256 Summary

1 High order FD

• Finite-order finite differences:

$$\mathcal{D}_n f(x_j) = \frac{f_{j+n} - f_{j-n}}{2n\Delta x}$$

$$\frac{\mathrm{d}f}{\mathrm{d}x_j}|_{x_j} = \sum_{n=1}^m \alpha_n^m \mathcal{D}_n f_j$$

$$\alpha_n^m = -2(-1)^n \frac{(m!)^2}{(m-n)!(m+n)!}.$$

• Points per Wavelength:

$$PPW = \frac{2\pi}{k\Delta x} \geqslant 2$$

• Number of passes:

$$\nu = \frac{k c t}{2\pi}$$

• Phase error: Leading term of the relative error. Often

$$PE(p, \nu) \sim C\nu \left(\frac{2\pi}{PPW}\right)^{order}$$
.

• Work per wavelength:

$$W_m = 2m \times \text{PPW} \times \frac{t}{\Delta t},$$

where m = order.

• Infinite-order finite differences: As above with $m \to \infty$. Demand exactness for trig. polynomial e^{ilx} . Find coefficients by comparing with Fourier series for $x \mapsto x$. Rearranging the sum gives

$$\frac{\mathrm{d}u}{\mathrm{d}x}|_{x_{j}} = \underbrace{\sum_{i=0}^{N} \frac{1}{2} (-1)^{j+i} \left[\sin \left(\frac{\pi}{N+1} (j-i) \right) \right]^{-1}}_{D_{i,j}} u_{i}.$$

2 Trigonometric Polynomial Approximation

Assume $u: [0, 2\pi] \to \mathbb{R}$ periodic.

- \bullet N even.
- \bullet Spaces:

$$\begin{array}{ll} \hat{B}_N \; := \; \; \mathrm{span}\{e^{inx} \colon |n| \leqslant N/2\} \quad N+1\text{-}\mathrm{dim}. \\ \tilde{B}_N \; := \; \; \hat{B}_n \setminus \left\{ \sin \! \left(\frac{N}{2} x \right) \right\} \quad N\text{-}\mathrm{dim}. \end{array}$$

2.1 Continuous Expansion

• Fourier series:

$$\mathcal{P}_N u(x) = \sum_{n=-\infty}^{\infty} \hat{u}_n e^{inx},$$
$$\hat{u}_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx.$$

1

- Special cases:
 - \circ $u \text{ real} \Rightarrow \hat{u}_{-n} = \hat{u}_n^*$
 - \circ u even \Rightarrow only cosines,
 - \circ u odd \Rightarrow only sines.
- Approximation:
 - $\circ \sum_{n=-\infty}^{\infty} |\hat{u}_n|^2 < \infty \Rightarrow ||u \mathcal{P}_N u||_{L^2} \to 0.$
 - $\circ \quad \sum_{n=-\infty}^{\infty} |\hat{u}_n| < \infty \Rightarrow ||u \mathcal{P}_N u||_{L^{\infty}} \to 0.$
- $u^{(0...m-1)}$ (viewed periodically) is continuous, $u^{(m)} \in L^2 \Rightarrow |\hat{u}_n| \sim (1/n)^m$.
- Spectral convergence: $u \in C^{\infty} \Rightarrow \hat{u}_n$ decays faster than any power of n.
- $\mathcal{PD} = \mathcal{DP}$. Projection and differentiation commute. (start with expansion above, carry out both.)
- Truncation error: $\mathcal{P}_N \mathcal{L}(\mathrm{Id} \mathcal{P}_N) = 0$.

2.1.1 Approximation Theory for the Continuous Expansion

• Sobolev norm:

$$\|u\|_q^2 = \sum_{m=0}^q \|D^m u\|_{L^2}^2 \sim \sum_{n=-\infty}^\infty |\hat{u}_n|^2 (1+|n|)^{2q}.$$

• Parseval's Identity:

$$\sum_{n} |\hat{u}_{n}|^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} |u|^{2}.$$

- h = 1/N.
- $u \in H^r$:

$$\|u - \mathcal{P}_{2N}u\|_{L^2} \leqslant C h^q \|u^{(q)}\|_{L^2}.$$

Proof: Parseval, consider tail, smuggle in an $n^{2q} \cdot \frac{1}{n^{2q}}$.

