EN221 Summary

1 Tensor Stuff

e Divergence:

V-u=0u; /V~u:/ u'nda,
R OR

V'TzaiTijej /V~T: TTnda.
R OR

V®u:Jacobian/V®u:/ u ® nda,
R OR

(matrix divergence: columns stay separate)
e Boz product: [a,b,c]=a-(bAc)

o Levi-Civita tensor:

gijr=det| ;2 &2 Op2 —1 (ijk) an odd permut. of (123),

di1 05,1 Ok, 1 (ijk) an even permut. of (123),
= [eiv €j, ek] =
0i,;3 05,3 Ok,3 0  if not.

€e;j\ex=¢;;jre;.
det(abe) =¢; jrab ck

€ijk€ilm = 0ji0km — 0jmOki,
€ijk€ijl = 20k1,
€ijk€ijk = 0

e  Principal Invariants:
I4 = M4+ A3=([4a,b,c]+[a,Ab,c]+[a,b, Ac])/]a,b,c]=1tr A,
4 = Mo+ X3+ A= ([Aa, Ab, ]+ [Aa,b, Ac] + [a, Ab, Ac])/[a,b, c] = %[trQA —tr A%,
Iy = MA2A3=[Aa, Ab, Ac]/[a,b,c]=det A.
e Adjugate/Cofactor of a Tensor: A*(a Ab)=(Aa) A (Ab) = A*=det A(A~T).
O det A(t) =det Atr((9,A)A1Y)
e Tensor Product: TO @ FROM

e®e; = eieJT
(u®v)a = u(v-a)
(uv)(wez) = v-wule)

(u®v)A = u®(Alv)

o Skewsymmetric matrices: Rotation around axis Q given by orthogonal matrix Q(t).
@ = Qr=0(Q"Q) =0,
W=QQT, W=-—WT. We=QAzx.

2 Kinematics

2.1 Static

o Reference and deformed configurations.



SECTION 2

Deformation gradient: assumed regular. J=det F' 0.

z(X) = X +u(X),
F = Vxz(X),
F1 = 6sz5E5®ei

Isochoric: J=1.

Polar decomposition:

o F=RU,
FTFP=U? R=FU"L.
o F=VR.
Features:

o Is unique.

o R is rotation of principal axes.

o R average of all rotations.

o Principal axes of V' are Ru,;.

o o(V)=0o(U).

o R=v;®uy.

o  F=M\v®uy.
Left/Right Cauchy-Green Deformation Tensor: FFT/FTF SPD.
Strain:

E = Z(FTF-1d) (Lagrangean: |dz|?—|dX|?=2dX -EdX),

E' =

N — o[ —

(Id— F~TF~1) (Eulerian: |dz|?>—|dX|?>=2dx- E'dx).
Stretch:
AMM)=(M-FTFM)'/?=|UM|.
Has local maxima and minima when M is an eigenvector of U.
Transformation of area elements:
nda=F*NdA
Deformation gradient in cylindrical coordinates: Given

r
9 :f(R7®72)7
z

we have

1
F:(’?Rw®ER+§8@m®E@+3zw®Ez.

Also expressible as mized tensor from Er e z) to E¢ g .):

or 1 or or
OR R 0© 0z
o0 o6 06
10R R OO 10z
0z 1 0z 0z

9R RO©  0Z
Caveat for mixed tensors: tr(F') & F;;. However det, V, U as usual. Also works for spherical basis,
but more complicated.



KiINEMATICS

2.1.1 Static Examples

2.2

Pure shear: F=)Xe; @e;+ A lea® es.
Simple shear: F=1d 4+ \e; ® e,.

Pure bending:

x (R—Y)sina(z)
y |=| R—(R-=Y)cosa(z) |, J=(R-Y)a
z Z

Tension and torsion:

. ( %cos(%)\Z) — %sin(%/\Z) \
Z = %Sin(%)\Z) + %cos(%/\Z)
VA

Turning a cylinder inside out.

