PyCUDA: Even Simpler
GPU Programming with Python

Andreas Klöckner
Courant Institute of Mathematical Sciences
New York University

Nvidia GTC · September 22, 2010
Thanks

- Jan Hesthaven (Brown)
- Tim Warburton (Rice)
- Leslie Greengard (NYU)
- PyCUDA contributors
- PyOpenCL contributors
- Nvidia Corporation
Outline

1. Scripting GPUs with PyCUDA
2. PyOpenCL
3. The News
4. Run-Time Code Generation
5. Showcase
Outline

1. Scripting GPUs with PyCUDA
 - PyCUDA: An Overview
 - Do More, Faster with PyCUDA

2. PyOpenCL

3. The News

4. Run-Time Code Generation

5. Showcase

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
import pycuda.driver as cuda
import pycuda.autoinit, pycuda.compiler
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)
a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]
```python
mod = pycuda.compiler.SourceModule(""
    __global__  void twice( float *a)
    {
        int idx = threadIdx.x + threadIdx.y*4;
        a[idx] *= 2;
    }
""")

func = mod.get_function("twice")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
```
Whetting your appetite

```python
mod = pycuda.compiler.SourceModule(""
__global__ void twice(float *a)
{
    int idx = threadIdx.x + threadIdx.y*4;
    a[idx] *= 2;
}
""")

func = mod.get_function("twice")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
```
Why do Scripting for GPUs?

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 → complement each other
- CPU: largely restricted to control tasks (≈1000/sec)
 - Scripting fast enough
- Python + CUDA = PyCUDA
- Python + OpenCL = PyOpenCL
Scripting: Python

One example of a scripting language: Python

- Mature
- Large and active community
- Emphasizes readability
- Written in widely-portable C
- A ‘multi-paradigm’ language
- Rich ecosystem of sci-comp related software
Scripting: Interpreted, not Compiled

Program creation workflow:

1. **Edit**
2. **Compile**
3. **Link**
4. **Run**
Scripting: Interpreted, not Compiled

Program creation workflow:

1. Edit
2. Link
3. Run

Andreas Klöckner
PyCUDA: Even Simpler GPU Programming with Python
Scripting: Interpreted, not Compiled

Program creation workflow:

Edit → Compile → Link → Run

Crossed out: Compile and Link
PyCUDA: Workflow

Edit → Run → SourceModule("...") → Upload to GPU → Run on GPU

Cache? no → nvcc → .cubin → PyCUDA
How are High-Performance Codes constructed?

- “Traditional” Construction of High-Performance Codes:
 - C/C++/Fortran
 - Libraries

- “Alternative” Construction of High-Performance Codes:
 - Scripting for ‘brains’
 - GPUs for ‘inner loops’

- Play to the strengths of each programming environment.
PyCUDA Philosophy

- Provide complete access
- Automatically manage resources
- Provide abstractions
- Check for and report errors automatically
- Full documentation
- Integrate tightly with numpy
What’s this “numpy”, anyway?

Numpy: package for large, multi-dimensional arrays.

- Vectors, Matrices, ...
- A+B, sin(A), dot(A,B)
- la.solve(A, b), la.eig(A)
- cube[:, :, n-k:n+k], cube+5

All much faster than functional equivalents in Python.

“Python’s MATLAB”:
Basis for SciPy, plotting, ...
gpuarray: Simple Linear Algebra

pycuda.gpuarray:
- Meant to look and feel just like `numpy`.
 - `gpuarray.to_gpu(numpy_array)`
 - `numpy_array = gpuarray.get()`
- `+`, `-`, `*`, `/`, `fill`, `sin`, `exp`, `rand`, `basic indexing`, `norm`, `inner product`, ...
- Mixed types (`int32 + float32 = float64`)
- `print gpuarray` for debugging.
- Allows access to raw bits
 - Use as kernel arguments, textures, etc.
import numpy
import pycuda.autoinit
import pycuda.gpudarray as gpudarray

a_gpu = gpudarray.to_gpu(
numpy.random.randn(4,4).astype(numpy.float32))
a_doubled = (2*a_gpu).get()
print a_doubled
print a_gpu
Avoiding extra store-fetch cycles for elementwise math:

```python
from pycuda.curandom import rand as curand
a_gpu = curand((50,))
b_gpu = curand((50,))

from pycuda.elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(
    " float a, float *x, float b, float *y, float *z",
    "z[i] = a*x[i] + b*y[i]"
)

c_gpu = gpuarray.empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)

assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
```
Example: A scalar product calculation

```python
from pycuda.reduction import ReductionKernel
dot = ReductionKernel(dtype_out=numpy.float32, neutral="0",
                      reduce_expr="a+b", map_expr="x[i]*y[i]",
                      arguments="const float *x, const float *y")

from pycuda.curandom import rand as curand
x = curand((1000*1000), dtype=numpy.float32)
y = curand((1000*1000), dtype=numpy.float32)

x_dot_y = dot(x, y).get()
x_dot_y_cpu = numpy.dot(x.get(), y.get())
```
PyCUDA: Vital Information

- http://mathema.tician.de/software/pycuda
- Complete documentation
- MIT License
 (no warranty, free for all use)
- Requires: numpy, Python 2.4+
 (Win/OS X/Linux)
- Support via mailing list
Outline

1. Scripting GPUs with PyCUDA
2. PyOpenCL
3. The News
4. Run-Time Code Generation
5. Showcase

Andreas Klöckner
PyCUDA: Even Simpler GPU Programming with Python
OpenCL’s perception problem

OpenCL does not presently get the credit it deserves.

