.
Q Q
So,

0=14'(0) z/Q DF(Du)- Dvdx.

This is the weak form of the Euler-Lagrange equations

0 = —div(DF(Du(z))) inQ,
u = g ondfd.
With index notation
OF o)
! — - —_
i'(t)= 92 (Du+tDv) o, dz.
If w is a minimum, 7”(0) > 0.
. O’F v v
"(t) = D tDv) ———
! ( ) Q 8ZJaZk( ut v) arJ aiEk
Thus,
0’F v Ov T2
< _ —_— = .
0< 920 Du) Dz, Dor dz A Dv*D?*F(Du) Dvdx

A useful family of test functions: Consider

S 0<s«1
p(s)=¢ 2—s5 1<s<2

e;xtended periodically
Fix £€R™ and ¢ € C°(2). Consider

(5.2)
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where the term (*) oscillates rapidly in the direction &.

Oue —Eﬁp(ﬁ> +¢(z)p

Or; Oz, €

x-&
(T)fﬂ*

!
ole) o)

Therefore,

€

Ove Ove of VY 9
Du, Jor C@)?( p'( =) ) &k +0(e) = &€k +O(e).
Substitute in (5.2) and pass to limit

2 X 82F u :| X
o< [ o) el (Dug Jas

Since ( is arbitrary, we have
ETD2F(Du)é>0, €¢c€R™
So, F' is convex=>(5.1) is an elliptic PDE.

Theorem 5.4. Assume m=1. Then I is w.l.s.c.< F is convex in W1 P(Q) for 1< p<cc.

Proof. Fix z € R™ and suppose 2=Q =10,1]". Let u=2z-z. Claim: For every v € C°(Q), we have

I[u]z/ﬂF(z)dx:F(z)g/QF(z—i—Dv)dx.

This is all we have to prove, because we may choose smooth functions to find ¢TD?F(2)¢ > 0. For every k
divide @ into subcubes of side length 1/27’“. Let x; denote the center of cube Q;, where 1 <1< onk

x

Figure 5.2.

Define a function uy as follows:

ug(z) = %0(2’“(90 — 1)) + u(z)
for x in Q.
Duy(x) = Dv(2(x — 2;)) + 2
for x in @;. Thus, Dug— Du==z.
Since I[u] < liminfy_, o Iug], we have
2nk:
liminfz F(z+ Dv(2¥(x —xy)))dw
koo i3 Jau
= liminf 2”’“/ F(z+ Dv(2¥(x —z;)))dx (integral same in every cube)
1

k— o0

N

= /Q F(z+ Dv)dz.
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Problem in higher dimensions: Typical example: u: 2 C R™— R"™.

deformed domain

Figure 5.3.

Typically,
F(Du)= %DUTDU + (det(Dw))P.

not convex
convex

5.1 Quasiconvexity

(cf. Ch. 3, little Evans) u: Q@ —R™, m >2
A={ueW'?(Q,R™):u=gondQ}

1< p< oo, Q open, bounded,

Tu)= /Q F(Du(x))dx

with F:M™*" — R, C*. Always assume F' coercive, that is
F(A) 2 01|A|p — Ca.

= The main issue is the weak lower semicontinuity of I.

Question: What ‘structural assumptions’ must F' satsisfy? if m =1, we know that F' should be convez.
This is sufficient for all n. Is this necessary?

Convexity is bad because it contradicts material frame indifference.

Rank-one convezity: Let’s replicate a calculation already domne: Let i(t) := Ifu + t v], t € [ — 1, 1].
Assume ¢'(0) =0, i”(0) > 0.

i) :/Q F(Du+t Dv)de.

de d oF Ov;
a—/ﬂ EF(Du—l—tDv)dx—/Q aAi)k(Du—l—szv)angdgc

(Use summation convention.)

OF s
_ D ?
0 aAi,k( “)axk

0=i'(0)=0= dz.

This is the weak form of the Euler-Lagrange equations

0 oF
_m<8AM(DU)> ~0 (5.3)
for i=1,...,m, so we have a system. Now consider i”(0) > 0.
O’F S Ovs
7 _ o i vy <
#0) /Q aAi,kaAj,l(Du) Oy, &vldx/ 0- (5.4)

As before, consider oscillatory test functions:
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+1

2 S
Figure 5.4.

Fix neR™, €€ R™, (€ C&P(2R).