Dynamic
Steady motion: 0/0tv(x,t)=0.
Material/Lagrangean POV focus on particle, expressions in terms of X and ¢ — Solids.
Spatial/Eulerian POV focus on point in space, expressions in terms of @ and ¢ — Fluids.
Lines:

o Path line: Curve traced by a fixed particle.

o Streamlines: Field lines of velocity in Eulerian POV.
Both coincide under steady motion.

Material derivative:

= %—va(ﬂv,
w = %—l—(vw@w)v,
= %-F(Vz@T)v.

Acceleration: a="1.

Velocity gradient: L=Vqo®v = F=LF (chain rule).
F requires a “reference state”, L does not.

d& = FdX = L FAX = Ldx. Assume dz=m/|dz|.

Strain rate: ||ci1a;|| = m-Lm=m-Dm
m = Lm—m(m-Lm)

Stretch and Spin: L=D+W, D=DT, W=—-WT.

Dq1: stretching rate of a line element along the 1-direction
D12: (roughly) change in angle between the 1- and 2-direction.
Principal axes p; of D are rigidly rotating about

w= lcurlv
)
with Wp; =w X p;.

Vorticity: curl v =2 - angular velocity. (Letter here is also w.)
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o J=JtrL=Jdivo.

e Integrals over moving contours:

7{ v-dx 274 v(x,t)- FdX
Cy Cr
ij{ v-da :j{ (v(x,t) - F+v(x,t)- LF)dX

= j{ v(z,t) + LTv(x, t)dz
Cy

e Integrals over moving surfaces: Similar, taking into account that F*=JF~7,

d

— u-nds:/ (u+uwtr(L) — Lu) - nds.

e Integrals over moving volumes/Reynolds’ Transport Theorem:

i/ cp(:c)dv:/ ¢+ ptr(L)dv.
dt Rt Rt

Observe that tr(L) = divwv, which is zero in the incompressible case.

7{ v-de =
Cy

LTy =

o  (lirculation:

o

curlv-ds:/ w-ds
St

Vo2

no| —

if circulation-preserving d

= T Ctv-dw =

v(x,t)+ LTv(x,t)dx

ﬁ(m,t)dw—i—%

Ct

-

%szd:v

t

I
T~ TS~ 3T~

o

a(x,t)dx

curla -ds

Il
o

If a=V1, then the motion is circulation-preserving.
If circulation-preserving, then

curla=w + wtr(L) — Lw =0.

Then consider the product rule on

d -1, —
dt(JF w)=...=0
to find Cauchy’s vorticity formula:
w= le
= 7 ref-

Field lines of vorticity are vortex lines.
If the motion is circulation-preserving, these are material curves.

3 Balance Laws and Field Equations

e Conservation of Mass: Assumption:

Jp = pret (referential).



BavLaNceE Laws AND FIELD EQUATIONS 5

Therefore,

pJ+pJ =
pJ+pJdive =
p+pdive =
O + div(pv) =

o o o o

Transport Theorem with density:

d

T . p@dvz/Rt pPdo.

Linear Momentum: M = pv

(e]

(e]

Stress vector: t(y) is force/unit area.

i/ pvz/ pi)z/ pbdv+/ t(n)da.
dt Jg, R, R, OR;

Stress tensor/Cauchy’s Theorem: UT’I’L:t(n). Derivation:

Balance law:

—  t(_n)=—1t(n) by pillbox and balance law.

—  Tetrahedron argument: n the general normal of the coordinate-system-boxed tetrahe-
dron. Then other faces a; = an;, where a is the area of the complicated face. Volume
h a/3. Apply 1/a - balance law, let h — 0. Assume continuity, derive linear depen-
dence by assuming values are locally constant.

/pa:/ pb+V -0
Ry Ry

Pref® = V x-S+ pretb (referential)

Updated balance law:

Field equations:

pa = Vg o+ pb (spatial)

Nominal Stress/Conjugate stress: s=JF~lo. (cTnda =s"NdA can be directly verified.)
Also called Piola-Kirchoff stress. s is 2nd Piola-Kirchoff stress.

Angular Momentum: H = px Av

(¢]

(e]

Non-polar material: no contact torques.

Balance law:

i/ p:v/\v(;)/ pw/\i):/ p(:v/\b—i—c)dv—i—/ x Atpyda
dt /g, Ry R, R,

¢ is body torque. Equality (*) follows because x-derivatives vanish once Aw is applied.