- Single abstraction works well for GPUs, CPUs
- Vendor-independence
- Compute Dependency DAG
- A JIT C compiler baked into a library
Introducing... PyOpenCL

- PyOpenCL is “PyCUDA for OpenCL”
- Complete, mature API wrapper
- Has: Arrays, elementwise operations, RNG, ...
- Near feature parity with PyCUDA
- Tested on all available Implementations, OSs
- http://mathema.tician.de/software/pyopencl
Introducing... PyOpenCL

Same flavor, different recipe:

```python
import pyopencl as cl, numpy

a = numpy.random.rand(50000).astype(numpy.float32)

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

a_buf = cl.Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl.enqueue_write_buffer(queue, a_buf, a)

prg = cl.Program(ctx, """
    kernel void twice(
        __global float *a)
    {
        int gid = get_global_id(0);
        a[gid] *= 2;
    }
"""").build()

prg.twice(queue, a.shape, None, a_buf).wait()
```
Outline

1. Scripting GPUs with PyCUDA
2. PyOpenCL
3. The News
 - Exciting Developments in GPU-Python
4. Run-Time Code Generation
5. Showcase
Step 1: Download

Hot off the presses:
- PyCUDA 0.94.1
- PyOpenCL 0.92

All the goodies from this talk, plus
- Supports all new features in CUDA 3.0, 3.1, 3.2rc, OpenCL 1.1
- Allows printf() (see example in Wiki)

New stuff shows up in git very quickly.
Still needed: better release schedule.
Step 2: Installation

- PyCUDA and PyOpenCL no longer depend on Boost C++
- Eliminates major install obstacle
- Easier to depend on PyCUDA and PyOpenCL
- `easy_install pyopencl` works on Macs out of the box
- Boost is still there—just not user-visible by default.
Step 3: Usage

- Complex numbers
 - ...in GPUArray
 - ...in user code
 (pycuda-complex.hpp)
- If/then/else for GPUArrays
- Support for custom device pointers
- Smarter device picking/context creation
- PyFFT: FFT for PyOpenCL and PyCUDA
- scikits.cuda: CUFFT, CUBLAS, CULA
Sparse Matrix-Vector on the GPU

- New feature in 0.94: Sparse matrix-vector multiplication
- Uses “packeted format” by Garland and Bell (also includes parts of their code)
- Integrates with scipy.sparse.
- Conjugate-gradients solver included
 - Deferred convergence checking
Step 4: Debugging

New in 0.94.1: Support for CUDA gdb:

```
$ cuda-gdb --args python -m pycuda.debug demo.py
```

Automatically:
- Sets Compiler flags
- Retains source code
- Disables compiler cache
Outline

1. Scripting GPUs with PyCUDA
2. PyOpenCL
3. The News
4. Run-Time Code Generation
 - Writing Code when the most Knowledge is Available
5. Showcase
Many difficult questions

Insufficient heuristics

Answers are hardware-specific and have no lasting value

Proposed Solution:
Tune automatically for hardware at run time, cache tuning results.

Decrease reliance on knowledge of hardware internals
Shift emphasis from tuning results to tuning ideas

Andreas Klöckner
PyCUDA: Even Simpler GPU Programming with Python
Many difficult questions
- Insufficient heuristics
- Answers are hardware-specific and have no lasting value

Proposed Solution: Tune automatically for hardware at run time, cache tuning results.

- Decrease reliance on knowledge of hardware internals
- Shift emphasis from tuning *results* to tuning *ideas*
In GPU scripting, GPU code does not need to be a compile-time constant.
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does \textit{not} need to be a compile-time constant.

(Key: Code is data—it \textit{wants} to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant. (Key: Code is data—it wants to be reasoned about at run time)

In PyCUDA:

Good for code generation

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Andreas Klöckner

PyCUDA: Even Simpler GPU Programming with Python
In GPU scripting, GPU code does not need to be a compile-time constant. (Key: Code is data—it wants to be reasoned about at run time)
Machine-generated Code

Why machine-generate code?

- Automated Tuning (cf. ATLAS, FFTW)
- Data types
- Specialize code for given problem
- Constants faster than variables (→ register pressure)
- Loop Unrolling
from jinja2 import Template

tpl = Template(""
__global__ void twice({{ type_name }} *tgt) {
 int idx = threadIdx.x + {{ thread_block_size }} * {{ block_size }} * blockIdx.x;

 {% for i in range(block_size) %}
 {% set offset = i * thread_block_size %}
 tgt[idx + {{ offset }}] *= 2;
 {% endfor %}
}"")

rendered_tpl = tpl.render(
 type_name="float", block_size=block_size,
 thread_block_size=thread_block_size)

smod = SourceModule(rendered_tpl)
Outline

1. Scripting GPUs with PyCUDA
2. PyOpenCL
3. The News
4. Run-Time Code Generation
5. Showcase
 - Python+GPUs in Action
 - Conclusions
Discontinuous Galerkin Method

Let \(\Omega := \bigcup_i D_k \subset \mathbb{R}^d \).
Discontinuous Galerkin Method

Let $\Omega := \bigcup_{i} D_k \subset \mathbb{R}^d$.