• *u* analytic:

$$||u - \mathcal{P}_{2N}u||_{L^2} \leqslant C e^{-cN} ||u||_{L^2}$$

Proof: $\|u^{(q)}\|_{L^2} \leq C q! \|u\|_{L^2}$, Stirling's Formula: $q! \sim q^q e^{-q}, \ q \sim N$.

• $u \in H^r$:

$$||u - \mathcal{P}_{2N}u||_{H^q} \leq C h^{r-q} ||u||_{H^r}.$$

Proof: Parseval, $(1+|n|)^{2q} \sim \frac{(1+|n|^{2r})}{N^{2(r-q)}}$

• $u \in C^q$, q > 1/2:

$$\|u - \mathcal{P}_{2N}u\|_{L^{\infty}} \leq h^{q-1/2} \|u^{(q)}\|_{L^{2}}$$

Proof: $|u - \mathcal{P}_{2N}u|$, smuggle in n^q , CSU.

• \mathcal{L} a constant coefficient differential operator:

$$\mathcal{L}u = \sum_{j=1}^{s} a_j \frac{\mathrm{d}^j u}{\mathrm{d}x^j}.$$

$$\left\|\mathcal{L}u-\mathcal{L}\mathcal{P}_{2N}u\right\|_{H^{q}}\leqslant h^{r-q-s}\|u\|_{H^{r}}.$$

2.2 Discrete Expansion

2.2.1 Discrete Even Expansion

• $x_j = 2\pi j/N, j = 0...N - 1.$ (N points)

• Exactness: Periodic case: Trapezoidal rule is Gauß quadrature.

$$u \in \hat{B}_{2N-2}$$
: $\frac{1}{2\pi} \int_0^{2\pi} u(x) = \frac{1}{N} \sum_{i=0}^{N-1} u(x_i)$

Proof: Evaluate geometric series.

• Coefficients:

$$\tilde{u}_n = \frac{1}{N\tilde{c}_n} \sum_{j=0}^{N-1} e^{-inx_j} u(x_j),$$

where $c_n = 1 + \mathbf{1}_{n=N/2}$ to compensate for $\tilde{u}_{N/2} = \tilde{u}_{-N/2}$. $\to N$ coefficients, N quadrature points.

• Interpolant:

$$\mathcal{I}_N u(x) = \sum_{\substack{|n| \leq N/2 \\ N-1}} \tilde{u}_n e^{inx}.$$
$$= \sum_{j=0}^{N-1} g_j(x) u(x_j)$$

with

$$g_j(x) = \frac{1}{N} \sin\left(N\frac{x - x_j}{2}\right) \cot\left(\frac{x - x_j}{2}\right).$$

$$\circ \quad \mathcal{I}_N: L^2 \to \tilde{B}_N.$$

$$\circ$$
 $\mathcal{I}_N u(x_i) = u(x_i)$. (rewrite sums, geometric series)

- Two different ways to differentiate: go through mode space—or don't.
- Differentiation matrix is *circulant*.
- $\sin N/2$ consequences:

$$\circ \quad \mathcal{I}_{N\frac{\mathrm{d}}{\mathrm{d}x}} \neq D\mathcal{I}_{N} \ (\mathrm{d}/\mathrm{d}x : \tilde{B}_{N} \to \tilde{B}_{N})$$

$$\circ D^2 \neq D^{(2)}$$
.

• Spatial discretization does not cause phase error deterioration.

2.2.2 Discrete Odd Expansion

- $x_j = 2\pi j/(N+1)$ j = 0...N. (N+1 points)
- Exactness: Periodic case: Trapezoidal rule is Gauß quadrature.

$$u \in \hat{B}_{2N}$$
: $\frac{1}{2\pi} \int_0^{2\pi} u(x) = \frac{1}{N+1} \sum_{j=0}^N u(x_j)$.