Then
Ov; . .
8; = EC’(I)p(‘TSg>n+ C(@ﬂ(f)m&-
Thus
Ov; Qv
T 87:105 = ((x)*nin&r&i+O0(e)
Substitute in (5.4) and let € — 0,
0*F
< 2 S | Ny .
O\/Q bex) [aAi,kaAj,l]nané.kgl dz
arpitrary
This suggests that F' should satisfy
(n®&TD*F(n®¢) =0 (5.5)

for every n € R™, £ €R"™. n® & =n¢T is a rank-one matrix.

Note: F is convex if BTD?F(A)B > 0 for every B € M™*". However, we only need B to be rank one
in (5.5). (5.5) is known as the Legendre-Hadamard condition. It ensures the ellipticity of the system (5.3).
Thus, we see that if I is w.l.s.c. then F' should be rank-one convex. Q: Is that sufficient?

Definition 5.5. (Morrey, 1952) F is quasiconvex (QC) if
F(A)g/ F(A+4 Dv(z))dx
Q

for every A€ M™*™ and v € C(Q,R™). Here Q is the unit cube in R"™.

Figure 5.5.
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Subject the boundary of a cube to an affine deformation A(x). Then u = Az for z € Q satisfies the
boundary condition Du(z)= A for z € 0Q.

I[u]—/Q F(Du)dz=F(A).

Thus (QC) implies Iu] < I[u+v] for any v € C°(Q) = affine deformation is the best.
Examples of QC' functions:

1. F(A)=det(A) or a minor of A
Definition 5.6. (Ball) F is polyconvex (PC) if F is a convez function of the minors of A.
What’s known:

Theorem 5.7. (Morrey) Assume F € C™ satisfies the growth condition
[F(A)<CL+]AP) (5.6)
with some C'>0. Then I is w.l.s.c.<< F is QC.

Remark 5.8. " - ()
Convex = Polyconvex = Quasiconvex :& Rank-one-convex (RC).

(%) is known for m >3, n > 2 (Svérak, ’92), but not known for m=2, n > 2.
We'll prove that if uy, € WP for p>n and uy, — u= det(Duy) — det(Du) in LP/"™. (compensated com-
pactness in LP/™)

If Ag(z)€ LP/™(Q,M™*") and A, — A, it is not true that det(Ay) — det(A).

Note 5.9. “=-" is straightforward. Simply choos u(z) = Az and ur= Az + vg(x) (v; < periodic scaling).
Assume F' is QC and statisfies (5.6).

Lemma 5.10. There is a C >0 such that

[IDF(A)|<C(L+]APTY).

Proof. Fix A € M™*"™ and a rank-one matrix 1 ® & with 7, ¢ coordinate vectors in R™ and R"™. We
know that QC =-RC, therefore the function

fO)=F(A+t(n®g))

is convex. By homework, we know that f(t) is locally Lipschitz and

DR @&l =1£0)] << max 50
el—r,r]

Then

|f@®)] [F(A+t(n®¢))|
C(L+ AP +tP[n@[P)

<
< CO+|AP+rP).

wt
(=2

(5.6)

Choose r =max (1, |A|) to find
OIS C+]A[PT. 0

Proof. (of Theorem 5.7) Assume F' is QC, show I is w.l.s.c.
QC tells you...

][ F(D(Ax))dsz(A)g][ F(A+ Do(x)
Q Q
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For w.l.s.c., we want to show... If u;—u in W', then

/ F(Du)d:z:éliminf/ F(Duyg)dx.
Q Q

k— o0

Idea: Subdivide domain (2 into small cubes:
Qc
/ F(Du)dx z/ F(affine approximation to Du)dz < [ F(Duy)dz + errors.
Q Q Q
1) Assume ur— u in WHP(Q,R™). Then

Sl;p [ Duy ||LP(Q’M771><") <o

by the uniform boundedness principle (Banach-Steinhaus). By considering a subsequence, we have
up—uin LP(Q,R™)
(cf. Lieb&Loss) Define the measures
pr(dz) = (14 |Dug|P + |DulP)dz.
By the uniform bounds,
sup pr(€2) < oo.

k
Then there is a subsequence p;— p with

() < liminf pg ().
—~— k— o0
concentration measure

Suppose H is a hyperplane perpendicular to the unit vector ey. Therefore, pu(Q N H) # 0 for at most
countably many hyperplanes.

R
H
\\\‘_/
Q
Figure 5.6.

