1 High order FD

o Finite-order finite differences:

256 Summary

D, f(ay) = Lp—Jion
df\ _ N omp
s = 2 oW
1\2
oap = —2(—1r— ™)

e Points per Wavelength:

e Number of passes:

(m—n)l(m+n)!

27
=—>
PPW kA:C/2
ket

T oo

e Phase error: Leading term of the relative error. Often

o order
PE(p,l/)wCV(PPW> .

o  Work per wavelength:

where m = order.

e Infinite-order finite differences: As above with m — co. Demand exactness for trig

t
Won=2m xPPWxE,

Find coefficients by comparing with Fourier series for z+— x.

Rearranging the sum gives

)
dz'*

N

>

i=0

%(— 1)j+i[sin<N11(j —i))}lui.

Ds,j

2 Trigonometric Polynomial Approximation

Assume u: [0, 27] — R periodic.
e N even.

e Spaces:

2.1 Continuous Expansion

e Fourier series:

span{e™®: |n|< N/2} N + 1-dim.

B, \ {sin(gx)} N-dim.

Pryu(z) = 1, e,
711:—0027r
Up = 2, flx)e " dx

. polynomial e

ilx



2 SECTION 2

e Special cases:
o wureal=1u_,=14,,
o u even=-only cosines,
o wu odd = only sines.
e Approximation:
o > |1ln|2<oo:>||u—77Nu|\L2—>0.
o Y00 lin|<oo=[ju—Pnull.—0.

0--m=1) (yiewed periodically) is continuous, u(™ € L?= |i,| ~ (1/n)™.

o ul
e Spectral convergence: u € C* = 1, decays faster than any power of n.
e PD=DP. Projection and differentiation commute. (start with expansion above, carry out both.)

e Truncation error: PyL(Id —Py)=0.

2.1.1 Approximation Theory for the Continuous Expansion

e Sobolev norm:
o0

q
2 e 12 N
lull; = > ID™ullpa~ D [dal2(1+|n])%.
m=0

e Parseval’s Identity:
2m
S linlt= 5 [ lul?
~ 2m Jo
e h=1/N.
o ucH™
Ju = Ponull o < Ch[ul@||

. . . 1
Proof: Parseval, consider tail, smuggle in an n??- —
e y analytic:

[ —Panul| < Ce™Nluf
Proof: Hu(q)H 2§C’q!||u|\L2,S‘cirling’s Formula: ¢! ~ g%~ % g~ N.
L

e ucH™
[u = Panu| o < Ch" || -

L (tn?)

: 2
Proof: Parseval, (1 + |n|)%? G

o ueC g>1/2:
e = Pl o < /2]

L2
Proof: |u— Panul, smuggle in n?, CSU.

e L a constant coefficient differential operator:
s .
du
j=1
[£u = LPanul| o <A™ 5]

2.2 Discrete Expansion

2.2.1 Discrete Even Expansion

o z,;=27j/N, j=0..N—1. (N points)



TRIGONOMETRIC POLYNOMIAL APPROXIMATION

e FEzactness: Periodic case: Trapezoidal rule is Gauk quadrature.

R 1 o 1 N-1
u€ Ban_2: 2, u(x):]_\f Z u(z;)
j=0

Proof: Evaluate geometric series.

o Coefficients:
;| Nl
~ —inc; .
"= N, Z;) e " ulwy),

Jj=

where ¢, =1+1,,—n/2 to compensate for /o ="1_x/2. — N coefficients, N quadrature points.
e Interpolant:
Inu(z) = Z Upein®.

In|<N/2
N

= Y gi@uly)

i=0

gi(x)= %sin(N%)cot(%).

o Inu(xz;)=u(z;). (rewrite sums, geometric series)

with
o In:L?— BN.

e Two different ways to differentiate: go through mode space—or don’t.
e Differentiation matrix is circulant.

e sin N/2 consequences:
d - .
o IN@#DIN (d/dJJBN—/—)BN)
o D?#D®,
e Spatial discretization does not cause phase error deterioration.

2.2.2 Discrete Odd Expansion
o z;=2mj/(N+1) j=0...N. (N +1 points)

e FEzactness: Periodic case: Trapezoidal rule is Gauf quadrature.

R 1 2m 1
o Coefficients:

e Interpolant:

I

<
—~
&
~—
&
®
~

with

o Jn: L2—>BN.



4 SECTION 3

o JInu(x;) =u(x;).
o May also be viewed as Lagrange trigonometric interpolant:
o Same differentiation matrix as oco-order FD.

. IN% —DIn.