Coefficients:

$$\tilde{u}_n = \frac{1}{N+1} \sum_{j=0}^{N} u(x_j) e^{-inx_j}.$$

• Interpolant:

$$\mathcal{J}_N u(x) = \sum_{\substack{|n| \leqslant N/2 \\ }} \tilde{u}_n e^{inx}$$
$$= \sum_{l=0}^N u(x_l) h_l(x)$$

with

$$h_l(x) = \frac{1}{N+1} \frac{\sin\left(\frac{N+1}{2}(x-x_l)\right)}{\sin\left(\frac{1}{2}(x-x_l)\right)} = \sum_{k=-N/2}^{N/2} e^{ik(x-x_l)}.$$

$$\circ \quad \mathcal{J}_N: L^2 \to \hat{B}_N.$$

- $\circ \quad \mathcal{J}_N u(x_j) = u(x_j).$
- May also be viewed as Lagrange trigonometric interpolant:
- \circ Same differentiation matrix as ∞ -order FD.
- $\bullet \quad \mathcal{I}_N \frac{\mathrm{d}}{\mathrm{d}x} = \mathcal{D}\mathcal{I}_N.$

2.2.3 Approximation Theory for Discrete Expansions

• $u \in H^q, q > 1/2$:

$$\tilde{c}_n \tilde{u}_n = \hat{u}_n + \sum_{|m| \leqslant \infty, m \neq 0} \hat{u}_{n+2Nm}$$

Proof: Substitute continuous into discrete, exchange sums because of absolute convergence, smuggle+CSU.

• Aliasing error:

$$\mathcal{A}_N u := \tilde{c}_n \tilde{u}_n - \hat{u}_n.$$

• $u \in H^r, r > 1/2$:

$$\left\| \mathcal{A}_N u \right\|_{L^2} \leqslant h^r \left\| u^{(r)} \right\|_{L^2}.$$

Proof: smuggle, CSU.

• $u \in H^r, r > 1/2$:

$$\|u - \mathcal{I}_{2N}u\|_{L^2} \leqslant h^r \|u^{(r)}\|_{L^2}.$$

Proof: Error = aliasing + truncation.

• $u \in H^r, r > 1/2$:

$$\|\mathcal{A}_N u\|_{H^q} \leqslant h^{r-q} \|u\|_{H^r}.$$

• $u \in H^r, r > 1/2$:

$$||u - \mathcal{I}_{2N}u||_{H^q} \leqslant h^{r-q}||u||_{H^r},$$

$$||\mathcal{L}u - \mathcal{L}\mathcal{I}_{2N}u||_{H^q} \leqslant h^{r-q-s}||u||_{H^r}.$$

3 Fourier Spectral Methods

Consider $u_t = \mathcal{L}u$.

3.1 Fourier Galerkin

• Defining assumption:

$$R_N = \partial_t u_N - \mathcal{L} u_N \perp \hat{B}_N.$$

- Build method: Calculate residual, project onto \hat{B}_N , set to zero.
 - o Multiplication (for nonlinear problems) becomes convolution. (e.g. Burgers)
 - More complicated nonlinearities: no way.
 - Very efficient for linear, constant-coefficient problems with periodic BCs.

3.1.1 Stability

• \mathcal{L} semi-bounded:

$$\mathcal{L} + \mathcal{L}^* \leqslant 2\alpha \mathrm{Id}$$

 \Rightarrow stability.

Fourier Spectral Methods 5

- Proving semi-boundedness: Integrate by parts. Examples:
 - \circ $\mathcal{L} = a(x)\partial_x$
 - $\circ \quad \mathcal{L} = \partial_x b(x) \partial_x$
- \mathcal{L} semi-bounded \Rightarrow Fourier-Galerkin stable. Proof: show $\mathcal{P}_N = \mathcal{P}_N^*$ by $(\mathcal{P}_N u, v) = (\mathcal{P}_N u, \mathcal{P}_N v)$. Then $\mathcal{L}_N = \mathcal{P}_N \mathcal{L} \mathcal{P}_N$ semi-bounded.

3.2 Fourier Collocation

• Defining assumption:

$$R_N|_{y_i} = 0$$

- Optionally: Collocation points $\{y_i\} \neq \text{Quadrature points } \{x_i\}$. (we won't do that)
- Build method: Expand u with Lagrange interpolation polynomial. Obtain residual. Set to zero at collocation points \rightarrow simply replace derivatives by application of the differentiation matrix.

3.2.1 Stability

- $\mathcal{I}_N \neq \mathcal{I}_N^*$, so Fourier Galerkin proof breaks.
- Discrete inner product:

$$(u,v)_N = \frac{1}{N+1} \sum_{i=0}^{N} f(x_i) \overline{g(x_i)}$$

 $\|u_N\|_N = \|u_N\|_{L^2}$ for odd expansion. $\|u_N\|_N \sim \|u_N\|_{L^2}$ for even expansion.