By translating the axes if necessary, we can assert that if @Q; denotes the dyadic lattice with side
length 2% then 1(0Q;) =0 for every Q; € Q; and every i. Let (Du); denote the piecewise constant func-
tion with value

Du(x)dz
Qi

on the cube Q;. By Lebesgue’s Differentiation Theorem, (Du); — Du a.e. for iToo in LP(Q2, M™*™). Then

/ |F((Du);) — F(Du)|dx—0
by DCT. “
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2) Fix € >0, choose Q' C C Q) such that

/ F(Du)dz<e.
Q\Q’
Choose ¢ so large that

|Du— (Du)i||l;, < e,
[F(Du) = F((Du)i)|| . < e

Aside: Preview: Where is this proof going?

Tuy]

(]

WV
S 3
=
S
£
o,

8
+
s

> Z F( (Du); )dz+ E1+E>

piecewise affine
QC
> Iu]+ E1+ Ex + Ej.

End aside. (Let’s not complete this proof.) O

5.2 Null Lagrangians, Determinants

Iu] = / F(Du)de
Q
for u: Q—R™, F: M™*" — R. The Euler-Lagrange equations read

0] oF .

Definition 5.11. F is a null-Lagrangian if (5.7) holds for every u € C?(2).

uw:QCR*—R"
Theorem 5.12. det is a null-Lagrangian. The associated Euler-Lagrange equation is
%(COf(D’UJ)LJ):O, ’L:L,TL (58)
Proof. Claims:

1. A matrix identity:

d(det A)
m = (COf A)l,m

2. If A=Du, then (5.8) holds.

(cof A)p.m=(n—1) x (n—1)det(A without row [, column m).
Algebra identity:
-1

— 1 T
= m(cof A) .

(det A)Id = AT (cof A).
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Let B denote cof A.
detA5i)j:Ak7in)j (5.9)

Claim 1 follows from (5.9), since (cof A); ., depends only on A; ;i#1, j#m.
Differentiate both sides w.r.t. z;:

0

0
B O(det A) 0ALm
8A17m 81:1
Clai_rn 1 aAlﬂ”
- Bl,m 8331 )
where we have used summation over repeated indices.
0Ay i 0By,
: I ; =
RHS &rj kg +Ak’z al'j

SN—~— .
want to say this is 0.

O terms are typically not the same for arbitrary matrices A(z). However, if A(x)= Du(z), then

0Ay i 0%uy, 0%y 0A| m
kg 0z k’Jaxinj b 0r;0Tm, b ox;
Comparing terms, we have
Aki%:o, i=1,...n
’ an

or (Du)Tdiv(cof Du) =0¢€ R".

cof Du=n x nmatrix| —

div(cof Du)=( 1)

If Du is invertible, we have div(cof Du) = 0 as desired. If not, let u. = u + ex. Then Du. = Du + &I is
invertible for arbitrarily small € >0 and
div(cof(Du,)) =0.
Now let € \,0. g
Theorem 5.13. (Morrey, Reshetnyak) (Weak continuity of determinant) Suppose u® =~y oin
WhP(Q,R"), n<p<oo. Then
det(Du®) =~ det(Du) in LP/™(Q).

Proof. Step 1. Main observation is that det(Dwu) may be written as a divergence.

det(Du)d; j = (Du)k,iBk,;
det(Du) — %(Du)k,j(cofpu)m
1 ou
= E%?(cofDu)kJ

J
0|1

= div[%(cof Du)Tu].
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Note that above wuy is the kth component of u, while below and in the statement, u®) means the kth
function of the sequence.
Step 2. It suffices to show that

/n(m)det(Du(k))dxH/ n(z)det(Du)dx
Q Q

for every n € C°(€2). But by step 1, we have

_ 1 o (k)
| atnen(Duye == [ (S0 ) cot(Du)

n

By Morrey’s Inequality, «*) is uniformly bounded in C%'~"/?(Q, R™). By Arzela-Ascoli’s theorem, we
may now extract a subsequence u*9) that converges uniformly. It must converge to u.
Note that if f*) — f uniformly and ¢® — ¢ in L9(),then
fR gk s fg

in L%(2). Now use induction on dimension of minors.
Alternative: Differential forms calculation:

/Qn(x)det(Du)d:vz/Qn(x)dul/\dug.../\dun:/Qn(x)d(ul/\duQ.../\dun)

(stopped in mid-deduction, we're supposed do this by ourselves...) O

Theorem 5.14. (Brouwer’s Fixed Point Theorem) Suppose u: B — B is continuous. Then there is some
x € B such that u(z) ==.