2.2.3 Approximation Theory for Discrete Expansions
o ucHI g>1/2:
Cplin =T+ Y Untonm
|m|<oo,m#0

Proof: Substitute continuous into discrete, exchange sums because of absolute convergence,

smuggle+CSU.
o Aliasing error:

ANt = Eptiy — Unp.

o uceH", r>1/2:

ANl 2 < BT flu®

L2
Proof: smuggle, CSU.
o ueH" r>1/2:

u— Taul| o < 7|

Proof: Error = aliasing-+truncation.
e ucH" r>1/2
AN o <A™ [ul] g
o ucH" r>1/2

o~ Toxtll e < A7l
||Cu—CI2NuHHq < hT_q_SHuHHr'

3 Fourier Spectral Methods

Consider u; = Lu.

3.1 Fourier Galerkin
e Defining assumption:
Ry =0wun— EuNJ_BN.
e  Build method: Calculate residual, project onto By, set to zero.
o Multiplication (for nonlinear problems) becomes convolution. (e.g. Burgers)
o More complicated nonlinearities: no way.

o Very efficient for linear, constant-coefficient problems with periodic BCs.

3.1.1 Stability
e L semi-bounded:
L+ L*<2ald
= stability.



FOURIER SPECTRAL METHODS 5

e  Proving semi-boundedness: Integrate by parts.
Examples:

o L=a(r)0:
o L=0;b(x)0,

o L semi-bounded = Fourier-Galerkin stable.

Proof: show Py =P} by (Pnu,v)=(Pnu, Pyv). Then Ly =PnLPy semi-bounded.

3.2 Fourier Collocation
e Defining assumption:
Rn|y,=0
e Optionally: Collocation points {y;} # Quadrature points {z;}. (we won’t do that)
e Build method: Expand u with Lagrange interpolation polynomial. Obtain residual. Set to zero at
collocation points — simply replace derivatives by application of the differentiation matrix.
3.2.1 Stability
e TIn+#1I}, so Fourier Galerkin proof breaks.

e Discrete inner product:

lun || = [lun]| ;- for odd expansion.
lun || 5y~ [lun]l ;- for even expansion.

o L=a(z)u(z), 0<1/k<]a(z)| <k:

o Jlun(®)lly < kllun(0)]-
Proof: Multiply by un/a, obtain (1/a)d/dt( " u?). Use exactness of quad. formula, period-
icity to get d/d¢t =0. Exploit boundedness of a.

o % = A D u: Use AY? as a change of variables, then bound u = e~ 4Py by saying
AY2D A=1/2 is skew-symmetric.
Proof remains valid for v =D Au, £L=—a(z), ...

o L=qa(z)u(z) with a(z) changing sign, but |a;|/2 < « uniformly

o treat skew-symmetric form

1 1 1
Lu= 50Uz + 5(@ Uy — 50l

to get [Jun || < e ||uol x:
Proof: Multiply by ux, get d/dt 3" u?. Integrate (exact) by parts in the second term, only
third term left over, yields bound.

o skew-symmetric equation can be written

0 1 1
N % + EjNaazuN + §6zJN [aun] — = 0,
1 1 1
WN + 5 Inadaun + 50pIn[aun] — 5 (Inda(aun) — Inadguy) = 0,
Jun

1 1
e + InaOzun + §8sz[a un] — ijNaz(a uy) = 0

AN:=

||ANHL2 < h2571Hu§\275)

L2



6 SECTION 4

(it’s 2s — 1 because Ay contains derivatives). This motivates the...

o ...superviscosity method

Eu =Lu+ ( - 1)5#63511]\].

Stable if ¢ >some constant C'.
Proof: Add Ax on both sides, integrate (un, An), by parts, < Hu§f,>

L Bound supervis-
cosity term by same norm, bound for (u, d;u) \ involving |a,| shows up.
o Using Fourier Galerkin, see that superviscosity = filtering.
o L=0b(z)0%u, b>0:
o matrix method: Define D = D2, note D?*u € By _1, Dgilu € By, use skew-hermiticity.
o integral method: 92 :=Zn0,ZnO, TN, then rewrite as integral.
o L=f(U):
o Spectral viscosity method
Oun + 0. Pnf(un) =en(—1)5105[Qpy + O5un]
where @, is a filter

o Superspectral viscosity method

Oun + 0, Pnf(un) =en(—1)5T1025uy.

4 Orthogonal Polynomials

e By:=span{z™:0<n< N}
e Fourier methods achieve exponential accuracy only if u is periodic.
e Sturm-Liouville operator:
Lo =0:(pOrp) + qp = dwp
p>0,0< g< M, w the weight function.
e Parseval identity:

N R 1
(u’u)Lﬁ,:Z FYnu72m Vn:(@nv</7n)a U"ZV_(U’%JL%U'

n

e Estimate decay of 1, by plugging in eigenvalue problem, using selfadjointness of operator.

o Singular Sturm-Liouville problem: p vanishes at boundary.

E m
(2)"
w
— spectral decay for C*° functions with zero BCs. (Regular problem: only for periodic problems,
otherwise boundary causes error.)