- $\mathcal{L} = a(x)u(x), \ 0 < 1/k \le |a(x)| \le k$:
 - $\circ \|u_N(t)\|_N \leqslant k \|u_N(0)\|.$

Proof: Multiply by u_N/a , obtain $(1/a)d/dt(\sum u^2)$. Use exactness of quad. formula, periodicity to get d/dt = 0. Exploit boundedness of a.

 \circ $\dot{\boldsymbol{u}}=A$ D \boldsymbol{u} : Use $A^{1/2}$ as a change of variables, then bound $\boldsymbol{u}=e^{-ADt}\boldsymbol{u}_0$ by saying $A^{1/2}DA^{-1/2}$ is skew-symmetric.

Proof remains valid for $\dot{\boldsymbol{u}} = D A \boldsymbol{u}$, $\mathcal{L} = -a(x)$, ...

- $\mathcal{L} = a(x)u(x)$ with a(x) changing sign, but $|a_x|/2 \leq \alpha$ uniformly
 - treat skew-symmetric form

$$\mathcal{L}u = \frac{1}{2}a \, u_x + \frac{1}{2}(a \, u)_x - \frac{1}{2}a_x u$$

to get $||u_N||_N \le e^{\alpha t} ||u_0||_N$:

Proof: Multiply by u_N , get $d/dt \sum u_N^2$. Integrate (exact) by parts in the second term, only third term left over, yields bound.

o skew-symmetric equation can be written

$$\frac{\partial u_N}{\partial t} + \frac{1}{2} \mathcal{J}_N a \partial_x u_N + \frac{1}{2} \partial_x \mathcal{J}_N [a \, u_N] - \frac{1}{2} \mathcal{J}_N (a_x u_N) = 0,$$

$$\frac{\partial u_N}{\partial t} + \frac{1}{2} \mathcal{J}_N a \partial_x u_N + \frac{1}{2} \partial_x \mathcal{J}_N [a \, u_N] - \frac{1}{2} (\mathcal{J}_N \partial_x (a \, u_N) - \mathcal{J}_N a \partial_x u_N) = 0,$$

$$\frac{\partial u_N}{\partial t} + \mathcal{J}_N a \partial_x u_N + \underbrace{\frac{1}{2} \partial_x \mathcal{J}_N [a \, u_N] - \frac{1}{2} \mathcal{J}_N \partial_x (a \, u_N)}_{A_N :=} = 0$$

$$\|A_N\|_{L^2} \leqslant h^{2s-1} \|u_N^{(2s)}\|_{L^2}$$

(it's 2s-1 because A_N contains derivatives). This motivates the...

 $\circ \quad ... superviscosity \ method$

$$\tilde{\mathcal{L}}u = \mathcal{L}u + (-1)^s \frac{\varepsilon}{N^{2s-1}} \partial_x^{2s} u_N.$$

Stable if $\varepsilon >$ some constant C.

Proof: Add A_N on both sides, integrate $(u_N, A_N)_N$ by parts, $\leq \|u_N^{(s)}\|_{L^2}$. Bound superviscosity term by same norm, bound for $(u, \partial_t u)_N$ involving $|a_x|$ shows up.

- Using Fourier Galerkin, see that superviscosity = filtering.
- $\mathcal{L} = b(x)\partial_x^2 u, b > 0$:
 - o matrix method: Define $D^{(2)} = D^2$, note $D^2 \boldsymbol{u} \in \hat{B}_{N-1}$, $D^{(2)}_{\text{real}} \boldsymbol{u} \in \tilde{B}_N$, use skew-hermiticity.
 - o integral method: $\partial_x^2 := \mathcal{I}_N \partial_x \mathcal{I}_N \partial_x \mathcal{I}_N$, then rewrite as integral.
- $\mathcal{L} = f(U)_x$:
 - o Spectral viscosity method

$$\partial_t u_N + \partial_x \mathcal{P}_N f(u_N) = \varepsilon_N (-1)^{s+1} \partial_x^s [Q_m * \partial_x^s u_N]$$

where Q_m is a filter

Superspectral viscosity method

$$\partial_t u_N + \partial_x \mathcal{P}_N f(u_N) = \varepsilon_N (-1)^{s+1} \partial_x^{2s} u_N.$$

4 Orthogonal Polynomials

- $B_N := \operatorname{span}\{x^n : 0 \le n \le N\}.$
- Fourier methods achieve exponential accuracy only if u is periodic.
- Sturm-Liouville operator:

$$\mathcal{L}\varphi = \partial_x(p\partial_x\varphi) + q\varphi = \lambda w\varphi$$

p > 0, $0 \le q < M$, w the weight function.