Goal

Solve a *conservation law* on Ω: $u_t + \nabla \cdot F(u) = 0$
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Goal

Solve a conservation law on Ω:

$$ u_t + \nabla \cdot F(u) = 0 $$

Example

Maxwell’s Equations: EM field: $E(x, t), H(x, t)$ on Ω governed by

$$
\begin{align*}
\partial_t E - \frac{1}{\varepsilon} \nabla \times H &= -\frac{j}{\varepsilon}, \\
\partial_t H + \frac{1}{\mu} \nabla \times E &= 0,
\end{align*}
$$

$$
\nabla \cdot E = \frac{\rho}{\varepsilon},
\nabla \cdot H = 0.
$$
Eletromagnetism
GPU DG Showcase

Eletromagnetism

Poisson
GPU DG Showcase

Eletromagnetism

CFD

Andreas Klöckner

PyCUDA: Even Simpler GPU Programming with Python
GPU DG Showcase

Eletromagnetism

CFD
GPU-DG: Performance on GTX280

The graph compares the performance of GPU and CPU for different polynomial orders. The x-axis represents the polynomial order, and the y-axis shows the GFlops/s. The GPU outperforms the CPU significantly across all polynomial orders tested.
16 T10s vs. 64 = $8 \times 2 \times 4$ Xeon E5472

Flop Rates and Speedups: 16 GPUs vs 64 CPU cores

- GPU
- CPU

Polynomial Order N
- 0
- 1000
- 2000
- 3000
- 4000

GFlops/s
- 0
- 1000
- 2000
- 3000
- 4000

Tim Warburton: Shockingly fast and accurate CFD simulations

Wednesday, 11:00–11:50

(Several posters/talks on GPU-DG at GTC.)

Andreas Klöckner: PyCUDA: Even Simpler GPU Programming with Python
16 T10s vs. 64 = 8 × 2 × 4 Xeon E5472

Tim Warburton: Shockingly fast and accurate CFD simulations
Wednesday, 11:00–11:50
(Several posters/talks on GPU-DG at GTC.)
A High-Throughput Approach to Discovering Good Forms of Visual Representation

David Cox
The Rowland Institute at Harvard
Nicolas Pinto
Jim DiCarlo
MIT BCS

The Rowland Institute at Harvard
HARVARD UNIVERSITY
Computational Visual Neuroscience

A High-Throughput Approach to Discovering Good Forms of Visual Representation

David Cox
The Rowland Institute at Harvard

Nicolas Pinto
Jim DiCarlo
MIT BCS

Nicolas Pinto: Easy GPU Metaprogramming: A Case Study in Biologically-Inspired Computer Vision
Thursday, 10:00–10:50, Room A1
from copperhead import *
import numpy as np

@cu
def axpy(a, x, y):
 return [a * xi + yi for xi, yi in zip(x, y)]

x = np.arange(100, dtype=np.float64)
y = np.arange(100, dtype=np.float64)

with places.gpu0:
gpu = axpy(2.0, x, y)

with places.here:
cpu = axpy(2.0, x, y)
from copperhead import *
import numpy as np

@cu
def axpy(a, x, y):
 return [a * xi + yi for xi, yi in zip(x, y)]

x = np.arange(100, dtype=np.float64)
y = np.arange(100, dtype=np.float64)

with places.gpu0:
gpu = axpy(2.0, x, y)

with places.here:
cpu = axpy(2.0, x, y)

Bryan Catanzaro: Copperhead: Data-Parallel Python for the GPU
Wednesday, 15:00–15:50 (next slot!), Room N
Conclusions

- Fun time to be in computational science
- Even more fun with Python and Py\{CUDA,OpenCL\}
 - With no compromise in performance
- GPUs and scripting work well together
 - Enable Metaprogramming
- The “Right” way to develop computational codes
 - Bake all runtime-available knowledge into code
Where to from here?

More at...

→ http://mathema.tician.de/

CUDA-DG

GPU RTCG

Questions?

Thank you for your attention!

http://mathema.tician.de/
Image Credits

- Fermi GPU: Nvidia Corp.
- C870 GPU: Nvidia Corp.
- Python logo: python.org
- Old Books: flickr.com/ppdigital
- Adding Machine: flickr.com/thomashawk
- Floppy disk: flickr.com/ethanhein
- Thumbs up: sxc.hu/thiagofest
- OpenCL logo: Ars Technica/Apple Corp.
- Newspaper: sxc.hu/brandcore
- Boost C++ logo: The Boost C++ project
- ?/! Marks: sxc.hu/svilen001
- Machine: flickr.com/13521837@N00