Theorem 5.15. (No Retract Theorem) There is no continuous map u: B — OB such that u(x) =x on B.
Proof. (of Theorem 5.14) Assume u: B — B does not have a fixed point. Let v(z)=u(z) — z, v: B — R™
Then v(x) # 0 and |v| is bounded away from 0. Consider w(z)=v(x)/|v(z)|. w is continuous, and

w: B — 0B
contradicts the No Retract Theorem. O

Proof. (of Theorem 5.15) Step 1. Assume first that u is smooth (C'>°) map from B — 0B, and u(z) ==
on OB. Let w(xz) =« be the identity B — B. Then w(z) = x on 0B. But then since the determinant is a
null Lagrangian, we have

/ det(Du)dx:/ det(Dw)dz =|B]|. (5.10)
B B
However, |u(z)[?=1 for all z € B. That means
wu; =1 = %ui:(), j=1,...,n.
611]‘
In matrix notation, this is
(Du)Tu=0.

Since |u(z)[=1, 0 is an eigenvalue of Du=>det Du=0. This contradicts (5.10).
Step 2. Suppose u: B — OB is a continuous retract onto dB. Extend u: R™ — R" by setting u(z) = x
outside B. Note that |u(z)| > 1 for all . Let 1. be a positive , radial mollifier, and consider

Ue = Ne * U.

= For ¢ sufficiently small, |uc(x)| >1/2. Since 7, is radial, we also have us(z) =z for |z|>2. Set

o u@)?)
) = Tu(z )
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to obtain a smooth retract onto OB contradicting Step 1. O

Remark 5.16. This is closely tied to the notion of the degree of a map. Given u: B — R smooth, we can
define

deg(u):][ det(Du)dz.
Note that if w =2 on 9B, then we have b
deg(u) =1=deg(Id).
This allows us to define the degree of Sobolev mappings. Suppose u € W1 1(Q, R") with n < p<oo. Here,

ou Oun,
det(Du) :Z (— 1)08517_1'“817 .

o

So by Hélder’s Inequality, det(Du) € LP/™ = det(Du) € L' = We can define deg(u). It turns out that we
can always define the degree of continuous maps by approximation. Loosely,

1. Mollify ue = u * ..
2. Show if . is smooth, then deg(u.) is an integer
3. deg(us) — lim as e —0.

= deg(u) independent of ¢ for € small enough.

Reference: Nirenberg, Courant Lecture Notes.

If we know that the degree is defined for continuous maps, then since p > n, then v € W+?(B;R"), p >
n, we know u € CO1="P(B;R"), so deg(u) is well-defined.

Question: What happens if p=n? Harmonic maps/liquid crystals u: — S" 1.

Answer: (Brezis, Nirenberg) Don’t need u to be continuous to define deg(u). Sobolev Embedding:

cot-n/p n<p< oo,
wtr_ ] BMODVMO p=n,
L9 p<n,q<pt=t

[U]BMO: ][B|u — ’lIB|.

VMO: Vanishing mean oscillation.
Theorem 5.17. deg < VMO. (%)

(Unfinished business here.)
Weak continuity of determinants: If u, € WHP(Q; R™) with n < p, then if uy— u, also have

/det(Du;g)dxé/ det(Du)dx
Q Q

= deg is continuous. This is still true if n = p, provided we know that det(Dug) > 0. (Muller, Bull. AMS
1987)

6 Navier-Stokes Equations

We will briefly write (NSE) for:
u+u-Vu = (Au—Vp)+ f
—_———

force external force

Vu =0
u(z,0) = wup(x) given with V-ug=0
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for u: [0,00) x R"— R™.
Du
Dt

material derivative

(u-Vu) ug+uVu=

i=u ‘—i§
J an

Navier-Stokes v. Euler: RHS has parameter v

ur+u-Vu=—vAu—Vp.

If v=0, we have Euler’s equations. (Newton’s law for fluids) If v # 0, we may as well assume v =1.
V.-u=0 is simply conservation of mass: If the fluid had density p, we would have the balance law

Op+div(pu) =0+ (V- -u)p+u-Vp=0.

If we further assume

Op+u-Vp=0,
that is
Dp _
D

then we have V -u=0. Compare with Burgers Equation:
oru+udu=0, z€R,t>0.

It is clear that singularities form for most smooth initial data.
The pressure has the role of maintaining incompressibility. Take the divergence of (NSE1):

V- (Ofu+u-Vu)=V-(—Vp+ Lu).
Then
Tr(VuTVu)=— Ap.
Thus — Ap>0. Flows are steady if they don’t depend on ¢. In this case we have
u-Vu+Vp = Au,
V-u = 0.