• Parseval identity:

$$(u,u)_{L_w^2} = \sum \gamma_n \hat{u}_n^2, \quad \gamma_n = (\varphi_n, \varphi_n), \quad \hat{u}_n = \frac{1}{\gamma_n} (u, \varphi_n)_{L_w^2}.$$

- Estimate decay of \hat{u}_n by plugging in eigenvalue problem, using selfadjointness of operator.
- Singular Sturm-Liouville problem: p vanishes at boundary.

$$\rightarrow |\hat{u}_n| \sim C \frac{1}{\lambda_n^m} \left\| \left(\frac{\mathcal{L}}{w} \right)^m u \right\|_{L^2_w}.$$

 \rightarrow spectral decay for C^{∞} functions with zero BCs. (Regular problem: only for periodic problems, otherwise boundary causes error.)

• Jacobi polynomials: $P_n^{(\alpha,\beta)}$, $\alpha,\beta > -1$

$$p(x) = (1-x)^{\alpha+1}(1+x)^{\beta+1}, \quad w(x) = (1-x)^{\alpha}(1+x)^{\beta}, \quad q(x) = c w.$$

• Rodrigues' formula:

$$(1-x)^{\alpha}(1+x)^{\beta}P_n^{\alpha,\beta}(x) = \frac{1}{2^n n!}\partial_x^n (1-x)^{\alpha+n}(1+x)^{\beta+n}.$$

• Derivative:

$$\frac{\mathrm{d}}{\mathrm{d}x}P_n^{(\alpha,\beta)} = \frac{n+\alpha+\beta+1}{2}P_{n-1}^{(\alpha+1,\beta+1)}(x).$$

Polynomial Expansions 7

• Odd/Even:

$$P_n^{(\alpha,\beta)} = (-1)^n P_n^{(\alpha,\beta)}(-x).$$

- There are various three-term recurrence for these polynomials, $P_0^{(\alpha,\beta)} = 1$, $P_1^{(\alpha,\beta)} = \frac{1}{2}(\alpha + \beta + 2)x + (\alpha \beta)/2$.
- Legendre polynomials: $\alpha = \beta = 0$, $w \equiv 1$, called P_n
- Chebyshev polynomials: $p = \sqrt{1-x^2}$, q = 0, w = p. $T_n = \cos(n\arccos(x))$.

$$x T_n = \frac{1}{2} T_{n-1} + T_{n+1}.$$

Chebyshev is best approximation to x^{n+1} among polynomials of degree n.

- $Ultraspherical/Gegenbauer\ polynomials:\ \alpha = \beta.$
- PPW for polynomials: ~ 4 . (Gegenbauer expansion, decay of the Bessel function)

5 Polynomial Expansions

- Can somewhat easily differentiate and integrate, requires three-term stuff and its inverse.
- Gauß-Lobatto quadrature: both endpoints part of the quadrature. Exact for B_{2N-1} .
- $Gau\beta$ -Radau quadrature: one endpoint part of the quadrature. Exact for B_{2N} .
- Pure Gauß quadrature: no endpoints part of the quadrature. Exact for B_{2N+1} .
- Each different kind of polynomial has a different set of quadrature points and weights because each has a different weight function.
- Chebyshev Quadrature:

$$\begin{aligned} & \text{GL} & \text{GR} & & G \\ & x_j = -\cos\left(\frac{j}{N}\pi\right) & w_j = -\cos\left(\frac{2j}{2N+1}\pi\right) & z_j = -\cos\left(\frac{2j+1}{2N+2}\pi\right) & j = 0, \dots, N \\ & w_j = \frac{\pi}{c_j N} & v_j = \frac{\pi}{c_j} \cdot \frac{1}{2N+1} & u_j = \frac{\pi}{N+1} \end{aligned}$$