Subsituting Cauchy’s Theorem into the balance law gives

/w/\(Vm-a—i-pb) = / p(m/\b)dv—l—/ x Aonda
Rt Rt

aRt
/ A (Vg 0) / x ANonda
Rt aRt
T

View in component form, apply Gauf, derive ¢;,0;,=0=>0=0".
Field equations:

sTFT = Fs (referential)

ol = o (spatial)
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Vector identities:
(A-V)A = %V|A|2+ (Vx A)x A
(A-V)A = (Ve A)A.
Use these identities to rewrite the ¥ as V(v?) for irrotational flow.
Types of fluid flow:
o Inviscid: o =—pld=divo=—Vp.
o Incompressible: p=0 or divw =0.

o Steady: O;v=0.
p=v-Vp.

o Irrotational: w=0 or v=V.
o Elastic: p(p)
o Ideal=incompressible: divvo =0, J=1.

Rayleigh-Plesset equation: Begin with deformation of spherical shell (with extent!), assume J = 1.
Derive ODE.

Conservative potentials: b=—Vj3

o Elastic or ideal flow here is circulation preserving, i.e. @ = — Vsomething.
— Have
1
a = — ;VP(P) +b
1
= ——p'(p)Vp—-Vp
—  Define

Therefore

a=—V((p)+ B).
—  For ideal fluid substitute p/pg for .
o Bernoulli’s Theorem:

— Flow irrotational (i.e. v=—Vy):

V<8t<p+%2+s(p)+ﬁ> =0.

Proof: Just rewrite, obtaining v2/2 from second term of material derivative.

— Flow steady:
v? *
(7+€(p)+ﬁ) =0,

i.e. this quantity is constant along streamlines.
Proof: Exploit v-v =v -V (v?)

—  Flow both irrotational and steady:

V(%—i—s(p) +ﬁ> =0.
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e Acoustic wave equation:
o Assume p=pg+dp, |v| <1, |Vv| <K 1.

o Start with J; (V - v), use cons. of. momentum without second order term, cons. of mass as
Op + podiv(v) =0.

o bpr=c*V3p, with c=/9,p.
e  Mach number: assume steadiness b=0, use v- ¥ in terms of ¢2.

2

. . v
v-(pv)® = v-vp| 1— =z
et
o Supersonic nozzle m <1, m > 1.
e (Conservation of Energy:
o  Balance law:
d
K (R) = —S(Ry)+P(Ry)
4 l/pv-vdv = — / tr(oD)dv +/ pb-v+/ on-vda
dt 2 R, R, OR,
—
Kinetic energy K (t) Stress power S(R¢) Power supplied P(R¢)

Proof: Multiply Equation of Motion by v, integrate by parts in the o term.
o Field equation:

p(%v-v) + tr(cD) =Vg-(ov)+pb-v.

Stress Power Rate-of-working
Kinetic Energy

o Key words for more global energy conservation: internal energy U(R;), heat supply per unit
mass H(R;), heat flux through material surface.

%{K YU} =P(R) + H(Ry).

Now, because there is a stress power loss above, there needs to be a gain here:

d
EU(Rt) =S(Ry) + H(Ry).

e Jump conditions: For the balance law

¥ o= o,
— | pr=| ps+ fn)s
dt Jg, R. OR, )

[pVﬂ' + f(n)] =0.

we get

V,, interface speed, V=V, —v-n.
| | Mass Mom. A.Mom. Energy

us quantity per unit mass 1 v T Av €+ %v v

s supply of 7 per unit mass |0 b xAb b-v+r
f(n) | influx of 7 per unit area 0 tn) TAtn) tm) v+hm
so that for example

[pV] =0
[PVo+tm)] = 0.