— Jiin] ~ O

L,

e Jacobi polynomials: P(a’ﬁ), a,f>—1

pl@)=(1-2)*"(1+2)", wl@)=(1-2)*1+2)’, q@)=cw.

e Rodrigues’ formula:
1

21

(1-2)2(1+2)°Pr " (2) = oo 00(1 — )+ (1 + 2) P 7.

e Deriwative:
d S8 _nta+B+1 5at1,8+1)
pY=—"—_ P ’ .
doe™ " 2 n—l (@)



PorLyNoMIAL ExXPANSIONS 7

Odd/Even:
PP = (1P (— ).

e There are various three-term recurrence for these polynomials, Péa’ﬁ) =1, Pl(a’ﬁ) = %(a +0+2)x+
(a—p)/2.
e Legendre polynomials: a=3=0, w=1, called P,

o  Chebyshev polynomials: p=+1—2?%, =0, w=p. T, = cos(n arccos(z)).
xTn:%Tn—l +Tn+1'

Chebyshev is best approximation to ™! among polynomials of degree n.
e Ultraspherical/Gegenbauer polynomials: o= (3.

e PPW for polynomials: ~4. (Gegenbauer expansion, decay of the Bessel function)

5 Polynomial Expansions

e (Can somewhat easily differentiate and integrate, requires three-term stuff and its inverse.
e  Gauf-Lobatto quadrature: both endpoints part of the quadrature. Exact for Boy _1.

e  Gauf-Radau quadrature: one endpoint part of the quadrature. Exact for By .

e Pure Gauf$ quadrature: no endpoints part of the quadrature. Exact for Baon 1.

e FEach different kind of polynomial has a different set of quadrature points and weights because each
has a different weight function.

e Chebyshev Quadrature:

GL GR G
a:j——cos(%w> wj——cos(m\?i_lw) zj_—cos(;]jv_:_lzw> 7=0,..,N
wj=—— v-*l-—l TPE—
7 ;N 7 e; 2N +1 7TON+1
with
c;=1+1x+1,.
e [+, ]w denotes discrete inner product, |- || ,, discrete norm.

e Discrete Gaufl-Lobatto norm: not exact for n= N, but equivalent.

e  Discrete Expansion:

zl}_.

N N
Iyu(z) =Y P (@)in, tn==Y u(z;)P"(z;)w;
n=0 =0

2

n

e Quadrature points are interpolation points.
Proof: Plug coefficient terms into expansion, exchange sums to find

N
L) =w; 3 2P a) P (a;)

n=0 '"
is the Lagrange interpolation polynomial.
e Differentiation matrices are nilpotent. (Decrease in order)
e GL Differentiation matrix is centro-antisymmetric.

e DW=Da,



Runge phenomenon: Wild behavior of polynomials near interval boundaries.

u€C% —1,1], {z;} interpolation nodes. Then
lu = Znull o < 1+ An|flu = p*ll

where p* is the best-approximating polynomial and

A, = max \,, /\”:Z Li(z).

[7171] j=

(=)

An=Clog(N+1)+C".

Cauchy interpolation remainder:

Grid points should cluster quadratically near the boundary.

6 Polynomial Spectral Methods & Stability

6.1

6.2

6.3

Galerkin
Defining assumption: Residual orthogonal to By.
Stiffness matriz:

Sk,n = L tpk&pnwdx.

. Tk
Mass matrix:
1
My, n=— [ prppwdz,
V&
positive definite because L?-norm is a norm.
Formulation:
a=M"1Sa.

Basis constructed as a linear combination of P\ to ensure BCs are kept.

n

ug=Lu. If L is semi-bounded (£ + L* < 2vId), then the Galerkin method is stable.

SECTION 6

Linear hyperbolic equation well-posed in Jacobi norm for a > 0, § < 0, but not for Chebyshev.

(Consider 1 — |z|/e. Norm blows up, because Cheb weights blow up.)

Tau

Defining assumption: Residual orthogonal to By _k, where k is the number of BCs, demand that it

is zero.

BC coeflicients can be obtained once PDE-discretizing coefficients are computed.
Mass matrix remains diagonal.

Usable for elliptic problems, allows efficient preconditioners.

Burgers: Product once again becomes convolution-like term.

Collocation

Defining assumption: Residual zero at interpolation/quadrature nodes.



PoLyNOMIAL SPECTRAL METHODS & STABILITY
e Stability: Usual go-to-integral stuff.

6.4 Penalty Method for Boundary Conditions

o  Ezample:
v (Q=x)Pi(x) [1 z=-1,
Q@)= 2PN(—N1) _{0 =24 1.

%—i—a%: —7a Q™ (x)(un(—1) - BC)

e Consistent because exact solution satisfies scheme exactly.

e Stable: go back to integral, gives boundary values, tweak 7 to be bigger than corresponding weight.