If v =0, we have ideal (i.e. no viscosity), steady flows:

2
u-Vu+Vp=0, V~u_o;»v<%+p)_o, V.ou=0,
or |u|?/2 4 p=const, which is called Bernoulli’s Theorem.

u more, p less

—

.

—

u less, p more
Figure 6.1.
Vorticity: w=curlu. This is a scalar when n =2.
Vorticity equation:

Ow+V x (u-Vu) = Aw,
V-u = 0,

Vxu = w.
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In 2-D, this is simply
{ Ow +u-Vu=Aw,

Vu=0,
VXu=w,

where the first equation is an advection-diffusion equation for w.

6.1 Energy Inequality

Assume f =0 for simplicity. Dot the first NSE above with u:
9 ( |ul? Juf? _ 2
&(T +u-V T—Fp =V (U Vu)—|Vu| .

Integrate over R™:
d Jul®

_ 2 2 2
G Bae=— [ vurar s a0l < ol

R
¢ 2
/0 A{n [Vu|?dz < l|uoll7 »-

Theorem 6.1. (Leray, Hopf) For every ug € L?*(R"), there exist distributional solutions u € L®(R,
L?(R™)), such that the energy inequalities hold.

Q: Regularity/Uniqueness of these solutions? n =2, Ladyzhenskaya — uniqueness.

6.2 Existence through Hopf

Reference: Hopf’s paper on website, Serrin’s commentary.

du+u-Vu = —Vp+ Au,
V-u = 0.

z€G = open subset of R", G =G x (0, 00) space-time. Initial boundary value problem:

u(z,0)=wug(z) given and V-ug=0.
No-slip boundary conditions:

u(z,t)=0 for z€dG.

(Compare this to Euler’s equation, where we only assume that there is no normal velocity.)

6.2.1 Helmholtz projection

Recall the example of a divergence-free vector field from the last final.

Figure 6.2.
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Observe that only the continuous boundary-normal field matters, not the (discontinuous) boundary-
tangential field. We want to push the requirement V-« =0 into L.

V-4 =0 in D’ simply means
/ u-Veodr=0
e}

for every p € C2°(Q). Let P=closure {Vy: ¢ € C in L?(G,R")}. P is the space of gradients in L*(G). If
h € P, then there exists ¢r € C2°(G) such that Vo — h in L?(G,R™). Then

L*G)y= P @® Pt
gradients  divergence-free

6.2.2 Weak Formulation

In all that follows, a € ng’(é' ,IR™) is a divergence-free vector field

Jyu + u-Vu =—Vp+ Au.
read as V- (u®u)
In coordinates,
i Mk A =1,...,n.
8{(1, +u]8$j 8$1 * 8xj8xj ! n

Take inner product with a and integrate by parts:

here we use:

(Wh) —/A [3ta'U+Va-(u®u)+Aa~u]d:z:dt—()
G

ou; 0
/éazuja dedt = —/éaTj(aiuj)uidxdt

Oa; / ou
— —uu;dedt — a; u; dzdt.
/c” O’ ¢ O

/a-Vp:—/ (diva)pdzdt=0
G G

means we lose the pressure term. Also, recall

For the weak form, consider that

u®u::uiuj:uuT.

If A, Be M"*"™ then A-B= tr[ATB]. Similarly, weak form of Vu =0 is

(Wa) / u-Vodzdt=0 for every pe CX(G).
G

Definition 6.2. V =closure {a € C*(G,R"), V-a=0} w.r.t. the space time norm

lall, :/ / (Jaf2 + |Va[?) dzdt

Oa; Oa;
B /c [aiaﬁ O 3Ij}dxdt

L3(G,R™) = closure{b € C*(G,R")}

Space for initial conditions:

in L2(G,R™). Observe that by the Helmholtz projection,

LiG,RY= P, @ P

~—~ ~—~—
gradients  divergence free vector fields with zero BC
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Theorem 6.3. (Leray, Hopf) Let G C R" be open. Suppose ug€ Pg-(G). Then there exists a vector field
u €V that satisfies the weak form (Wh), (Wa) of the Navier-Stokes equations. Moreover,

b ||u(t7)_u0||L2(G)_’O as th
e FEnergy inequality

t
L e, o Pde + Vu(z, s)2deds < [ [uo(e)2de
2 G 0 G 2

fort>0.

Remark 6.4. 1. No assumptions on smoothness of JG.
2. No assumptions on space dimension.

(Yet there is a large gap between n=2 and n > 2.)