Or for material jumps: [t(,)] =0.
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Derivation:

o Modification for moving boundary is

-/ ]V
jump surface

o Then use pillbox that flattens around surface.
Examples:

o Free boundary: pressure must be continuous, because otherwise there’s a finite force on
something massless.

e Stokes waves:
o Assume v=Vo.
o Conservation of mass V2 =0.

o Bernoulli’s equation
02

8t(/7+ D)

+ 24 (3 = const
Po

o BOCs: z depthward, z =17 free surface
—  ©,=0 at bottom
- %(z—n):O at z=n—Owp=0m at z=0 (!).
— pressure continuous at interface. Use Bernoulli’s equation to rewrite as condition
Owp+gn=0 atz=0.
o Surface tension: p; — pa = — 7y - curvature.
o  Rayleigh-Taylor instability: Large density over small density.

o Kelvin-Helmholtz instability: Wave formation.

4 Constitutive Laws

e Observer: A reference frame/coordinate system w.r.t. which vectors and tensors are seen.
z*=c(t)+Q(t)x
so, for example, F*=QF, J*=J,U*=U, R*=QR.
o Objective fields:
= ¢(x)
u*(x*) = Qu(x)
A(z*) = QA(z)Q"

Examples: D, regions, normals, o .
Non-examples: v=¢+ Qv, L=Q L QT +QQT, W.

o  Constraint stress:
o Must be workless, i.e. tr(ND)=0
o Constraint given as A(C) =0— X =tr(AcC) =0, where C' = FTF.
o C=2FTDF=N=aF\FT.

o Fluid: o =g(L).
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Cannot support shear stress at equilibrium. If ideal, also cannot support shear stress when in
motion.

o Objectivity: o* = g(L*).
—  Choose Q=1Id, Q =— W to obtain that g(L)= g(D).
o Most general such g:
o(D)=al + 3D+ yD?,
with «, 8, v functions of the invariants of D.
Proof: Cayley-Hamilton.

o Incompressible fluid:
o Ideal fluid:

o Newtonian fluid:
oc=—p(p)ld+2uD
o Navier-Stokes equation:
pa=—Vp+ puAv+ pb
plus conservation of mass.

o Rescaling & =x/l, o =v/v, p=p/(pov?), t =t/I.
Then kinematic viscosity is v = u/p.

o Reynolds number: Re=1lv/v.
High: Dominated by inertial effects.
Low: Dominated by viscous effects.

o No-slip BCs apply only for viscous fluids.
o  Wiggling plate: Watch for emergence of a boundary layer.
o Solid: o= f(F)
o Material Symmetry: P €S, where S is the symmetry group of the material.
o=f(F)=f(FP)
Isotropic Material: S =SO(3). Then choose P=RT = o= f(F)= f(V).
o Objectivity: o* = f(V*).
Most general expression to satisfy this:
o(V)=ald+ gV + V2,
with «, 3, v functions of the invariants.

o Lamé constant/Young’s Modulus: Linearization!

F = Id+Vu

1 1
E = E[FTF—Id]zi[Vu—(Vu)T]
V =~ Id+F

1
R ~ Id+ §[Vu —(Vu)']

Use these in
o=cotr VId+ 1V + csVZ = Mr(E)Id + 2uE,

where A, p are the Lamé constants.
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o Strain energy per volume: W (F') « the usual way to specify constitutive relations for solids
Then

g =

1
J oFT T ] oV

Invoke objectivity: W(F) =W (U)

Invoke isotropy: W (F) =W (V)

= W depends only on invariants of V.

= W’s principal axes line up with those of V| i.e. principal stresses || principal stretches:

1, OW (A1, A2, A3)
Oq = 7Aa—8Aa .
Incompressible:
1, OW(A1, A2, A3)

Oa=—Ag——F+——=—1D

J O,
Specifying W in terms of B=FFT:

2
o= 7(IIIBWIIIB Id + (WIB + IBWHB)B — WHBB2)7

where subscripts by Ip, I, Il 5 mean partial derivatives.
o Neo-Hookean material:
W = %M[Ah A3+ A3—3—2In(J)] +%u’(J —1)2
unconstrained: o; = p(A\?—1)+p'J(J —1),
incompressible: o; = p\? —p.
o Solving a solids problem:
— Calculate F' (Kinematics)
— Calculate B=FF7T
— Calculate o

— Apply conservation of momentum in deformed configuration. Solve for unknowns «,
p, using BCs.