with

$$c_j = 1 + \mathbf{1}_N + \mathbf{1}_0.$$

- $[\cdot,\cdot]_w$ denotes discrete inner product, $\|\cdot\|_{N,w}$ discrete norm.
- Discrete Gauß-Lobatto norm: not exact for n = N, but equivalent.
- Discrete Expansion:

$$\mathcal{I}_{N}u(x) = \sum_{n=0}^{N} P_{n}^{(\alpha)}(x)\tilde{u}_{n}, \quad \tilde{u}_{n} = \frac{1}{\tilde{\gamma}_{n}} \sum_{j=0}^{N} u(x_{j}) P_{n}^{(\alpha)}(x_{j}) w_{j}$$

• Quadrature points are interpolation points.

Proof: Plug coefficient terms into expansion, exchange sums to find

$$l_j(x) = w_j \sum_{n=0}^{N} \frac{1}{\tilde{\gamma}_n} P_n^{(\alpha)}(x) P_n^{(\alpha)}(x_j)$$

is the Lagrange interpolation polynomial.

- Differentiation matrices are nilpotent. (Decrease in order)
- GL Differentiation matrix is centro-antisymmetric.
- $\bullet \quad D^{(q)} = D^q.$

- Runge phenomenon: Wild behavior of polynomials near interval boundaries.
- $u \in C^0[-1,1], \{x_j\}$ interpolation nodes. Then

$$\|u - \mathcal{I}_n u\|_{\infty} \leq |1 + \Lambda_N| \|u - p^*\|_{\infty},$$

where p^* is the best-approximating polynomial and

$$\Lambda_n = \max_{[-1,1]} \lambda_n, \quad \lambda_n = \sum_{j=0}^{N} l_j(x).$$

- $\Lambda_N \geqslant C \log(N+1) + C'$.
- Cauchy interpolation remainder:

$$u(x) - \mathcal{I}_N u(x) = \frac{u^{(N+1)}(\xi)}{(N+1)!} \prod_{j=0}^n (x - x_j).$$

• Grid points should cluster quadratically near the boundary.

6 Polynomial Spectral Methods & Stability

6.1 Galerkin

- Defining assumption: Residual orthogonal to B_N .
- Stiffness matrix:

 $S_{k,n} = \frac{1}{\gamma_k} \int \varphi_k \mathcal{L} \varphi_n w dx.$

Mass matrix:

 $M_{k,n} = \frac{1}{\gamma_k} \int \varphi_k \varphi_n w dx,$

positive definite because L^2 -norm is a norm.

Formulation:

$$\dot{a} = M^{-1}Sa$$
.

- Basis constructed as a linear combination of $P_n^{(\alpha)}$ to ensure BCs are kept.
- $u_t = \mathcal{L}u$. If \mathcal{L} is semi-bounded $(\mathcal{L} + \mathcal{L}^* \leq 2\gamma \mathrm{Id})$, then the Galerkin method is stable.
- Linear hyperbolic equation well-posed in Jacobi norm for $\alpha \ge 0$, $\beta \le 0$, but not for Chebyshev. (Consider $1 |x|/\varepsilon$. Norm blows up, because Cheb weights blow up.)

6.2 Tau

- Defining assumption: Residual orthogonal to B_{N-k} , where k is the number of BCs, demand that it is zero.
- BC coefficients can be obtained once PDE-discretizing coefficients are computed.
- Mass matrix remains diagonal.
- Usable for elliptic problems, allows efficient preconditioners.
- Burgers: Product once again becomes convolution-like term.

6.3 Collocation

• Defining assumption: Residual zero at interpolation/quadrature nodes.

• Stability: Usual go-to-integral stuff.

6.4 Penalty Method for Boundary Conditions

 \bullet Example:

$$Q^{-}(x) = \frac{(1-x)P'_{N}(x)}{2P_{N}(-1)} = \begin{cases} 1 & x = -1, \\ 0 & x = x_{j} \neq -1. \end{cases}$$

$$\frac{\partial u_N}{\partial t} + a \frac{\partial u_N}{\partial x} = -\tau a Q^-(x)(u_N(-1) - BC)$$

- Consistent because exact solution satisfies scheme exactly.
- Stable: go back to integral, gives boundary values, tweak τ to be bigger than corresponding weight.